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Chapter 1

How big can a cell be?
(The power of functions)

The shapes of living cells are designed to be uniquely suitedto their functions. Few cells are
really spherical. Many have long appendages, cylindrical parts, or branch-like structures.
But here, we will neglect all these beautiful complexities and look at a simple egg-like
spherical cell. The question we want to explore is what determines the size (and shape) of
a cell and why some size limitations exist. Why should animals be made of millions of tiny
cells, instead of just a few hundred large ones?

r

Figure 1.1. A cell (assumed spherical) absorbs nutrients at a rate proportional
to its surface areak1S, but consumes nutrients at a rate proportional to its volumek2V .
We use the facts that the surface area and volume of a sphere ofradius r are given by
S = 4πr2, V = 4

3πr
3

While these questions seem extremely complicated, a relatively simple mathematical
argument can go a long way in illuminating the situation. To delve into this mystery of size
and shape, we will formulate amathematical model. A model is just a representation of
a real situation which simplifies things by representing themost important aspects, while

1
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neglecting or idealizing the other aspects. Below we followa reasonable set of assumptions
and mathematical facts to explore how nutrient balance can affect and limit cell size.

1.1 A simple model for nutrient balance in the cell
We base the model on the following assumptions:

1. The cell is roughly spherical (See Figure 1.1).

2. The cell absorbs oxygen and nutrients from the environment through its surface. If
the surface area,S, of the cell is bigger, it can absorb these substances at a faster
rate. We will assume that the rate at which nutrients (or oxygen) are absorbed is
proportionalto the surface area of the cell.

3. The rate at which nutrients are consumed in metabolism (i.e. used up) is proportional
to the volume,V , of the cell; that is, the bigger the volume, the more nutrients are
needed to keep the cell alive. We will assume that the rate at which nutrients (or
oxygen) are consumed isproportionalto the volume of the cell.

We define the following quantities for our model of a single cell:

A = net rate of absorption of nutrients per unit time.

C = net rate of consumption of nutrients per unit time.

V = cell volume.

S = cell surface area.

r = radius of the cell.

We now rephrase the assumptions mathematically. By assumption (2),A is propor-
tional toS: This means that

A = k1S,

wherek1 is a constant of proportionality. Since absorption and surface area are positive
quantities, in this case only positive values of the proportionality constant make sense, so
thatk1 > 0. (The value of this constant would depend on the permeability of the cell mem-
brane, how many pores or channels it contains, and/or any active transport mechanisms that
help transfer substances across the cell surface into its interior.

Further, by assumption (3),C is proportional toV , so that

C = k2V,

wherek2 > 0 is a second proportionality constant. The value ofk2 would depend on the
rate of metabolism of the cell, i.e. how quickly it consumes nutrients in carrying out its
activities.

Since we have assumed that the cell is spherical, by assumption (1), the surface area,
S, and volumeV of the cell are:
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S = 4πr2, V =
4

3
πr3. (1.1)

Putting these facts together leads to the following relationships between nutrient absorption,
consumption, and cell radius:

A = k1(4πr
2) = (4πk1)r

2, C = k2(
4

3
πr3) = (

4

3
πk2)r

3.

We note thatA,C are now quantities that depend on the radius of the cell. Indeed, since the
terms in brackets on the right hand sides are just constant coefficients,each of the above
expressions is simply a power function, with r the independent variable. That is, each of
these expressions has the form

y = K rn

for some positive constant coefficientK (for consumption,K = 4
3πk2 and for absorption

K = 4πk1). Most importantly, the powers aren = 3 for consumption andn = 2 for
absorption.

In order to appreciate how the size of the cell affects each ofthe two processes con-
sumption and absorption of nutrients, let us review some elementary facts about power
functions.

1.2 Power functions
Power functions are among the most elementary and “elegant”functions. They are easy to
calculate1, are very predictable and smooth, and, from the point of viewof calculus, are
very easy to handle.

A power function has the form

y = f(x) = xn

wheren is a positive integer. As shown in Fig. 1.2, even and odd powers lead to power
functions of distinct symmetry properties. Indeed the terms evenandodd functions stem
directly from the symmetry properties of the power functions. (See Appendix B for a
review of symmetry.) From Figure 1.2, we see that all the elementary power functions
intersect atx = 0 andx = 1. Each of the even (odd) power functions also intersect one
another atx = −1.

Figure 1.2 also demonstrates another extremely important feature of the power func-
tions: the higher the power, theflatter the graph near the origin and thesteeperthe graph
beyond|x| > 1. This can be restated in terms of the relative size of the power functions.
We say thatclose to the origin, the functions with lower powers dominate, while far from
the origin, the higher powers dominate.

So far, we have compared power functions whose coefficient isthe constant 1. How
would we compare two functions of the form

y1 = axn, and y2 = bxm.

1We only need to use multiplication to compute the value of these functions at any point.
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Even power functions

y=x^2

y-x^4
y=x^6

-1.5 1.5

0.0

2.0

Odd power functions

y=x

y=x^3 y=x^5

-1.5 1.5

-2.0

2.0

(a) (b)

Figure 1.2. Graphs of power functions (a) A few of the even (y = x2, y =
x4, y = x6 ) power functions (b) Some odd (y = x, y = x3, y = x5 ) power functions.
Note symmetry properties. Also observe that as the power increases, the graphs become
flatter close to the origin and steeper at largex values.

