Today...

- Approximations and the shapes of graphs.
- Hill functions.
- Motivating limits: secant lines, tangent lines.

(A) If a is small then we can say a ≈ 0 .

(B) If a is small then we can say $ab \approx 0$.

(C) If a is small then we can say $a+b \approx b$.

 (D) If a is small compared to b then we can say a+b ≈ b.

(A) If a is small then we can say a ≈ 0 .

(B) If a is small then we can say ab ≈ 0 .

(C) If a is small then we can say $a+b \approx b$.

(D) If a is small compared to b then we can say a+b ≈ b.

Explain notation a<<b.

(A) If a is small then we can say a ≈ 0 .

(B) If a is small then we can say $ab \approx 0$.

(C) If a is small then we can say $a+b \approx b$.

(D) If a is small compared to b then we can say a+b ≈ b.

(A) If a is small then we can say a ≈ 0 .

(B) If a is small then we can say ab ≈ 0 .

(C) If a is small then we can say $a+b \approx b$.

(D) If a is small compared to b then we can say a+b ≈ b.

Explain notation a<<b.

For each of the following, (A) True, (B) False . . . You line up some bricks to make a wall one brick high.

• One brick is a small number of bricks (i.e. "a is small").

- One brick is a small number of bricks (i.e. "a is small").
- The wall is small (a \approx 0).

- One brick is a small number of bricks (i.e. "a is small").
- The wall is small (a \approx 0).
- If you make the wall 20 times as high, it is still small (ab \approx 0).

- One brick is a small number of bricks (i.e. "a is small").
- The wall is small (a \approx 0).
- If you make the wall 20 times as high, it is still small (ab \approx 0).
- Add one row of bricks to a wall 20 bricks high. The new wall about the same size as the old wall. (a+b ≈ b)

- One brick is a small number of bricks (i.e. "a is small"). True.
- The wall is small (a \approx 0).
- If you make the wall 20 times as high, it is still small (ab \approx 0).
- Add one row of bricks to a wall 20 bricks high. The new wall about the same size as the old wall. (a+b ≈ b)

- One brick is a small number of bricks (i.e. "a is small"). True.
- The wall is small (a \approx 0). Depends.
- If you make the wall 20 times as high, it is still small (ab \approx 0).
- Add one row of bricks to a wall 20 bricks high. The new wall about the same size as the old wall. (a+b ≈ b)

- One brick is a small number of bricks (i.e. "a is small"). True.
- The wall is small (a \approx 0). Depends.
- If you make the wall 20 times as high, it is still small ($ab \approx 0$). Depends.
- Add one row of bricks to a wall 20 bricks high. The new wall about the same size as the old wall. (a+b ≈ b)

- One brick is a small number of bricks (i.e. "a is small"). True.
- The wall is small (a \approx 0). Depends.
- If you make the wall 20 times as high, it is still small ($ab \approx 0$). Depends.
- Add one row of bricks to a wall 20 bricks high. The new wall about the same size as the old wall. (a+b ≈ b) True.

- One brick is a small number of bricks (i.e. "a is small"). True.
- The wall is small (a \approx 0). Depends.
- If you make the wall 20 times as high, it is still small ($ab \approx 0$). Depends.
- Add one row of bricks to a wall 20 bricks high. The new wall about the same size as the old wall. (a+b ≈ b) True.

When 0 < x << b, then x + b can be approximated by...

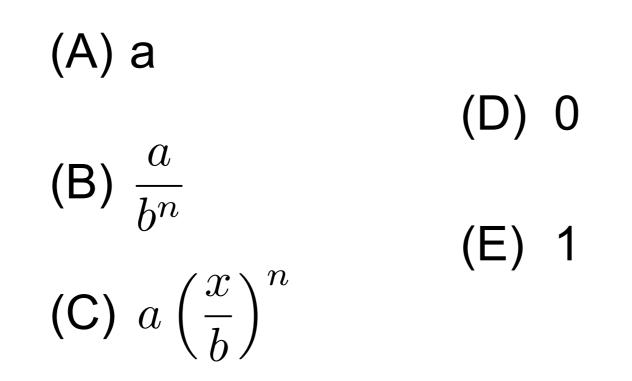
(A) b(B) x(C) infinity

When 0 < x << b, then x + b can be approximated by...

(A) b(B) x(C) infinity

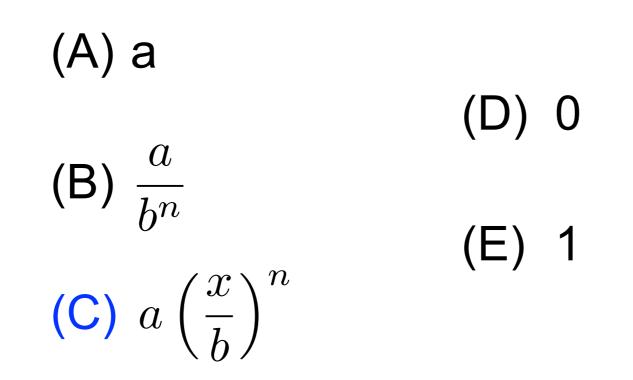
When 0 < x << b, then
$$f(x) = \frac{ax^n}{b^n + x^n}$$

can be approximated by...



When 0 < x << b, then
$$f(x) = \frac{ax^n}{b^n + x^n}$$

can be approximated by...



When x >> b, then x + b can be approximated by...

