Today...

® Approximations and the shapes of graphs.
e Hill functions.

e Motivating limits: secant lines, tangent lines.



Which of the following is a safe
approximation to make?

(A) If ais small then we can say a = 0.
(B) If a is small then we can say ab = 0.
(C) If ais small then we can say a+b = b.

(D) If ais small compared to b then we can
say atb=D.
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Comparisons and approximation
must be based on relative sizes!

For each of the following, (A) True, (B) False . . . You line up
some bricks to make a wall one brick high.

* One brick is a small number of bricks (i.e. “"a is small”).
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We'll talk about filling
In the rest later in the
semester.



Comparing Hill functions
with different n values

(A) Green: n=2, yellow: n=3,
red: n=4, blue: n=5.

(B) Green: n=4, yellow: n=3,
red: n=2, blue: n=1.

(C) Green: n=95, yellow: n=4,
red: n=3, blue: n=2.

(D) Either (B) or (C) (not
enough info). |
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What is the slope of the line
connecting the points?

(A) m=(x1-x2)/(y1-y2)
(B) m=(x2-x1)/(y1-y2)
(C) m=(y1-y2)/(x1-X2)

(D) m=(y2-y1)/(X2-X1)

’ (7(1,\]1)
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What is the slope of the secant line
to the graph of f(x)?

(A) m=(f(x1)-f(x2))/(X2-X1)
(B) m=(f(x2)-f(x1))/(x2-X1) ;(A

(C) m=(x1-x2)/(f(x1)-f(x2))

(D) m=(xz-x1)/(f(x1)-f(x2)) Y %1

Slope of secant line = average rate of change from x1 to xz.
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What if you want the rate of
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If we take h values closer and
closer to 0...

The secant line approaches the tangent line.

The slope of the secant line approaches the
slope of the tangent line.

We call the resulting slope the derivative at x1.

We now have to learn how to take limits!

SlOpe at T = f/(xl) _ }ILIE% f(iUl -+ h})L — f(xl)