This comparison is a slight generalization of what we have seen above. First, we note that
the coefficientsa andb merely scale the vertical behaviour (i.e. stretch the graphalong the
y axis. It is still true that the higher the power, the flatter the graph close tox = 0, and the
steeper for large positive or negative values ofx. However, now the points of intersection
of the graphs will occur atx = 0 and, in the first quadrant at

axn = bxm ⇒ xn−m = (b/a) ⇒ x = (b/a)1/(n−m)

If n,m are both even or both odd, there will also be an intersection at x = −(b/a)1/(n−m).
As one example, for the two functionsy1 = 3x4 andy2 = 27x2, intersections occur at
x = 0 and at±(27/3)1/(4−2) = ±

√
9 = ±3. As a second example, the two functions

y1 = (4/3)πx3, y2 = 4πx2 intersect only atx = 0, 3 but not for any negative values
of x. In many cases, the points of intersection will be irrational numbers whose decimal
approximations can only be obtained by a scientific calculator or some other method (e.g.
see Newton’s Method in a later chapter).
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1.3 Cell size for nutrient balance, continued
In our discussion of cell size, we found two power functions that depend on the cell radius,
namely the nutrient absorption and consumption rates,

A(r) = (4πk1)r
2, and C(r) = (

4

3
πk2)r

3.

(Here we have explicitly noted that both are power functionswith respect to cell radius,
r. Further the coefficients are indicated by terms in braces, each of which is a constant.)
Based on our discussion of power functions, we know that for small r, the power function
with the lower power ofr (namelyA) dominates, but for very large values ofr, the power
function with the higher power (C) dominates. Where does the switch take place? As
before, we find this by computing the point of intersection ofthe two graphs

A = C ⇒ (
4

3
πk2)r

3 = (4πk1)r
2.

One solution to this equation (which is not too interesting here) isr = 0. If r 6= 0, then we
can cancel a factor ofr2 from both sides to obtain:

r = 3
k1
k2

.

For cells of this radius, absorption and consumption are equal, it follows that for smaller cell
sizes the absorptionA ≈ r2 is the dominant process, which for large cells, the consumption
C ≈ r3 is higher than absorption. We conclude that cells larger than the critical size
r = 3k1/k2 will be unable to keep up with the nutrient demand, and will not survive.

Thus, using this simple geometric argument, we have deducedthat the size of the cell
has strong implications on its ability to absorb nutrients quickly enough to feed itself. The
restriction on oxygen absorption is even more critical thanthe replenishment of other sub-
stances such as glucose. For these reasons, cells larger than some maximal size (roughly 1
mm in diameter) rarely occur. Furthermore, organisms that are bigger than this size cannot
rely on simple diffusion to carry oxygen to their parts—theymust develop a circulatory
system to allow more rapid dispersal of such life-giving substances or else they will perish.

1.4 Lessons learned
To be written: Some important observations implicit in the above discussion.

• Inverse power functions and fractional powers (even and odd).

• General observations about the shapes of graphs, e.g. whichhave minima, which do
not. Behaviour atx → ±∞. Smoothness properties, etc.

• Other examples of even and odd functions.

• Other information we obtain from graphs.
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1.5 Polynomials
A polynomial is a function in which the simple power functions are combined in a simple
way. A typical example is

y = p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

This superpositionof the basic power functions with integer powers and real coefficients
ak proves to be a function with particularly convenient features in terms of computations:
evaluatingp at any pointx reduces to simple arithmetical operations of multiplications and
addition (something that computers are well equipped for).Furthermore, as we shall see,
these functions are easy to treat using basic calculus operations that we will describe in the
following chapters. The highest powern is called thedegreeof the polynomial.

In Appendix B, we present some of the special features of polynomials. Here we can
briefly mention that a polynomial of degreen can have up ton−1 “wiggles” (by which we
meanmaxima andminima). Every polynomial is unbounded asx → ∞ and asx → −∞.
In fact, for large enough values ofx, the power functiony = f(x) = anx

n with the largest
power,n, dominates so that

p(x) ≈ anx
n for largex.

Similarly, for smallx, close to the origin, the smallest powers dominates so that

p(x) ≈ a1x+ a0 for smallx.

Example 1.1 Sketch the polynomial

y = p(x) = x3 + ax.

How would the sketch change if the constanta changes from positive or negative?

Solution: The polynomial has two terms, and we will consider their effects individually.
Near the origin, forx ≈ 0 the termax dominates so that, close tox = 0, the function
behaves as

y ≈ ax.

This is a straight line with slopea. If a > 0 we should see a line with positive slope here,
whereas ifa < 0 the slope of the line should be negative. Far away from the origin, the
cubic term dominates, so

y ≈ x3.

That means that we would see a nearly cubic curve when we look at large (positive or
negative)x values. Figure 1.3 illustrates these ideas. In column (a) wesee the behaviour
of y = p(x) = x3 + ax for largex, in (b) for smallx. Column (c) shown the graph for an
intermediate range. We might notice that fora < 0, the graph has a local minimum as well
as a local maximum.