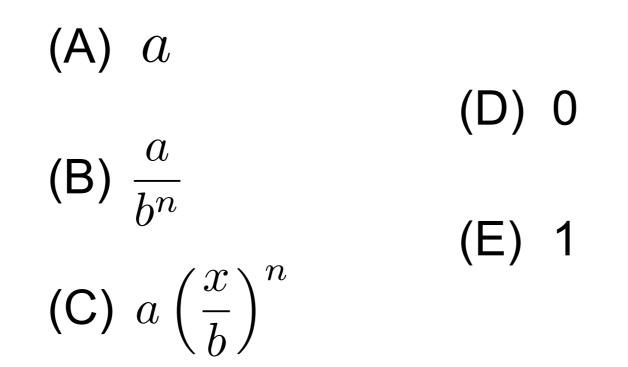
(A) b(B) x(C) infinity

When x >> b, then x + b can be approximated by...

(A) b
(B) x
(C) infinity

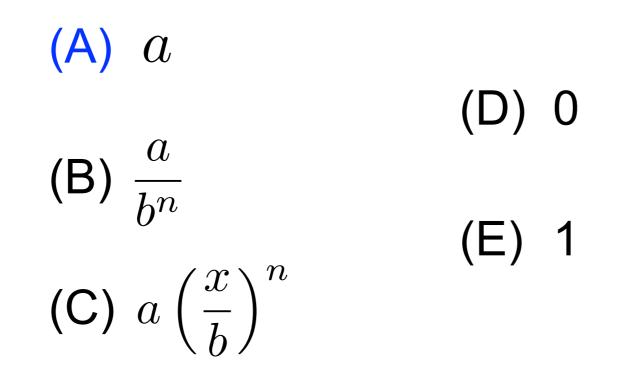
When x >> b, then
$$f(x) = \frac{ax^n}{b^n + x^n}$$

can be approximated by...

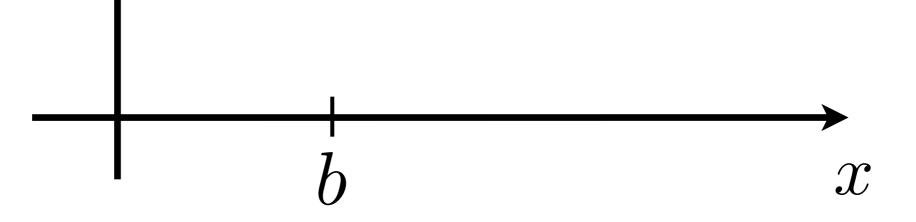


When x >> b, then
$$f(x) = \frac{ax^n}{b^n + x^n}$$

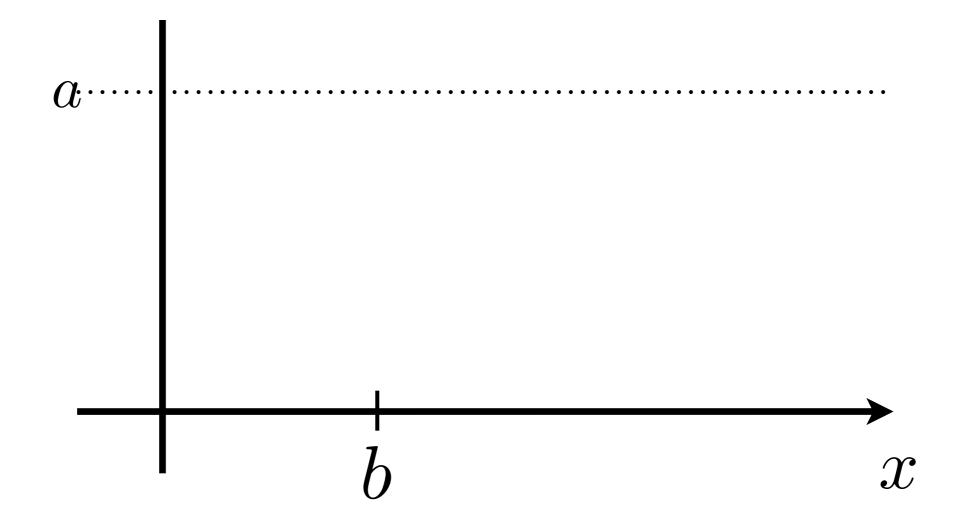
can be approximated by...

