Today

• Composition and chain rule, quotient rule
• Antiderivatives of power functions and polynomials
• Tangent lines

• Reminders:
 • Assignment3 Thursday 7am,
 • OSH 2 Friday 11:59 pm.
 • Sign up for midterm time/room.
Composition of functions

If \(f(x) = 2x+3 \) and \(g(x) = -4x+2 \),

A. \(h(x) = f(g(x)) = -8x+7 \)

B. \(h(x) = f(g(x)) = -8x-10 \)

C. \(h(x) = f(g(x)) = -8x^2-8x+6 \)

D. \(h(x) = f(g(x)) = -8x+5 \)
Composition of functions

If \(f(x) = 2x+3 \) and \(g(x) = -4x+2 \),

A. \(h(x) = f(g(x)) = -8x+7 \)

B. \(h(x) = f(g(x)) = -8x-10 \)

C. \(h(x) = f(g(x)) = -8x^2-8x+6 \)

D. \(h(x) = f(g(x)) = -8x+5 \)
Composition of functions

If \(h(x) = f(g(x)) \), then

A. \(h'(x) = f'(x) g'(x) \)

B. \(h'(x) = f'(x) g(x) + f(x) g'(x) \)

C. \(h'(x) = f'(g'(x)) \)

D. \(h'(x) = f'(g(x)) g'(x) \)
Composition of functions

If $h(x) = f(g(x))$, then

A. $h'(x) = f'(x) g'(x)$

B. $h'(x) = f'(x) g(x) + f(x) g'(x)$

C. $h'(x) = f'(g'(x))$

D. $h'(x) = f'(g(x)) g'(x)$ <---- Chain Rule
Composition of functions

If \(h(x) = (x^3-2x+1)^6 \), then \(h'(x) = ? \)

A. \(6 (x^3-2x+1)^5 \)

B. \((x^3-2x+1)^6 (3x^2-2) \)

C. \(6 (x^3-2x+1)^5 (3x^2-2) \)

D. \(6 (x^3-2x+1)^5 (x^3-2x+1) \)

E. Are you kidding? It will take me weeks to multiply those out.
Composition of functions

If \(h(x) = (x^3 - 2x + 1)^6 \), then \(h'(x) = \)?

A. \(6 (x^3 - 2x + 1)^5 \)

B. \((x^3 - 2x + 1)^6 (3x^2 - 2) \)

C. \(6 (x^3 - 2x + 1)^5 (3x^2 - 2) \)

D. \(6 (x^3 - 2x + 1)^5 (x^3 - 2x + 1) \)

E. Are you kidding? It will take me weeks to multiply those out.
Rules for differentiation - summary

- **Addition rule:**
 - \(f(x) = g(x) + h(x) \quad \rightarrow \quad f'(x) = g'(x) + h'(x) \)

- **Product rule:**
 - \(f(x) = g(x) \cdot h(x) \quad \rightarrow \quad f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x) \)

- **Chain rule:**
 - \(f(x) = g(h(x)) \quad \rightarrow \quad f'(x) = g'(h(x)) \cdot h'(x) \)

- **Quotient rule:**
 - \(f(x) = \frac{g(x)}{h(x)} = g(x) \cdot (h(x))^{-1} \quad \text{<---- apply product and chain rules or} \)
Suppose \(f(x) = \frac{g(x)}{k(x)} \) and that
\[
g(2) = 3, \quad k(2) = 1, \quad g'(2) = 2, \quad k'(2) = 5.
\]

• What is \(f'(2) \)?

(A) -13
(B) -13/25
(C) -13/9
(D) 17/25
Suppose $f(x) = g(x)/k(x)$ and that $g(2) = 3$, $k(2) = 1$, $g'(2) = 2$, $k'(2) = 5$.

• What is $f'(2)$?

(A) -13

(B) $-13/25$

(C) $-13/9$

(D) $17/25$
Antiderivatives – going backward

If \(f'(x) = 6x^2 + 4x - 1 \), then

(A) \(f(x) = 12x + 4 \)

(B) \(f(x) = 2x^3 + 2x^2 - x \)

(C) \(f(x) = 2x^3 + 2x^2 - x + 2 \)

(D) \(f(x) = 2x^3 + 2x^2 - x + C \)
Antiderivatives – going backward

If $f'(x) = 6x^2 + 4x - 1$, then

(A) $f(x) = 12x + 4$

(B) $f(x) = 2x^3 + 2x^2 - x$

(C) $f(x) = 2x^3 + 2x^2 - x + 2$

(D) $f(x) = 2x^3 + 2x^2 - x + C$
Antiderivatives – going backward

If \(f'(x) = 6x^2 + 4x - 1 \), then

(A) \(f(x) = 12x + 4 \)

(B) \(f(x) = 2x^3 + 2x^2 - x \)

(C) \(f(x) = 2x^3 + 2x^2 - x + 2 \)

(D) \(f(x) = 2x^3 + 2x^2 - x + C \)

Slopes at each \(x \) don’t change with vertical shift.
This is $f'(x)$. Draw $f(x)$.
This is $f'(x)$. Draw $f(x)$.

\[\begin{align*}
\text{f(x)} & \quad \text{f(x)} \\
\end{align*} \]
This is $f'(x)$. Draw $f(x)$.

\[f'(x) \]

\[f(x) \]
This is $f'(x)$. Draw $f(x)$.
This is $f'(x)$. Draw $f(x)$.