The zeros of the polynomial can be found by setting

y = p(x) = 0 ⇒ x3 + ax = 0 ⇒ x3 = −ax
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-5.0 5.0

-120.0

120.0

-0.5 0.5

-0.5

0.5

-2.0 2.0

-2.0

2.0

(a1) (b1) (c1)

-5.0 5.0

-120.0

120.0

-0.5 0.5

-0.5

0.5

-2.0 2.0

-2.0

2.0

(a2) (b2) (c2)

Figure 1.3. The behaviour ofy = p(x) = x3 + ax is shown here fora < 0 (top
row) anda > 0 (bottom row). (a): Zooming out to the range−5 < x < 5, we see that
for very largex the graph looks a lot like the cubic curvey = x3. (b): Zooming in to the
range−0.5 < x < 0.5, i.e. at smallx, the graph looks almost like the straight liney = ax,
whose slope isa. (c): If we plot the curve for intermediatex range,−2 < x < 2, we see
the behaviour for both small and largex values.

The above equation always has a solutionx = 0, but if x 6= 0, we can cancel and obtain

x2 = −a.

This would have no solutions ifa is a positive number, so that in that case, the graph
crosses thex axis only once, atx = 0, as shown in Figure 1.3 (c2). Ifa is negative, then
the negatives cancel, so the equation can be written in the form

x2 = |a|
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and we would have two new zeros at

x = ±
√

|a|.

For example, ifa = −1 then the functiony = x3 − x has zeros atx = 0, 1,−1.

1.6 Rate of an enzyme-catalyzed reaction

1.6.1 Saturation and Michaelis-Menten kinetics

Biochemical reactions are often based on the action of proteins known as enzymes that
catalyze many reactions in living cells. Shown in Fig. 1.4 isa typical scheme. The enzyme
E binds to its substrate S to form a complex C. The coplex then breaks apart into a product,
P, and an enzyme molecule that can repeat its action again. Generally, the substrate is much
more plentiful than the enzyme.

E S C E P

k
1

k
-1

k
2

Figure 1.4.An enzyme (catalytic protein) is shown binding to a substrate molecule
(circular dot) and then processing it into a product (star shaped molecule).

Suppose we letx represent the concentration of substrate in the reaction mixture.
The speed of the reaction,v, (namely the rate at which product is formed) depends onx.
But the relationship is not linear, as shown in Fig. 1.5. In fact, this relationships, known as
Michaelis Mentenkinetics, has the form

v =
Kx

kn + x
, (1.2)

whereK, kn are positive constants that are specific to the enzyme and theexperimental
conditions.

Equation (1.2) is arational function , that is, a ratio of two polynomials. We can
use a graphics calculator or graphing software to plot a graph of this function, as done
in Fig 1.5, or else we can put our understanding of polynomials to use in sketching this
function.

Sincex is a concentration, it must be a positive quantity, so we restrict attention to
x ≥ 0. The following observations can be made

1. The graph of (1.2) goes through the origin. Indeed, whenx = 0 we havev = 0.

2. Close to the origin, the graph “looks like” a straight line. We can see this by consid-
ering values ofx that are much smaller thankn. Then the denominator(kn + x) is
well approximated by the constantkn. Thus, for smallx, v ≈ (K/kn)x. Thus for
smallx the graph resembles a straight line with slope(K/kn).
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Michaelis-Menten kineticsv 

c

--- initial rise

saturation

0.0 1000.0

0.0

1.0

Figure 1.5.The graph of reaction speed,v, versus substrate concentration,c in an
enzyme-catalyzed reaction. This behaviour is called Michaelis-Menten kinetics. Note that
the graph at first rises almost like a straight line, but then it curves over and approaches a
horizontal asymptote. We refer to this as “saturation”. This graph tells us that the speed of
the enzyme cannot exceed some maximal level, i.e. it cannot be faster thanK. See Eqn. 1.2.

3. For largex, there is a horizontal asymptote. The reader can use a similar argument
for x ≫ kn, to show thatv is approximately constant.

Michaelis-Menten kinetics thus represents one type of relationship in which the phe-
nomenon ofsaturation occurs: the speed of the reaction increases for small increases in the
level of substrate, but it cannot increase indefinitely, i.e. the enzymes saturate and operate
at their fixed constant speed when the substrate concentration is very high.

It is worth pointing out the units of terms in (1.2).x carries units of concentration
(e.g. nano Molar written nM, which means 10−9 Moles per litre)v carries units of con-
centration over time (e.g. nM min−1). kn musthave same units asx (only quantities with
identical units can be added or compared !). The units on the two sides of the relationship
(1.2) have to balance too, meaning thatK must have the same units as the speed of the
reaction,v.
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1.6.2 Hill functions

The Michaelis-Menten kinetics we discussed above fit into a broader class ofHill func-
tions, which are rational functions of the form

y =
Axn

an + xn
. (1.3)

HereA, a > 0 is a constant andn is some power. This function is often referred to asa Hill
function with coefficientn, (although the “coefficient” is actually a power in terms of the
terminology used in this chapter). Hill functions occur in biology in situations where the
rate of some enzyme-catalyzed reaction is affected by cooperative behaviour of a number
of subunits, or by a chain of steps.