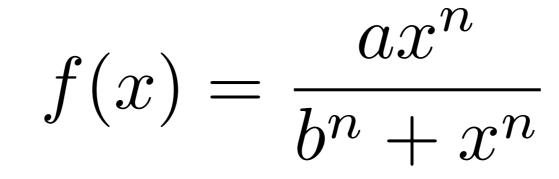


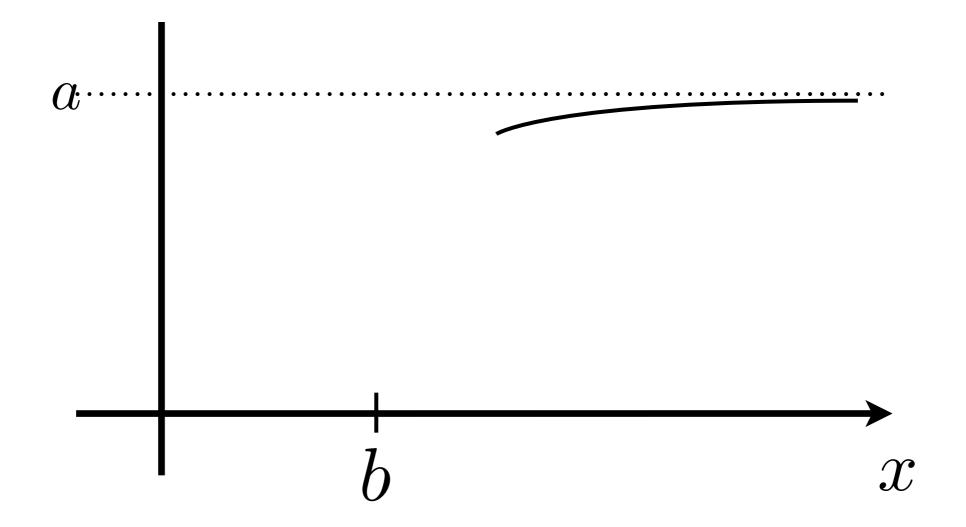
 $f(x) = \frac{ax^n}{b^n + x^n}$

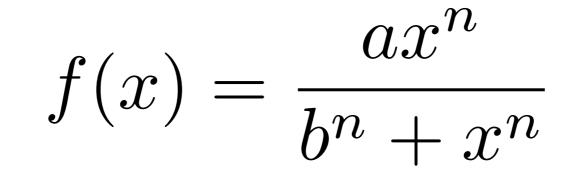


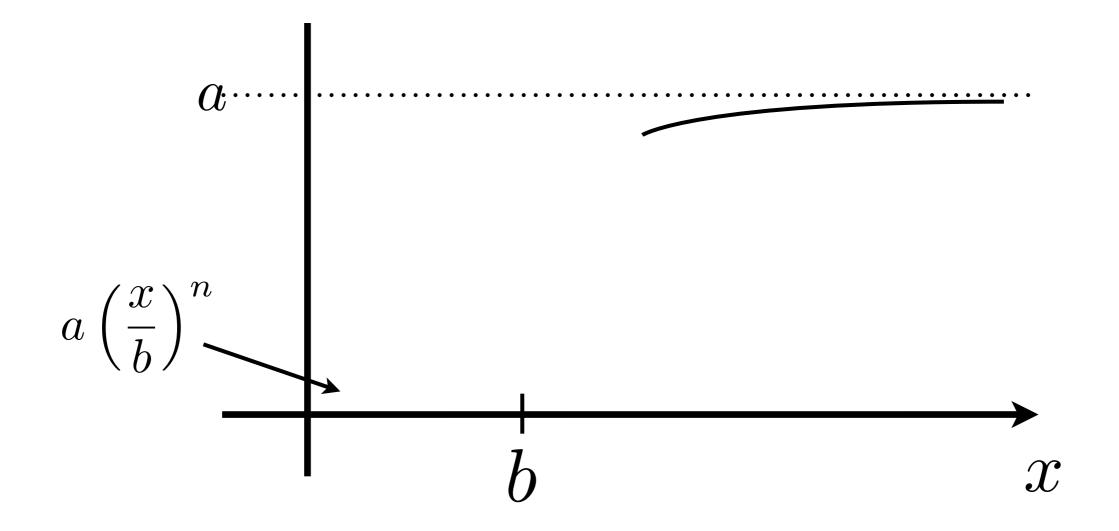
 $f(x) = \frac{ax^n}{b^n + x^n}$

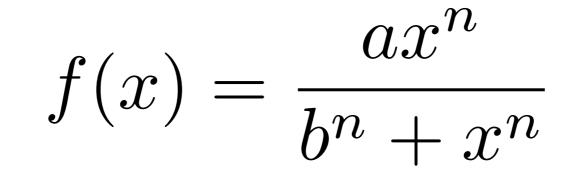


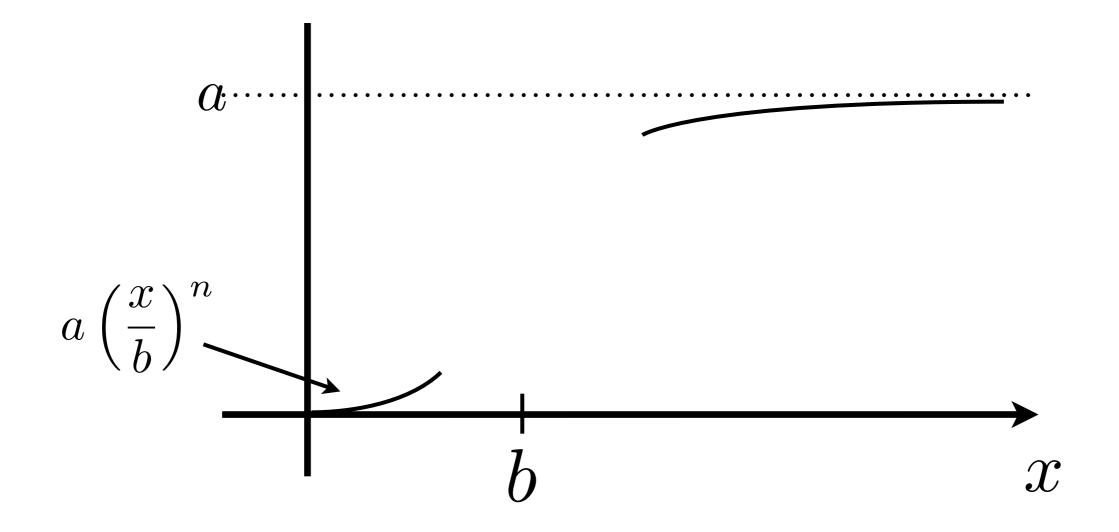


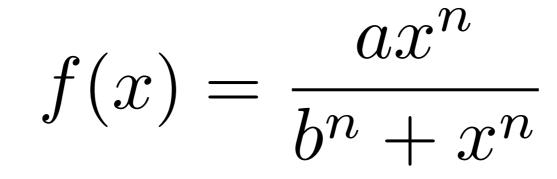


