Today

- Euler's method (cont)
- Qualitative analysis of differential equations
 - Steady states
 - Slope fields
 - Stability of steady states
 - Velocity (y') versus position (y)

Euler's method (cont)

Spreadsheet demo

DEs - a broad view

We have focussed on linear DEs so far:

$$y'=a+by$$

- A linear DE is one in which the y' and the y appear linearly (e.g. not squared).
- Some nonlinear equations:

$$v' = g-v^2$$
, $y' = -\sin(y)$, $(h')^2 = bh$.
object falling pendulum water draining
through air under water from a vessel

DEs - a broad view

- Where do nonlinear equations come from?
- Population growth:

$$N' = bN - dN = kN$$
 (linear)

where b is per-capita birth rate, d is per-capita death rate and k=b-d.

Suppose the per-capita death rate is not constant but increases with population size (more death at high density) so d = cN.

$$N' = bN-(cN)N = bN-cN^2$$

DEs - a broad view

$$\frac{dN}{dt} = bN - cN^2$$

This is called the logistic equation, usually written as

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

where r=b and K=1/c. This is a nonlinear DE because of the N^2 .

Qualitative analysis

- Finding a formula for a solution to a DE is ideal but what if you can't?
- Qualitative analysis extract information about the general solution without solving.
 - Steady states
 - Slope fields
 - Stability of steady states
 - Plotting y' versus y (state space/phase line)

$$x' = x(1-x)$$

$$\uparrow$$
velocity position

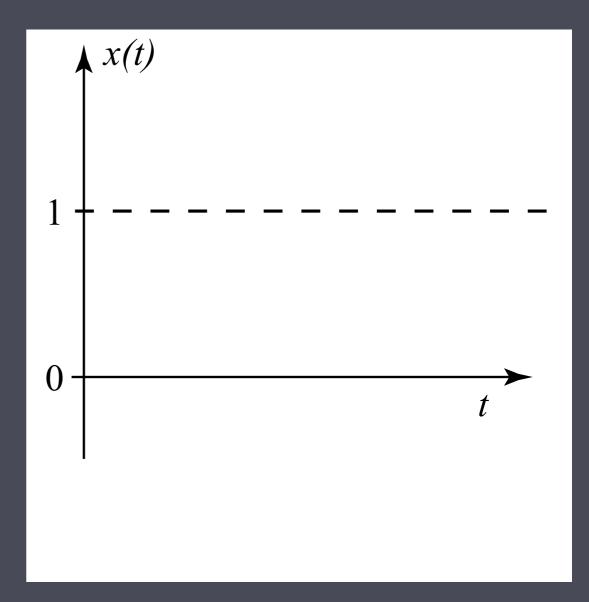
Steady state. Where can you stand so that the DE tells you not to move?

$$(A) \times = -1$$

$$(B) x=0$$

$$(C) x=1/2$$

(D)
$$x=1$$

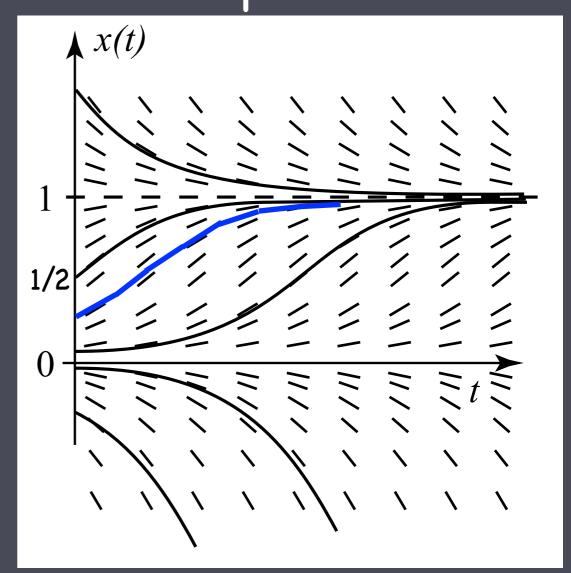


A steady state is a constant solution.