We see that Michaelis Menten kinetics corresponds to a Hill function withn = 1.
In biochemistry, expressions of the form (1.3) withn > 1 are often denoted “sigmoidal”
kinetics, and a few such functions are plotted in Fig 1.6. Using arguments similar to those
of Section 1.6.1, we can infer the shapes of these functions as follows:

y = 3  x^n  /  (1 + x^n)

n=1

n=2n=3

0.0 10.0

0.0

3.0

Figure 1.6.Three Hill functions withA = 3, a = 1 and coefficientn = 1, 2, 3 are
compared on this graph. As the Hill coefficient increases, the graph becomes flatter close
to the origin, and steeper in its rise to the asymptote aty = A.
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• The graph of the Hill function (Figure 1.6) goes through the origin. (At x = 0, we
see thaty = 0.)

• For very smallx, (i.e.,x << a) we can make the approximationan + xn ≈ an so
that

y =
Axn

an + xn
≈ Axn

an
=

(

A

an

)

xn for small x.

This means that near the origin, the graph looks like a power function,Cxn (where
C = A/an).

• For largex, i.e.x >> a, it is approximately true thatan + xn ≈ xn so that

y =
Axn

an + xn
≈ Axn

xn
= A for large x.

This reveals that the graph has a horizontal asymptotey = A at large values ofx.
This means that the largest (“maximal”) value thaty approaches isy = A. If y
represents the speed of a chemical reaction (analogous to the variable we labeledv
in chapter 1), thenA is the “maximal rate” or “maximal speed”.

• Since the Hill function behaves like a simple power functionclose to the origin, we
conclude directly that the higher the value ofn, the flatter is its graph near 0. Further,
largen means sharper rise to the eventual asymptote. Hill functions with largen are
often used to represent “switch-like” behaviour in geneticnetworks or biochemical
signal transduction pathways.

• The constanta is sometimes called the “half-maximal activation level” for the fol-
lowing reason: Whenx = a then

y =
Aan

an + an
=

Aa2

2a2
=

A

2
.

This shows that the levelx = a leads to the half-maximal level ofy.

1.7 For further study: Spacing of fish in a school
Many animals live or function best when they are in a group. Social groups include herds
of wildebeest, flocks of birds, and schools of fish, as well as swarms of insects. Life in a
group can affect the way that individuals forage (search forfood), their success at detecting
or avoiding being eaten by a predator, and other functions such as mating, protection of
the young, etc. Biologists are interested in the ecologicalimplications of groups on their
own members or on other species with whom they interact, and how individual behaviour,
combined with environmental factors and random effects affect the shape of the groups, the
spacing, and the function.

In many social groups, the spacing between individuals is relatively constant from
one part of the formation to another, because animals that get too close start to move away
from one another, whereas those that get too far apart are attracted back. These spacing
distances can be observed in a variety of groups, and were described in many biological
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publications. For example, Emlen [?] found that in flocks, gulls are spaced at about one
body length apart, whereas Conder [?] observed a 2-3 body lengths spacing distance in
tufted ducks. Miller [?] observed that sandhill cranes try to keep about 5.8 ft apartin the
flock he observed.

To try to explain why certain spacing is maintained in a groupof animals, it was
proposed that there are mutual attraction and repulsion interactions, (effectively acting like
simple forces) between individuals. Breder [?] followed a number of species of fish that
school, and measured the individual spacing in units of the fish body length, showing that
individuals are separated by 0.16-0.25 body length units. He suggested that the effective
forces between individuals were similar to inverse power laws for repulsion and attraction.
Breder considered a quantity he calledcohesiveness, defined as:

c =
A

xm
− R

xn
, (1.4)

whereA,R are magnitudes of attraction and repulsion,x is the distance between individ-
uals, andm,n are integer powers that govern how quickly the interactionsfall off with
distance. We could re-express (1.4) as

c = Ax−m −Rx−n

Thus, the function shown in Breder’s cohesiveness formula is related to our power func-
tions, but the powers are negative integers. A specific case considered by Breder was
m = 0, n = 2, i.e. constant attraction and inverse square law repulsion,

c = A− (R/x2)

Breder specifically considered the “point of neutrality”, wherec = 0. The distance at
which this occurs is:

x = (R/A)1/2

where attraction and repulsion are balanced. This is the distance at which two fish would
be most comfortable: neither tending to move apart, nor get closer together.

Other ecologists studying a similar problem have used a variety of assumptions about
forces that cause group members to attract or repel one another.

1.8 For further study: Transforming
Michaelis-Menten kinetics to a linear relationship

Michaelis-Menten kinetics that we explored in (1.2) is a nonlinear saturating function in
which the concentrationx is the independent variable on which the reaction velocity,v
depends. As discussed in Section 1.6.1, the constantsK andkn depend on the enzyme and
are often quantified in a biochemical assay of enzyme action.In older times, a convenient
way to estimate the values ofK andkn was to measurev for many different values of the
initial substrate concentration. Before nonlinear fittingsoftware was widely available, the
expression (1.2) was transformed (meaning that it was rewritten as a linear relationship.