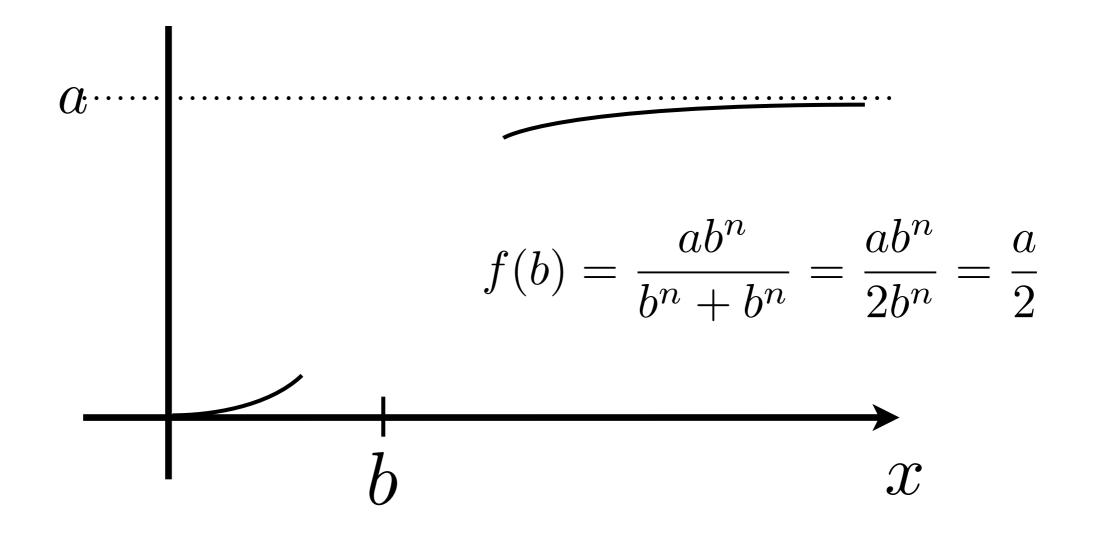


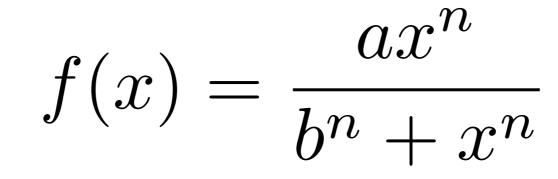


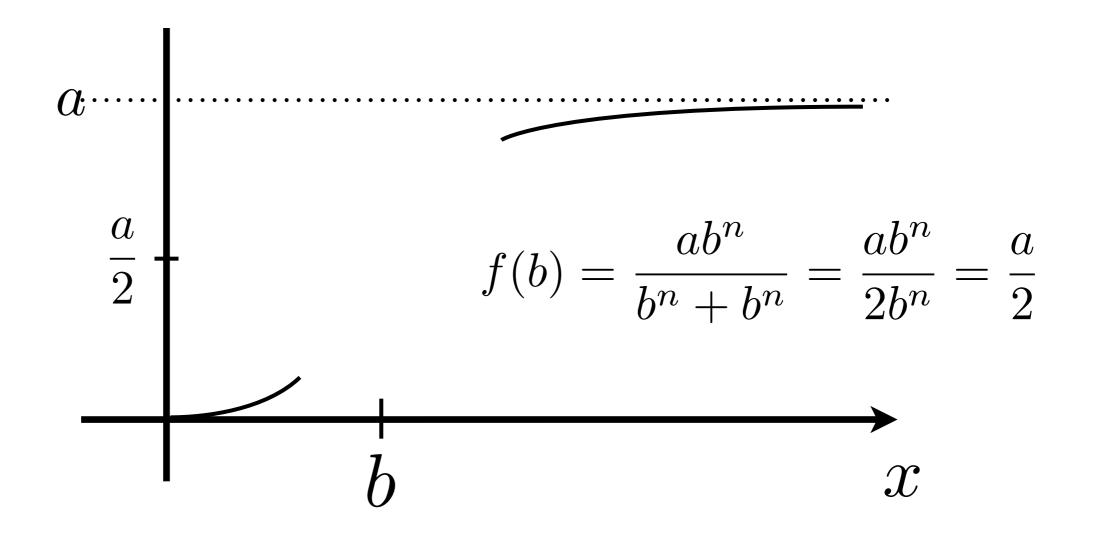


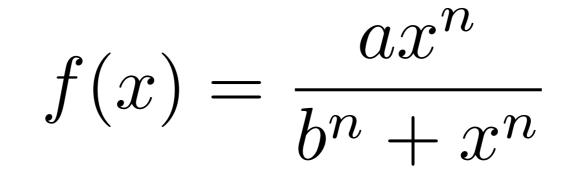


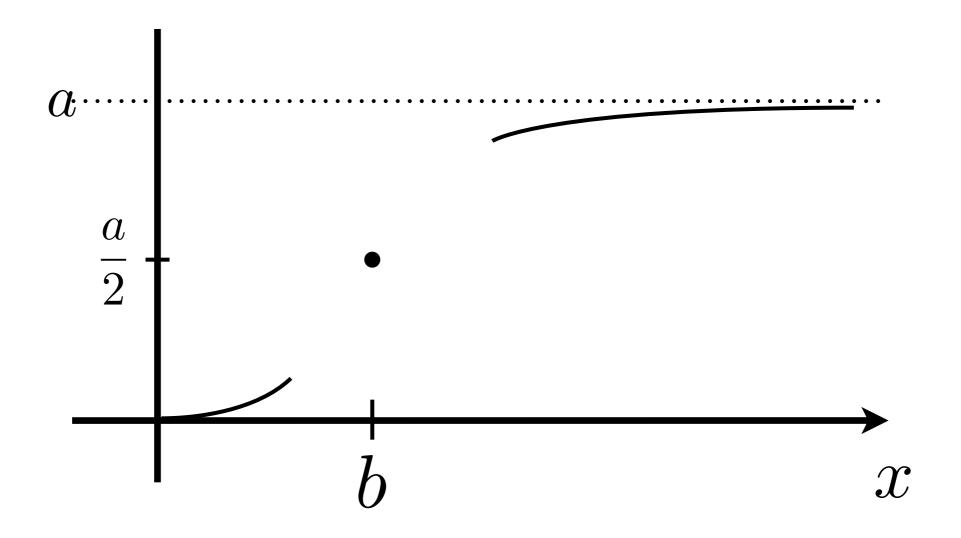


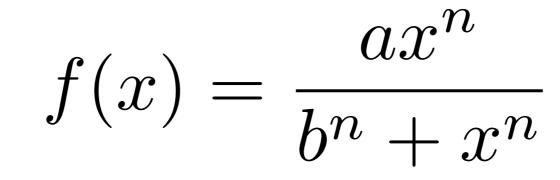


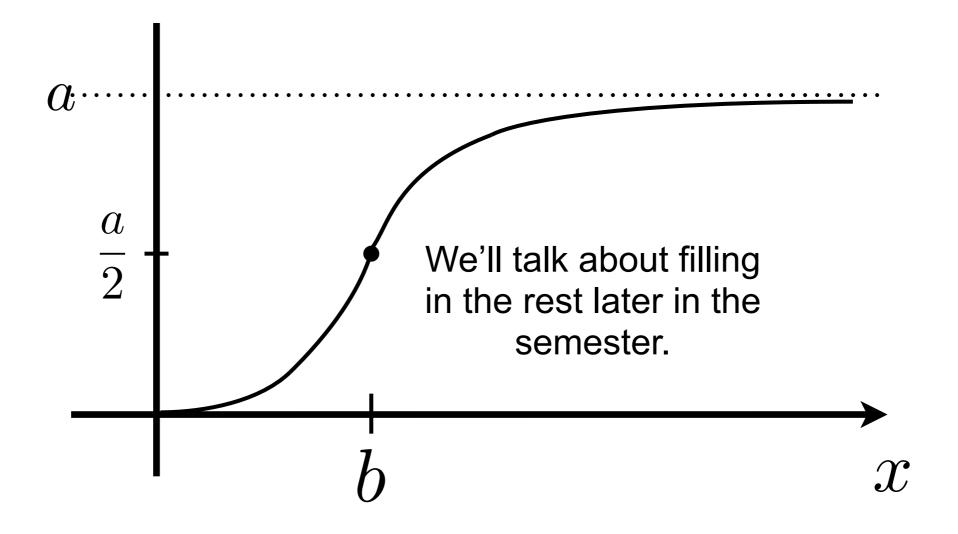






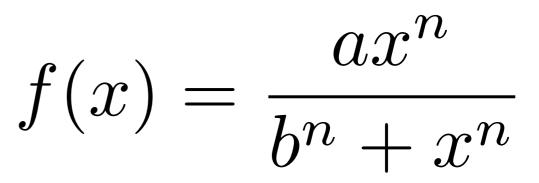


