Today

Ø Please email requests for problems to discuss on Monday.

- Midterm Tuesday!
- Ø Office hours M 11–12:30, M2–2:45, T10:30–12.

Translating from word problem to IVP.

Solving a linear ODE: y'=a-by.

A population grows proportional to the size of the population itself. Which of the following is a differential equation for the population size P(t)?

(A) P'(t) = kt(B) $P(t) = e^{kt}$ (C) P'(t) = kP(t)(D) $P'(t) = e^{kt}$ A population grows proportional to the size of the population itself. Which of the following is a differential equation for the population size P(t)?

(A) P'(t) = kt(B) $P(t) = e^{kt}$ (C) P'(t) = kP(t)(D) $P'(t) = e^{kt}$ A population grows proportional to the size of the population itself. Which of the following is a differential equation for the population size P(t)?

(A) P'(t) = kt(B) $P(t) = e^{kt}$ (C) P'(t) = kP(t)(D) $P'(t) = e^{kt}$

<-- This is a solution. So is $P(t)=P_0e^{kt}$ for any value P_0 .

Let c(t) = c₀e^{kt}.
 If k>0, c(t) is increasing and doubles when c₀e^{kt} = 2c₀.

Let c(t) = c₀e^{kt}.
If k>0, c(t) is increasing and doubles when c₀e^{kt} = 2c₀.

That is when t=ln(2)/k.

Let c(t) = c₀e^{kt}.
If k>0, c(t) is increasing and doubles when c₀e^{kt} = 2c₀.
That is when t=ln(2)/k.
This is called the doubling time.

Let c(t) = c₀e^{kt}.
If k<0, c(t) is decreasing and halves when c₀e^{kt} = c₀/2.

Let c(t) = c₀e^{kt}.
If k<0, c(t) is decreasing and halves when c₀e^{kt} = c₀/2.

That is when t=-ln(2)/k.

Let c(t) = c₀e^{kt}.
If k<0, c(t) is decreasing and halves when c₀e^{kt} = c₀/2.
That is when t=-ln(2)/k.
This is called the half-life.

Let c(t) = c₀e^{kt}.
If k<0, c(t) is decreasing and reaches 1/e its original value when c₀e^{kt} = c₀/e.

Let c(t) = c₀e^{kt}.
If k<0, c(t) is decreasing and reaches 1/e its original value when c₀e^{kt} = c₀/e.
That is when t=-1/k.

- That is when t=-1/k.
- This is called the characteristic time or mean life. Just like half-life but replace 2 with e (could be called 1/e-life).

(A) T'(t) = k (T(t) - E)(B) T'(t) = k (E - T(t))(C) T'(t) = E - kT(t)(D) T'(t) = kT(t) - E

(A) T'(t) = k (T(t) - E)(B) T'(t) = k (E - T(t))(C) T'(t) = E - kT(t)(D) T'(t) = kT(t) - E

(A) T'(t) = k (T(t) - E)(B) T'(t) = k (E - T(t))(C) T'(t) = E - kT(t)(D) T'(t) = kT(t) - EMake sure eq matches physical intuition.

(A) T'(t) = k (T(t) - E)Make sure eq matches (B) T'(t) = k (E - T(t))(C) T'(t) = E - kT(t)(D) T'(t) = kT(t) - E

physical intuition. If the coefficient on T(t) is +ive, the solution $---> \infty$.

(A) T'(t) = k (T(t) - E)(B) T'(t) = k (E - T(t))(C) T'(t) = E - kT(t)(D) T'(t) = kT(t) - E

Make sure eq matches physical intuition. If the coefficient on T(t) is +ive, the solution ---> ∞. Units have to match!

```
(A) v'(t) = \delta (v(t) - g)

(B) v'(t) = \delta (g - v(t))

(C) v'(t) = \delta v(t) - g

(D) v'(t) = g - \delta v(t)
```

Assume $\delta > 0$ and g = 9.8 m/s².

```
(A) v'(t) = \delta (v(t) - g)

(B) v'(t) = \delta (g - v(t))

(C) v'(t) = \delta v(t) - g

(D) v'(t) = g - \delta v(t)
```

Assume $\delta > 0$ and g = 9.8 m/s².