We can do so with the following algebraic steps:

v =
Kx

kn + x
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so, taking reciprocals and expanding leads to

1

v
=

kn + x

Kx
,

=
kn
Kx

+
x

Kx

=

(

kn
K

)

1

x
+

(

1

K

)

This suggests defining the two constants:

m =
kn
K

, b =
1

K
.

In which case, the relationship between1/v and1/x becomes linear:

[

1

v

]

= m

[

1

x

]

+ b. (1.5)

Both the slope,m and interceptb of the straight line provide information about the param-
eters. The relationship (1.5), which is a disguised variantof Michaelian kinetics is called
the Linweaver-Burke relationship. Later, we will see how this can be used to estimate the
values ofK andkn from biochemical data about an enzyme.
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Exercises
1.1. Simple transformations: Consider the graphs of the simple functionsy = x, y =

x2, andy = x3. What happens to each of these graphs when the functions are
transformedas follows:

(a) y = Ax, y = Ax2, andy = Ax3 whereA > 1 is some constant.

(b) y = x+ a, y = x2 + a, andy = x3 + a wherea > 0 is some constant.

(c) y = (x− b)2, andy = (x− b)3 whereb > 0 is some constant.

1.2. Simple sketches:Sketch the graphs of the following functions:

(a) y = x2,

(b) y = (x+ 4)2

(c) y = a(x− b)2 + c for the casea > 0, b > 0, c > 0.

(d) Comment on the effects of the constantsa, b, c on the properties of the graph
of y = a(x− b)2 + c.

1.3. Power functions: Consider the functionsy = xn, y = x1/n, y = x−n, wheren is
an integer (n = 1, 2..) Which of these functions increases most steeply for valuesof
x greater than 1? Which decreases for large values ofx? Which functions are not
defined for negativex values? Compare the values of these functions for0 < x < 1.
Which of these functions are not defined atx = 0?

1.4. Finding points of intersection(I):

(a) Consider the two functionsf(x) = 3x2 andg(x) = 2x5. Find all points of
intersection of these functions.

(b) Repeat the calculation for the two functionsf(x) = x3 andg(x) = 4x5.

1.5. Finding points of intersection(II): Consider the two functionsf(x) = Axn and
g(x) = Bxm. Supposem > n > 1 are integers, andA,B > 0. Determine the
values ofx at which the values of the functions are the same. Are there two places
of intersection or three? How does this depend on the integerm − n? (Remark:
The point (0,0) is always an intersection point. Thus, we areasking when there is
only onemore and when there aretwo more intersection points. See Problem 4 for
a simple example of both types.)

1.6. More intersection points: Find the intersection of each pair of functions.

(a) y =
√
x, y = x2

(b) y = −√
x, y = x2

(c) y = x2 − 1, x2

4 + y2 = 1

1.7. Roots of a quadratic: Find the range ofm such that the equationx2− 2x−m = 0
has two unequal roots.

1.8. Power functions with negative powers:Consider the function

f(x) =
A

xa
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whereA > 0, a > 1, with a an integer. This is the same as the functionf(x) =
Ax−a, which is a power function with a negative power.

(a) Sketch a rough graph of this function forx > 0.

(b) How does the function change ifA is increased?

(c) How does the function change ifa is increased?

1.9. Intersections of functions with negative powers:Consider two functions of the
form

f(x) =
A

xa
, g(x) =

B

xb
.

Suppose thatA,B > 0, a, b > 1 and thatA > B. Determine where these functions
intersect for positivex values.

1.10. Zeros of polynomials:Find all real zeros of the following polynomials:

(a) x3 − 2x2 − 3x

(b) x5 − 1

(c) 3x2 + 5x− 2.

(d) Find the points of intersection of the functionsy = x3 + x2 − 2x + 1 and
y = x3.

1.11. Qualitative sketching skills:

(a) Sketch the graph of the functiony = ax− x5 for positive and negative values
of the constanta. Comment on behaviour close to zero and far away from
zero.

(b) What are the zeros of this function and how does this depend ona ?

(c) For what values ofa would you expect that this function would have a local
maximum (“peak”) and a local minimum (“valley”)?

1.12. Inverse functions: The functionsy = x3 andy = x1/3 areinverse functions.

(a) Sketch both functions on the same graph for−2 < x < 2 showing clearly
where they intersect.

(b) The tangent line to the curvey = x3 at the point (1,1) has slopem = 3,
whereas the tangent line toy = x1/3 at the point (1,1) has slopem = 1/3.
Explain the relationship of the two slopes.

1.13. Properties of a cube:The volumeV and surface areaS of a cube whose sides have
lengtha are given by the formulae

V = a3, S = 6a2.

Note that these relationships are expressed in terms of power functions. The inde-
pendent variable isa, not x. We say that “V is a function ofa” (and also “S is a
function ofa”).

(a) SketchV as a function ofa andS as a function ofa on the same set of axes.
Which one grows faster asa increases?
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(b) What is the ratio of the volume to the surface area; that is, what isV
S in terms

of a? Sketch a graph ofVS as a function ofa.