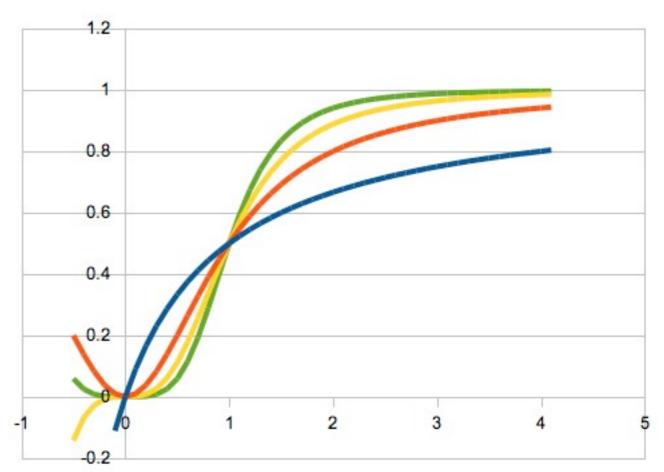




Comparing Hill functions with different n values

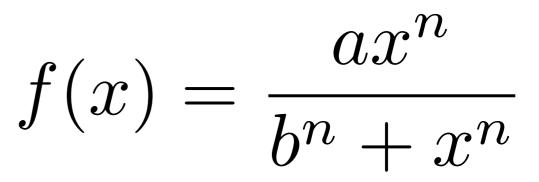
- (A) Green: n=2, yellow: n=3, red: n=4, blue: n=5.
- (B) Green: n=4, yellow: n=3, red: n=2, blue: n=1.
- (C) Green: n=5, yellow: n=4, red: n=3, blue: n=2.
- (D) Either (B) or (C) (not enough info).