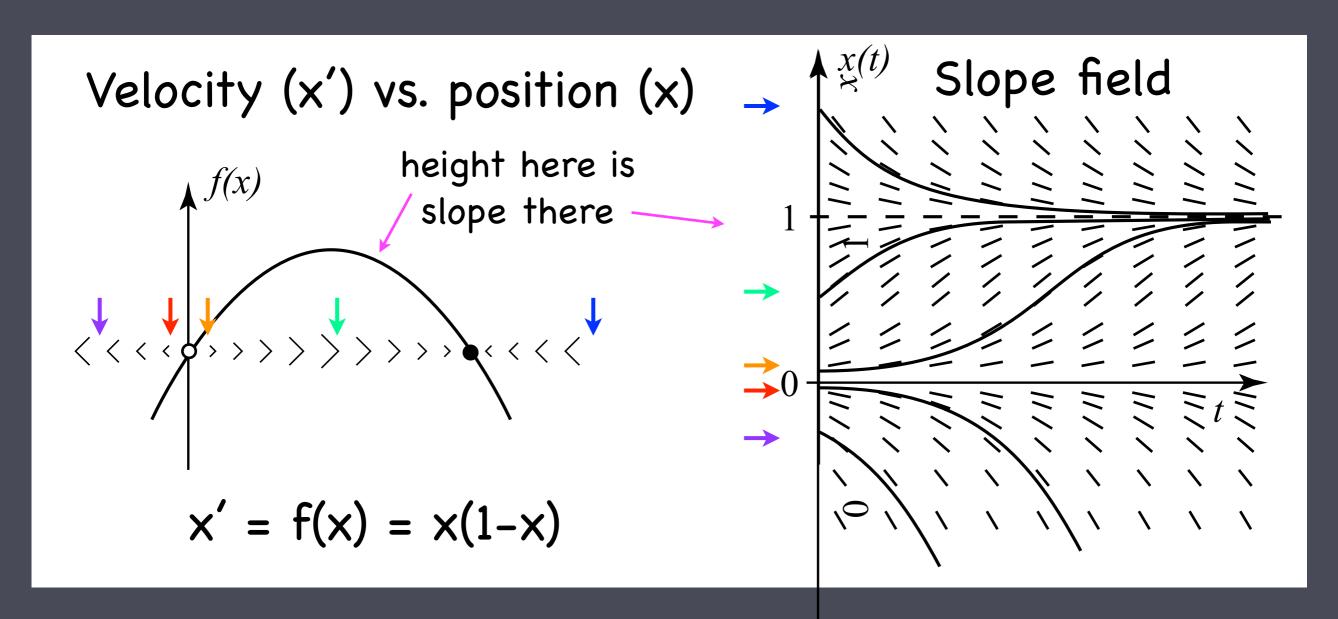
$$x' = x(1-x)$$

$$\uparrow$$
velocity position Slope field

- Slope field.
- At any t, don't know x yet so plot all possible x' values
- Now When then 2forthallistx'?
- Solution curves must be tangent to slope field everywhere.

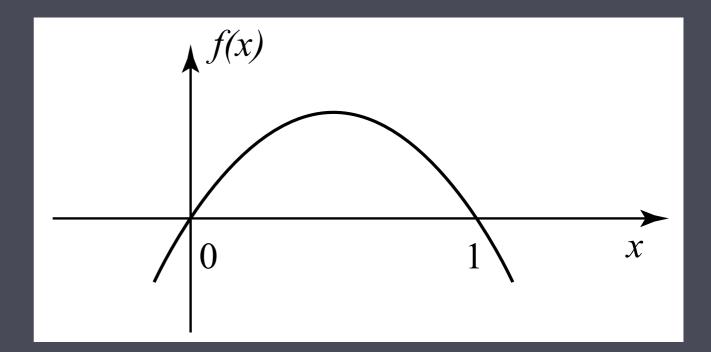


Velocity versus position



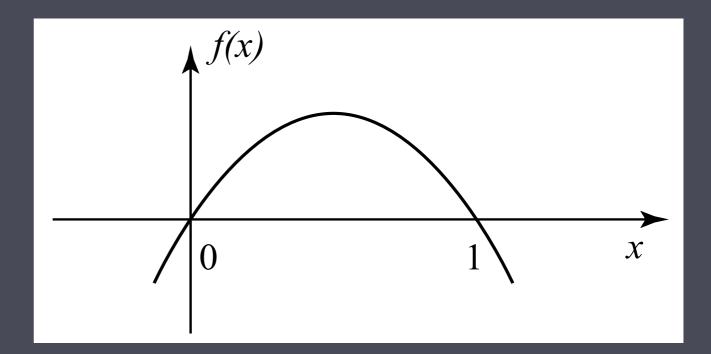
Stable steady state- all nearby solutions approach Unstable steady state - not stable