(c) The formulae above tell us the volume and the area of a cubeof a given side
length. But suppose we are given either the volume or the surface area and
asked to find the side. Find the length of the side as a functionof the volume
(i.e. expressa in terms ofV ). Find the side as a function of the surface area.
Use your results to find the side of a cubic tank whose volume is1 litre (1 litre
= 103 cm3). Find the side of a cubic tank whose surface area is10 cm2.

1.14. Properties of a sphere:The volumeV and surface areaS of a sphere of radiusr
are given by the formulae

V =
4π

3
r3, S = 4πr2.

Note that these relationships are expressed in terms of power functions with constant
multiples such as4π. The independent variable isr, not x. We say that “V is a
function ofr” (and also “S is a function ofr”).

(a) SketchV as a function ofr andS as a function ofr on the same set of axes.
Which one grows faster asr increases?

(b) What is the ratio of the volume to the surface area; that is, what isV
S in terms

of r? Sketch a graph ofVS as a function ofr.

(c) The formulae above tell us the volume and the area of a sphere of a given
radius. But suppose we are given either the volume or the surface area and
asked to find the radius. Find the radius as a function of the volume (i.e.
expressr in terms ofV ). Find the radius as a function of the surface area. Use
your results to find the radius of a balloon whose volume is 1 litre. (1 litre =
103 cm3). Find the radius of a balloon whose surface area is10 cm2

1.15. The size of cell: Consider a cell in the shape of a thin cylinder (lengthL and ra-
dius r). Assume that the cell absorbs nutrient through its surfaceat ratek1S and
consumes nutrients at ratek2V whereS, V are the surface area and volume of the
cylinder. Here we assume thatk1 = 12µM µm−2 per min andk2 = 2µM µm−3

per min. (Note:µM is 10−6 moles.µm is10−6meters.) Use the fact that a cylinder
(without end-caps) has surface areaS = 2πrL and volumeV = πr2L to determine
the cell radius such that the rate of consumption exactly balances the rate of absorp-
tion. What do you expect happens to cells with a bigger or smaller radius? How
does the length of the cylinder affect this nutrient balance?

1.16. Allometric relationship: Properties of animals are often related to their physical
size or mass. For example, the metabolic rate of the animal (R), and its pulse rate
(P ) may be related to its body massm by the approximate formulaeR = Amb and
P = Cmd, whereA,C, b, d are positive constants. Such relationships are known as
allometricrelationships.

(a) Use these formulae to derive a relationship between the metabolic rate and the
pulse rate (Hint: eliminatem).
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(b) A similar process can be used to relate the VolumeV = (4/3)πr3 and surface
areaS = 4πr2 of a sphere to one another. Eliminater to find the correspond-
ing relationship between volume and surface area for a sphere.

1.17. Rate of a very simple chemical reaction:Here we consider a chemical reaction
that does not saturate, and consider the simple linear relationship between reaction
speed and reactant concentration. A chemical is being addedto a mixture and is used
up by a reaction that occurs in that mixture. The rate of change of the chemical,
(also called “the rate of the reaction”)v (in units of M /sec where M stands for
Molar, which is the number of moles per litre) is observed to follow a relationship
v = a− bc wherec is the reactant concentration (in units of M) anda, b are positive
constants. (Note that herev is considered to be a function ofc, and moreover, the
relationship betweenv andc is assumed to be linear.)

(a) What units shoulda andb have to make this equation consistent? (Remember:
in an equation such asv = a− bc, each of the three termsmust havethe same
units. Otherwise, the equation would not make sense.)

(b) Use the information in the graph shown in Figure 1.7 to findthe values ofa
andb. (To do so, you should find the equation of the line in the figure, and
compare it to the relationshipv = a− bc.)

(c) What is the rate of the reaction whenc = 0.005 M?

0 0.01  M
concentration

v

c

slope

Reaction rate

-0.2   

Figure 1.7.Figure for problem 17

1.18. Michaelis-Menten kinetics: Consider the Michaelis-Menten kinetics where the
speed of an enzyme-catalyzed reaction is given byv = Kx/(kn + x).

(a) Explain the statement that “whenx is large there is a horizontal asymptote”
and find the value ofv to which that asymptote approaches.

(b) Determine the reaction speed whenx = kn and explain why the constantkn
is sometimes called the “half-max” concentration.

1.19. A polymerization reaction: Consider the speed of a polymerization reaction shown
in Figure 1.8. Here the rate of the reaction is plotted as a function of the substrate
concentration. (The experiment concerned the polymerization of actin, an impor-
tant structural component of cells; data from Rohatgi et al (2001) J Biol Chem
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276(28):26448-26452.) The experimental points are shown as dots, and a Michaelis-
Menten curve has been drawn to best fit these points. Use the data in the figure to
determine approximate values ofK andkn in the two treatments shown.

Figure 1.8.Figure for problem 19

1.20. Hill functions: Hill functions are sometimes used to represent a biochemical “switch”,
that is a rapid transition from one state to another. Consider the Hill functions

y1 =
x2

1 + x2
, y2 =

x5

1 + x5
,

(a) Where do these functions intersect?

(b) What are the asymptotes of these functions?

(c) Which of these functions increases fastest near the origin?

(d) Which is the sharpest “switch” and why?