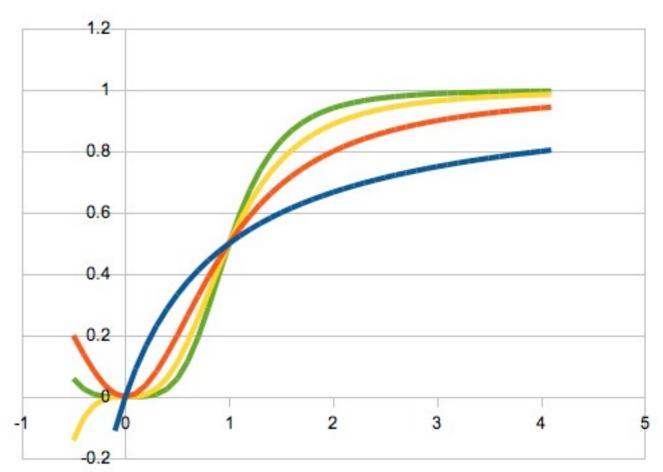




Comparing Hill functions with different n values

- (A) Green: n=2, yellow: n=3, red: n=4, blue: n=5.
- (B) Green: n=4, yellow: n=3, red: n=2, blue: n=1.
- (C) Green: n=5, yellow: n=4, red: n=3, blue: n=2.
- (D) Either (B) or (C) (not enough info).





What is the slope of the line connecting the points?

(A) $m=(x_1-x_2)/(y_1-y_2)$ (B) $m=(x_2-x_1)/(y_1-y_2)$ (C) $m=(y_1-y_2)/(x_1-x_2)$ (x_1-x_2) (x_1-x_2) (D) $m=(y_2-y_1)/(x_2-x_1)$

What is the slope of the line connecting the points?

(A) $m=(x_1-x_2)/(y_1-y_2)$

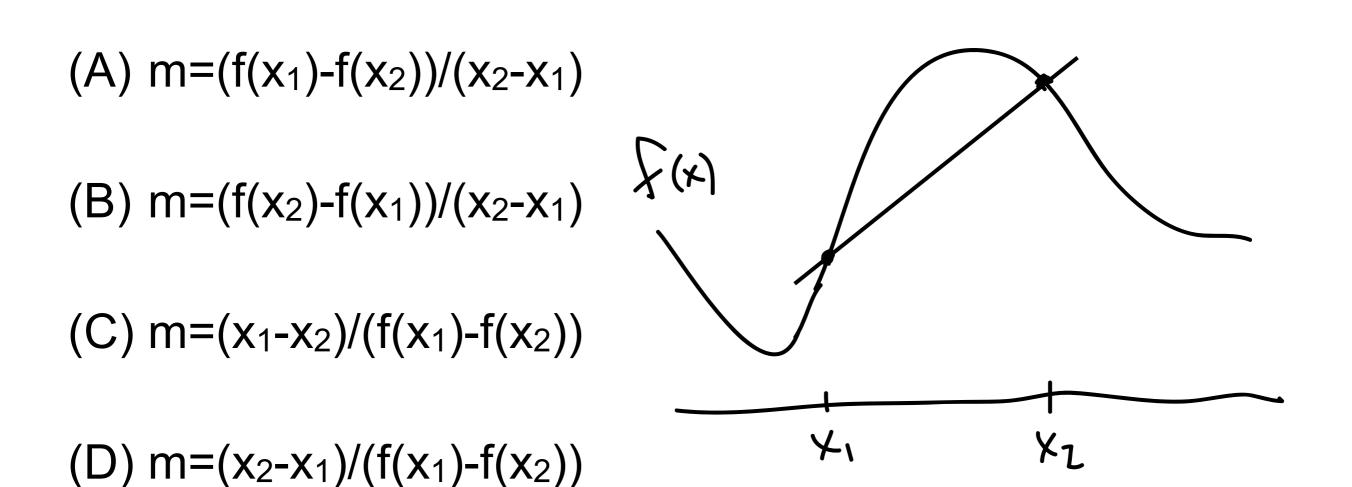
(B) $m=(x_2-x_1)/(y_1-y_2)$

(C) $m=(y_1-y_2)/(x_1-x_2)$

· (×, , 1,) $\cdot (\chi_1, \chi_1)$

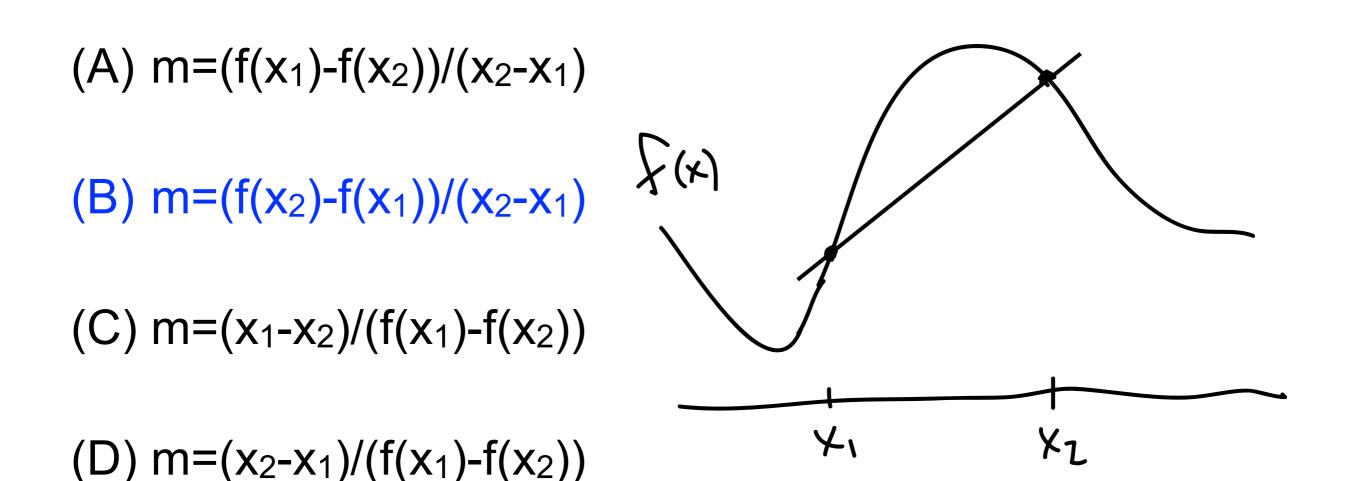
(D) $m=(y_2-y_1)/(x_2-x_1)$

What is the slope of the secant line to the graph of f(x)?

