Today...

- Points for 3 cases on OSH 1.
- Limits at infinity

Limits at infinity

- Polynomials
- Rational functions
 - power tricks (approx or divide by xm)

$$\lim_{x \to \infty} -x^3 + x^2 = ?$$

ex.
$$\lim_{x \to -\infty} x^6 + 10x^5 = ?$$

ex.
$$\lim_{x \to -\infty} 10x^5 + x^4 = ?$$

ex.
$$\lim_{x\to\infty} -x^3 + x^2 = ? -\infty$$

Highest power wins

ex.
$$\lim_{x \to -\infty} x^6 + 10x^5 = ?$$

ex.
$$\lim_{x \to -\infty} 10x^5 + x^4 = ?$$

ex.
$$\lim_{x\to\infty} -x^3 + x^2 = ? -\infty$$

Highest power wins

ex.
$$\lim_{x \to -\infty} x^6 + 10x^5 = ?$$
 ∞ Even powers kill minus signs.

ex.
$$\lim_{x \to -\infty} 10x^5 + x^4 = ?$$

ex.
$$\lim_{x\to\infty} -x^3 + x^2 = ? -\infty$$

Highest power wins

ex.
$$\lim_{x \to -\infty} x^6 + 10x^5 = ?$$
 ∞ Even powers kill minus signs.

ex.
$$\lim_{x \to -\infty} 10x^5 + x^4 = ? -\infty$$

Add powers don't.

ex.
$$\lim_{x\to\infty} -x^3 + x^2 = ? -\infty$$

Highest power wins

ex.
$$\lim_{x \to -\infty} x^6 + 10x^5 = ?$$
 ∞ Even powers kill minus signs.

ex.
$$\lim_{x \to -\infty} 10x^5 + x^4 = ? -\infty$$

Add powers don't.

On the board - technique for rational functions...

Two ways to find limits at infinity

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x}$$

For |x| large, $4x^7 - 2x^4 + 4$

(A)
$$\approx 4$$

(B)
$$\approx 4x^7$$

$$(c) \rightarrow \infty$$

(D)
$$\longrightarrow$$
 $-\infty$

For |x| large, $4x^7 - 2x^4 + 4$

(A)
$$\approx 4$$

(B)
$$\approx 4x^7$$

$$(c) \rightarrow \infty$$

(D)
$$\longrightarrow$$
 $-\infty$

For |x| large, $10x^5 - 3x^3 + 4x$

(A)
$$\approx 4x$$

(B)
$$\approx 10x^5$$

$$(c) \rightarrow \infty$$

(D)
$$\longrightarrow$$
 $-\infty$

For $|\mathbf{x}|$ large, $10x^5 - 3x^3 + 4x$

(A)
$$\approx 4x$$

(B)
$$\approx 10x^5$$

$$(c) \rightarrow \infty$$

(D)
$$\longrightarrow$$
 $-\infty$

For x large,

$$\frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x}$$

$$(A) \approx 4 / 10$$

$$(B) \approx 2/5$$

$$(C) \approx 2 / (5x^2)$$

(D)
$$\approx 2x^2 / 5$$

For |x| large,

$$\frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x}$$

$$(A) \approx 4 / 10$$

$$(B) \approx 2 / 5$$

$$(C) \approx 2 / (5x^2)$$

(D)
$$\approx 2x^2 / 5$$

For |x| large,

$$\frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x}$$

$$(A) \approx 4 / 10$$

$$(B) \approx 2 / 5$$

$$(C) \approx 2 / (5x^2)$$

(D)
$$\approx 2x^2 / 5$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

For |x| large,

$$\frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x}$$

$$(A) \approx 4 / 10$$

$$(B) \approx 2 / 5$$

$$(C) \approx 2 / (5x^2)$$

(D)
$$\approx 2x^2 / 5$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} = \infty$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^2 - \frac{2}{x} + \frac{4}{x^5}}{10 - \frac{3}{x^2} + \frac{4}{x^4}}$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^2 - \frac{2}{x} + \frac{4}{x^5}}{10 - \frac{3}{x^2} + \frac{4}{x^4}}$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^2 - \frac{2}{x} + \frac{4}{x^5}}{10 - \frac{3}{x^2} + \frac{4}{x^4}}$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^2 - \frac{2}{x} + \frac{4}{x^5}}{10 - \frac{3}{x^2} + \frac{4}{x^4}}$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^2 - \frac{2}{x} + \frac{4}{x^5}}{10 - \frac{3}{x^2} + \frac{4}{x^4}}$$

$$\lim_{x \to -\infty} \frac{4x^7 - 2x^4 + 4}{10x^5 - 3x^3 + 4x} =$$

$$\lim_{x \to -\infty} \frac{4x^2 - \frac{2}{x} + \frac{4}{x^5}}{10 - \frac{3}{x^2} + \frac{4}{x^4}} = \infty$$

What is $\lim_{x\to -\infty}$

$$\lim_{x \to -\infty} \frac{3x^n + x^2 - 1}{x^3 + 4}?$$

- \circ (A) If n=2, the limit is $-\infty$.
- \odot (B) If n=3, the limit is ∞ .
- \circ (C) If n>3 and even, the limit is $-\infty$.
- \circ (D) If n>3 and odd, the limit is $-\infty$.

Suppose $\lim_{x\to\infty} f(x) = 3$.

What is
$$\lim_{x \to -\infty} f(x)$$
?

- @ (A) 3
- @ (C) If f(x) is even, then the limit is 3.
- (D) If f(x) is odd, then the limit is 3.

Which of the following could be f(x) where $\lim_{x\to\infty} f(x) = 5$?