This is $f'(x)$. Draw $f(x)$.

This is $f'(x)$. Draw $f(x)$.
This is $f'(x)$. Draw $f(x)$.
This is $f'(x)$. Draw $f(x)$.
This is $f'(x)$. Draw $f(x)$.
This is $f'(x)$. Draw $f(x)$. Only determined up to a vertical shift.
Position–Velocity–Acceleration

If $x(t)$ is position as a function of time,
Position–Velocity–Acceleration

If \(x(t) \) is position as a function of time,

velocity \(v(t) = x'(t) \),
Position–Velocity–Acceleration

- If $x(t)$ is position as a function of time,
- velocity $v(t) = x'(t)$,
- acceleration $a(t) = v'(t) = x''(t)$.
Position-Velocity-Acceleration

If \(x(t) \) is position as a function of time,

- velocity \(v(t) = x'(t) \),
- acceleration \(a(t) = v'(t) = x''(t) \).

Constant acceleration \(a \):
Position–Velocity–Acceleration

- If $x(t)$ is position as a function of time,
 - velocity $v(t) = x'(t)$,
 - acceleration $a(t) = v'(t) = x''(t)$.

Constant acceleration a:

- $v(t)$
Position–Velocity–Acceleration

If \(x(t) \) is position as a function of time,

- velocity \(v(t) = x'(t) \),
- acceleration \(a(t) = v'(t) = x''(t) \).

Constant acceleration \(a \):

- \(v(t) = at + C \)
Position–Velocity–Acceleration

- If $x(t)$ is position as a function of time,
 - velocity $v(t) = x'(t)$,
 - acceleration $a(t) = v'(t) = x''(t)$.
- Constant acceleration a:
 - $v(t) = at + C = at + v_0$
Position-Velocity-Acceleration

- If \(x(t) \) is position as a function of time,
 - velocity \(v(t) = x'(t) \),
 - acceleration \(a(t) = v'(t) = x''(t) \).

- Constant acceleration \(a \):
 - \(v(t) = at + C = at + v_0 \) so that \(v(0) = v_0 \).
Position-Velocity-Acceleration

- If \(x(t) \) is position as a function of time, velocity \(v(t) = x'(t) \),
- acceleration \(a(t) = v'(t) = x''(t) \).
- Constant acceleration \(a \):
 - \(v(t) = at + C = at + v_0 \) so that \(v(0) = v_0 \).
 - \(x(t) \)
Position–Velocity–Acceleration

- If $x(t)$ is position as a function of time,
 - velocity $v(t) = x'(t)$,
 - acceleration $a(t) = v'(t) = x''(t)$.

- Constant acceleration a:
 - $v(t) = at + C = at + v_0$ so that $v(0) = v_0$.
 - $x(t) = a/2 \ t^2 + v_0t + D$
Position–Velocity–Acceleration

If \(x(t) \) is position as a function of time,

- velocity \(v(t) = x'(t) \),
- acceleration \(a(t) = v'(t) = x''(t) \).

Constant acceleration \(a \):

- \(v(t) = at + C = at + v_0 \) so that \(v(0) = v_0 \).
- \(x(t) = a/2 \ t^2 + v_0 t + D = a/2 \ t^2 + v_0 t + x_0 \)
Position–Velocity–Acceleration

- If \(x(t) \) is position as a function of time,
 - velocity \(v(t) = x'(t) \),
 - acceleration \(a(t) = v'(t) = x''(t) \).

- Constant acceleration \(a \):
 - \(v(t) = at + C = at + v_0 \) so that \(v(0) = v_0 \).
 - \(x(t) = \frac{a}{2} t^2 + v_0 t + D = \frac{a}{2} t^2 + v_0 t + x_0 \)
 - Classic “projectile motion” (ball falling)
Tangent lines - simple ex
Tangent lines – simple ex

• Let $f(x) = x^3 + 2x^2 - x + 2$.
Tangent lines – simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).
Tangent lines – simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).

• Need equation of line
Tangent lines – simple ex

- Let \(f(x) = x^3 + 2x^2 - x + 2 \).
- Find tangent line at \(x=3 \).
- Need equation of line
 - slope is \(m=f'(3) \), point on line is \((3,f(3)) \)
Tangent lines – simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).

• Need equation of line

 • slope is \(m=f'(3) \), point on line is \((3,f(3)) \)

 • Either \(y = mx + b \) or \(y = m(x-a) + f(a) \)...
Tangent lines - simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).

• Need equation of line

 • slope is \(m=f'(3) \), point on line is \((3,f(3)) \)

 • Either \(y = mx + b \) or \(y = m(x-a) + f(a) \)...

(A) \(y = 3x + 44 \)
(B) \(y = 38x + 44 \)
(C) \(y = 38(x-3) + 44 \)
(D) \(y = 44 \)
Tangent lines – simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).

• Need equation of line
 • slope is \(m=f'(3) \), point on line is \((3,f(3))\)
 • Either \(y = mx + b \) or \(y = m(x-a) + f(a) \)...

\begin{align*}
(A) \quad y &= 3x + 44 \\
(B) \quad y &= 38x + 44 \\
(C) \quad y &= 38(x-3) + 44 \\
(D) \quad y &= 44
\end{align*}