$$x' = x(1-x)$$



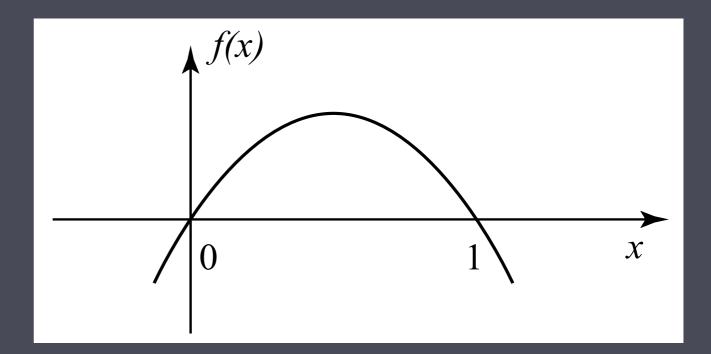
- If you start at x(0) = -0.01, the solution
- (A) increases
- (B) decreases

$$x' = x(1-x)$$



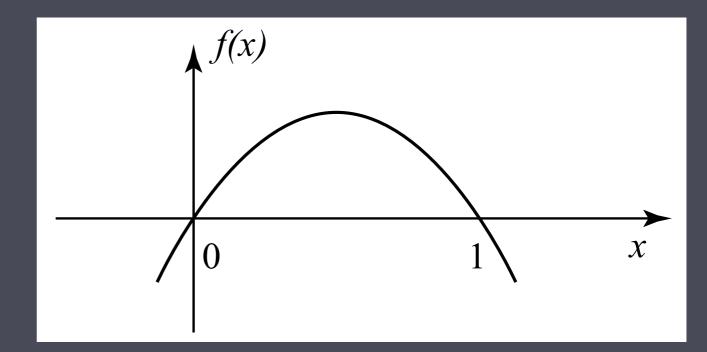
- If you start at x(0) = 0.01, the solution
- (A) increases
- (B) decreases

$$x' = x(1-x)$$



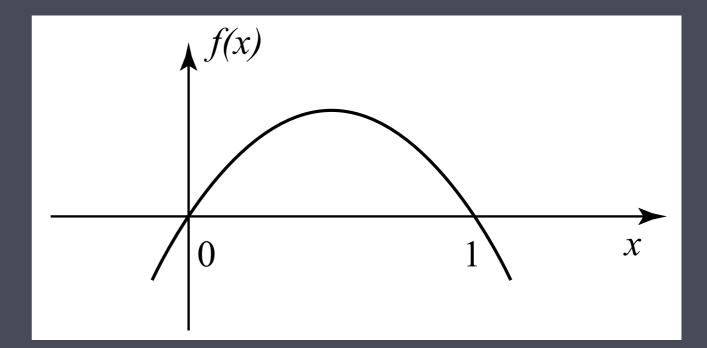
- If you start at x(0) = 0.99, the solution
- (A) increases
- (B) decreases

$$x' = x(1-x)$$



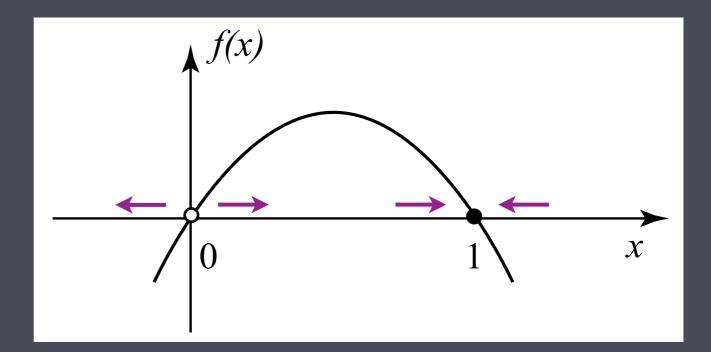
- The solution of 0 is 0 in 0 in
- (A) increases
- (B) decreases

$$x' = x(1 - x)$$



- (A) Both x(t)=0 and x(t)=1 are stable steady states.
- (B) x(t)=0 is stable and x(t)=1 is unstable.
- (C) x(t)=0 is unstable and x(t)=1 is stable.
- (D) Both x(t)=0 and x(t)=1 are unstable steady states.

$$x' = x(1-x)$$



- (A) Both x(t)=0 and x(t)=1 are stable steady states.
- (B) x(t)=0 is stable and x(t)=1 is unstable.
- (C) x(t)=0 is unstable and x(t)=1 is stable.
- (D) Both x(t)=0 and x(t)=1 are unstable steady states.

Stable - solid dot. Unstable - empty dot.