Name:
Quiz Score: /20

Student Number: \qquad
Answer questions in the space provided. Show your work.

1. A company distributes salt. It wants to package the salt in a box with dimensions $5 \mathrm{~cm} \times b \mathrm{~cm} \times h \mathrm{~cm}$. The side of length 5 cm is fixed for efficient stacking in crates. Each package should contain $500 \mathrm{~cm}^{3}$ of salt. The company wants to minimize the cost of producing the package, which is done by minimizing the surface area of the package. (a) (1 point) Sketch the box, labeling side lengths.
(b) (2 points) What is the objective function that the company wants to minimize, in terms of b and h ?
(c) (2 points) What is the constraint on the objective function, in terms of b and h ?
(d) (6 points) What b minimizes the constrained objective function?
(e) (1 point) What h minimizes the constrained objective function?
(f) (1 point) What is the minimal surface area of the package?
2. (7 points) A cylindrical cell lengthens at a rate of $3 \mu \mathrm{~m} / \mathrm{hr}$, while maintaining a constant volume of $32 \pi \mu \mathrm{~m}^{3}$ by constricting radially (the cell becomes longer and narrower in time, keeping the same volume). How is the radius of the cell changing in time when the cell is $2 \mu \mathrm{~m}$ long? [If you don't know the volume of a cylinder, the instructor will give you the formula but you will lose one point.]