1.21. Transforming a Hill function to a linear reationship: A Hill function is a nonlin-
ear function. But if we redefine variables, we can transform it into a linear relation-
ship. The process is analogous to transforming Michaelis-Menten kinetics into a
Linweaver-Burke plot. Determine how to define appropriate variablesX andY (in
terms of the original variablesx andy) so that the Hill functiony = Ax3/(a3+x3)
is turned into a linear relationship betweenX andY . Then indicate how the slope
and intercept of the line are related to the original constantsA, a in the Hill function.

1.22. Hill function and sigmoidal chemical kinetics: It is known that theratev at which
a certain chemical reaction proceeds depends on theconcentrationof the reactantc
according to the formula

v =
Kc2

a2 + c2
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whereK, a are some constants. When the chemist plots the values of the quantity
1/v (on the “y” axis) versus the values of1/c2 (on the “x axis”), she finds that the
points are best described by a straight line withy-intercept2 and slope8. Use this
result to find the values of the constantsK anda.

1.23. Linweaver-Burke plots: Shown in the Figure (a) and (b) are two Linweaver Burke
plots. By noting properties of these figures comment on the comparison between
the following two enzymes:

(a) Enzyme (1) and (2).

(b) Enzyme (1) and (3).

(1)

(2)

1/c

1/v

(1)

(3)

1/c

1/v

Figure 1.9.Figure for problem 23

1.24. Michaelis Menten Enzyme kinetics:The rate of an enzymatic reaction according
to theMichaelis Menten Kineticsassumption is

v =
Kc

kn + c
,

wherec is concentration of substrate (shown on thex axis) andv is the reaction
speed (given on they axis). Consider the data points given in the table below:

Substrate conc nM c 5. 10. 20. 40. 50. 100.
Reaction speed nM/min v 0.068 0.126 0.218 0.345 0.39 0.529

Convert this data to a Linweaver-Burke (linear) relationship. Plot the transformed
data values on a graph or spreadsheet, and estimate the slopeandy-intercept of the
line you get. Use these results to find the best estimates forK andkn.

1.25. Spacing in a school of fish:According to the biologist Breder (1950), two fish in a
school prefer to stay some specific distance apart. Breder suggested that the fish that
are a distancex apart are attracted to one another by a forceFA(x) = A/xa and
repelled by a second forceFR(x) = R/xr, to keep from getting too close. He found
the preferred spacing distance (also called theindividual distance) by determining
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the value ofx at which the repulsion and the attraction exactly balance. Find the
individual distancein terms of the quantitiesA,R, a, r (all assumed to be positive
constants.)



Chapter 2

Average rates of change,
average velocity and the
secant line

In this chapter, we introduce the idea of an average rate of change. To motivate ideas, we
examine data for two common processes, changes in temperature, and motion of a falling
object. Simple experiments are described in each case, and some features of the data are
discussed. Based on each example, we define and calculate netchange over some time
interval and so define the average rate of change.This concept generalizes to functions of
any variable (not only time). We interpret this idea geometrically, in terms of the slope a
secant line.

In both cases, we then ask how to use the idea of an average rateof change (over
a given interval) to find better and better approximations ofthe rate of change at a single
instant, (i.e. at a point). We will see that one way to arrive at this abstract concept entails
refining the dataset - collecting data at closer and closer time points. A second, more
abstract way, is to use the idea of a limit. Eventually, this procedure will allow us to arrive
at the definition of the derivative, which is the instantaneous rate of change.

2.1 Milk temperature in a recipe for yoghurt
Making yoghurt calls for heating milk to 190◦F to kill off undesirable bacteria, and then
cooling to 110◦F. Some pre-made yoghurt with “live culture” is added, and the mixture
kept at 110◦F for 7-8 hours. This is the ideal temperature for growth ofLactobacillus,, a
useful micro-organism turns milk into yoghurt as a byproduct of its growth2.

Experienced yoghurt-makers follow the temperature of the milk with a thermometer
to avoid scalding the milk or missing the desired final temperature. A set of temperature
measurements3 is shown in Table 2.1.

To visualize the trend of the data we plot the temperature versus time in Fig. 2.1(a,b),
where (a) is the heating phase and (b) the cooling phase of theprocess. This makes a
number of features stand out.

2The initial heating also denatures milk proteins, which prevents the milk from turning into curds. Adding
some ready-made yoghurt with live culture and keeping the mixture warm for 8-10 hrs will then result in fresh
yoghurt.

3The data was collected by your instructor in her kitchen.

21
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Temperature (F)

time (min)0.0 5.0

40.0

200.0 Temperature (F)

time (min)0.0 26.0

100.0

200.0

(a) (b)

Figure 2.1.Plots of the data shown in Table 2.1 (a) Heating and (b) cooling milk
in yoghurt production.

(a) Heating (b) Cooling
time (min) Temperature (F)

0.0 44.3
0.5 61
1.0 77
1.5 92.
2.0 108
2.5 122
3.0 135.3
3.5 149.2
4.0 161.9
4.5 174.2
5.0 186

time (min) Temperature (F)
0 190
2 176
4 164.6
6 155.4
8 148
10 140.9
14 131
18 123
22 116
26 111.2

Table 2.1. Temperature of the milk as it is (a) Heated and (b) Cooled before
adding live yoghurt bacteria.