(A) $v'(t) = \delta (v(t) - g)$ Newton's 2nd Law (B) $v'(t) = \delta (g - v(t))$ (C) $v'(t) = \delta v(t) - g$ (D) $v'(t) = g - \delta v(t)$

Assume $\delta > 0$ and $g = 9.8 \text{ m/s}^2$.

(A)
$$v'(t) = \delta (v(t) - g)$$

(B) $v'(t) = \delta (g - v(t))$
(C) $v'(t) = \delta v(t) - g$
(D) $v'(t) = g - \delta v(t)$

Newton's 2^{nd} Law ma = F_{grav} + F_{drag}

Assume $\delta > 0$ and $g = 9.8 \text{ m/s}^2$.

(A) $v'(t) = \delta (v(t) - g)$ (B) $v'(t) = \delta (g - v(t))$ (C) $v'(t) = \delta v(t) - g$ (D) $v'(t) = g - \delta v(t)$ Newton's 2^{nd} Law ma = F_{grav} + F_{drag} = mg - γ v(t)

Assume $\delta > 0$ and g = 9.8 m/s².

$$(A) v'(t) = \delta (v(t) - g)$$

$$(B) v'(t) = \delta (g - v(t))$$

$$(C) v'(t) = \delta v(t) - g$$

$$Newton's 2nd Law$$

$$ma = F_{grav} + F_{drag}$$

$$= mg - \gamma v(t)$$

$$a = g - \gamma / m v(t)$$

$$(D) v'(t) = g - \delta v(t)$$

Assume $\delta > 0$ and $g = 9.8 \text{ m/s}^2$.

(A) $v'(t) = \delta (v(t) - g)$ (B) $v'(t) = \delta (g - v(t))$ (C) $v'(t) = \delta v(t) - g$ (D) $v'(t) = g - \delta v(t)$ Newton's 2nd Law ma = $F_{grav} + F_{drag}$ = mg - $\gamma v(t)$ a = g - $\gamma/m v(t)$ Sian on δv is independent

Sign on δv is independent of reference frame.
Sign on g depends on ref. fr.

Assume $\delta > 0$ and $g = 9.8 \text{ m/s}^2$.

(A) $d'(t) = k_{IV} - k_m d(t)$ (B) $d'(t) = (k_{IV} - k_m) d(t)$ (C) $d'(t) = k_{IV} d(t) - k_m$ (D) $d'(t) = -k_{IV} + k_m d(t)$

(A) $d'(t) = k_{IV} - k_m d(t)$ (B) $d'(t) = (k_{IV} - k_m) d(t)$ (C) $d'(t) = k_{IV} d(t) - k_m$ (D) $d'(t) = -k_{IV} + k_m d(t)$

 $d'(t) = k_{IV} - k_m d(t), d(0) = 0.$

(A) $d(t) = k_{IV}/k_m (1 - exp(k_m t))$

(B) $d(t) = k_{IV}/k_m (1-exp(-k_m t))$

(C) $d(t) = k_{IV}/k_m - exp(k_m t)$

(D) $d(t) = k_{IV}/k_m - exp(-k_m t)$

(E) Not sure how to do this one.

Note: $exp(x)=e^{x}$.

 $d'(t) = k_{IV} - k_m d(t), d(0) = 0.$

(A) $d(t) = k_{IV}/k_m (1 - exp(k_m t))$

(B) $d(t) = k_{IV}/k_m (1-exp(-k_m t))$

(C) $d(t) = k_{IV}/k_m - exp(k_m t)$

(D) $d(t) = k_{IV}/k_m - exp(-k_m t)$

(E) Not sure how to do this one.

Note: $exp(x)=e^{x}$.