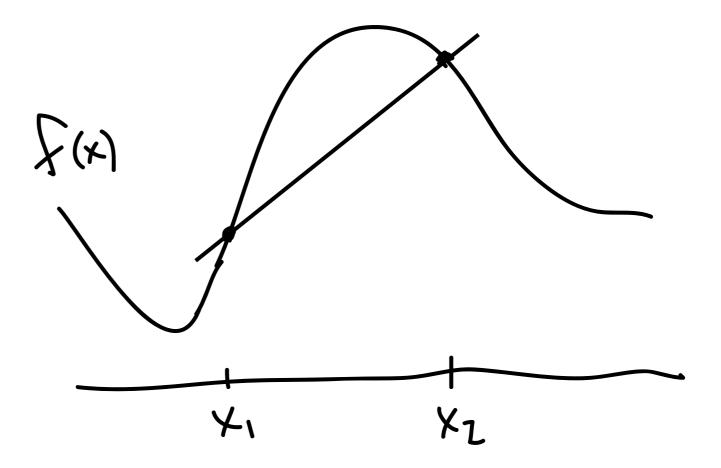


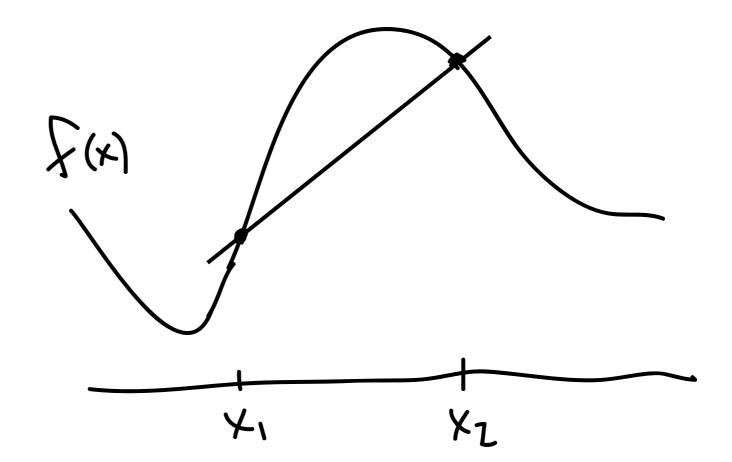
Slope of secant line = average rate of change from x_1 to x_2 .

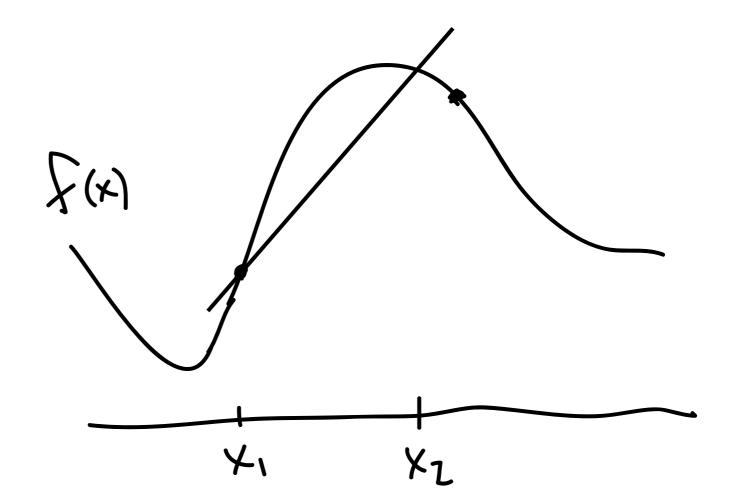
What is the slope of the secant line to the graph of f(x)?

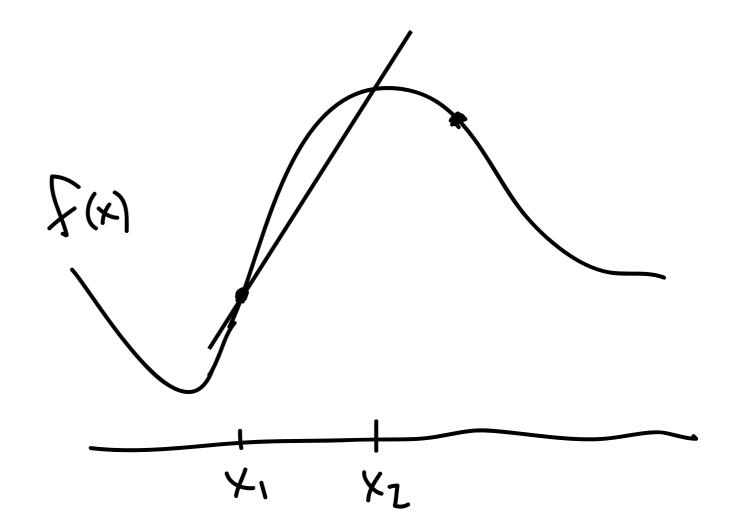


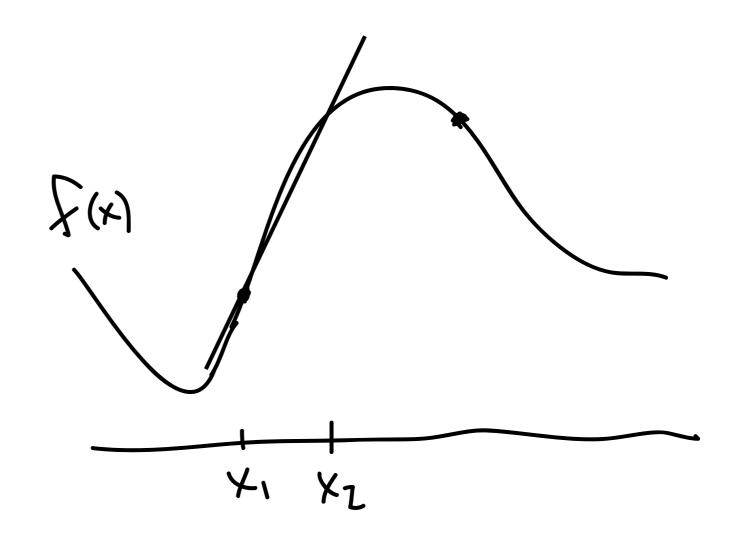
Slope of secant line = average rate of change from x_1 to x_2 .



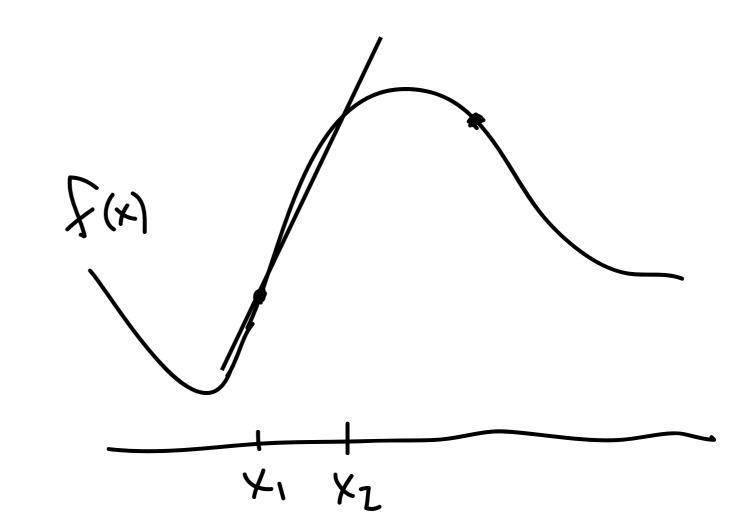








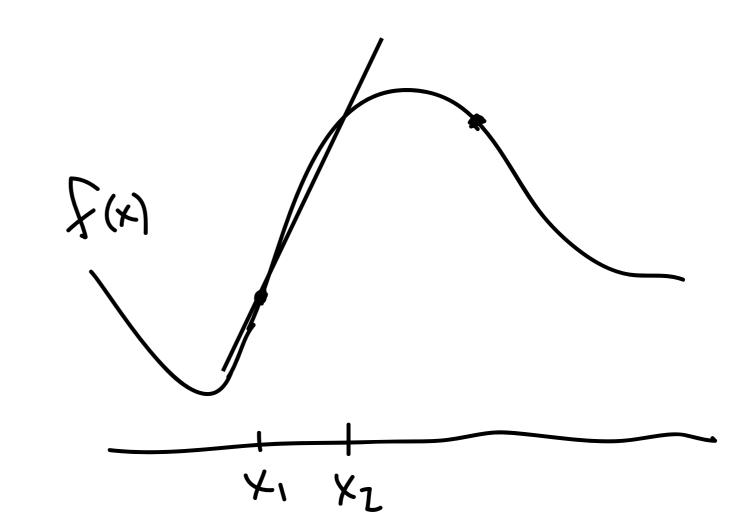
Take a point x₂ so that the secant line is closer to the "secant line" AT x₁.



Alternate notation: let x₂=x₁+h so that

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

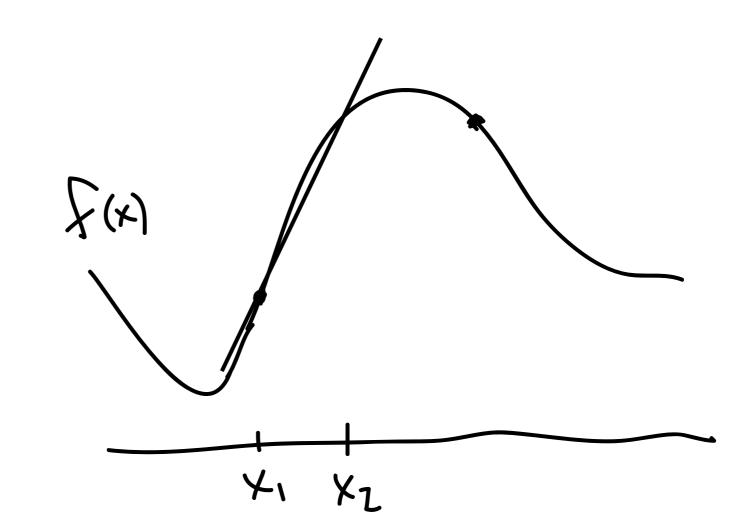
Take a point x₂ so that the secant line is closer to the "secant line" AT x₁.



Alternate notation: let $x_2=x_1+h$ so that

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{x_1 + h - x_1}$$

Take a point x₂ so that the secant line is closer to the "secant line" AT x₁.



Alternate notation: let $x_2=x_1+h$ so that

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{h}$$

If we take h values closer and closer to 0...

- The secant line approaches the tangent line.
- The slope of the secant line approaches the slope of the tangent line.
- We call the resulting slope the derivative at x₁.
- We now have to learn how to take limits!

slope at
$$x_1 = f'(x_1) = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}$$