• In Fig. 2.1(a) the temperature increases and in Fig. 2.1(b) it decreases.

• The measurements are discrete, that is, we only have a finite number of points at
which the temperature was recorded.

• In (a) the increasing phase “looks like” a straight line, whereas the cooling phase in
(b) is clearlynot linear. That is (a) appears to be close tolinear whereas (b) displays
an obviousnonlinearrelationship.
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• In Fig. 2.1(a), we have drawn a straight line that appears to capture the data trend
fairly well4. In Fig. 2.1(b), simply connecting the data points leads to the resulting
black curve.

To discuss the trends we have observed, it will be beneficial to define convenient
notation. We will let

t = time,

T0 = initial temperature of the milk,

T (t) = temperature of the milk at timet,

∆t = an interval of time,

∆T = a change in the temperature of the milk

These observations lead to several questions.

1. How “fast” is the temperatureT (t) increasing in (a)?

2. How fast is it decreasing in (b)?

The notion of a rate of change will be useful in addressing these questions. We define this
concept shortly, but first we consider another common example.

2.2 A moving object
We next consider an example that will motivate the rate of change of position of a moving
object, for which the termvelocity is commonly used.Uniform motion is defined as
motion in which a constant distance is covered in constant time intervals. For particles
moving uniformly, velocity is constant, and is simply the distance travelled per unit time,
or simply displacement divided by time taken. In uniform motion, velocity does not change
over time.

Most types of motion that occur in natural systems are not that simple: an example
in Figure 2.2 shows successive heights of an object falling under the effect of gravity. As
shown, a falling object coversincreasingdistances as time progresses so that the velocity
changes with time. In this situation, we have to rethink how to define the notion of ve-
locity at a given time, and we have to formulate more precisely how we will calculate it.
Such questions lead us to the central idea in this chapter: the definition ofaverageand
instantaneousvelocity.

Figure 2.2 displays a set of three stroboscopic images combined (for visualization
purposes) on a single graph. Each set of dots shows successive vertical positions of an
object falling from a height of 20 meters over a 2 second time period. In (a) the location of
the ball is given at timest = 0, 0.5, 1, 1.5, and2.0 seconds, i.e. at intervals of∆t = 0.5
seconds. (A strobe flashing five times, once every∆t = 0.5 would produce this data.)

We might wonder where the ball is located at times between these successive mea-
surements. Did it vanish? Did it continue in a straight or a looped path? To find out what
happened during the intervals between data points, we increase the strobe frequency, and

4How to pick the best such line will be the subject of future discussion.
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t=0

t=2.0

(a) (b) (c)

0.0 3.0

0.0

20.0

Figure 2.2. The height of an object falling under the effect of gravity isshown
(from t = 0 top, tot = 2 bottom). The time interval∆t at which data is collected has been
refined (left to right) to get more and more accurate trackingof the object. (a)∆t = 0.5,
(b)∆t = 0.2, (c)∆t = 0.1.

record measurements more often: for example, in Figure 2.2(b) measurements were made
for t = 0, 0.2, 0.4, . . . , 2.0 seconds, i.e. at intervals∆t = 0.2s. An even closer set of points
appears in (c), where the time interval between strobe flashes was decreased to∆t = 0.1s.
By determining the position of the ball at closer time points, we can determine the tra-
jectory of the ball with greater accuracy. The idea of makingmeasurements at finer and
finer time increments is important in this example. We will return to it often in our goal of
understanding rates of change of natural processes.

We represent the data for the motion of the object in a graph inFigure 2.3. Here we
have added a time axis for each of the sequences, so that the position(on the vertical axis)
and time horizontal axes) are plotted together. Again for ease of visualization, we have
combined three possible experiments on the same grid.

We will use the following notation:

t = time,

Y0 = initial height of the object,

Y (t) = height of the object at timet,

∆t = an interval of time,

∆Y = a change in the vertical position of the object

= the displacement of the object.
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0.0 6.0

0.0

20.0

0.0 6.0

0.0

20.0

(A) (B)

Figure 2.3. (A) The positions of the object are plotted versus time in each of three
experiments. We have decreased the time between strobe flashes: ∆t = 0.5, 0.2, 0.1 for
the trials (from left to right). (B) The same plot, with straight line segments connecting the
data points. The slopes of these straight lines (secant lines) are defined as average velocity
over the given time intervals.

Note that we have indicated above that we considerY to be a function of time by writing
Y (t). Also worth noting is that we have defined the change in heightor in position∆Y
as thedisplacementof the object. We later study the motion of a falling object using a
variabley(t) that represents the distance fallen. Problem 3 explores theconnection between
these.

2.3 Average rate of change
In the examples discussed in this chapter, the independent variable is time, and we have
been considering variables such as temperature and position that depend on time. In this
case, we could represent these relationships by a functionf(t). Then for a given time
interval,a ≤ t ≤ b, we define theaverage rate of changeof f over the given interval to
be:

r̄ =
Change inf
Change int

=
∆f

∆t
=

f(b)− f(a)

b− a
.

We use this definition to compute the average rate of change for each of the examples
presented earlier.

Example 2.1 (Average velocity of a falling object)Find the average velocity of the falling
object over the time interval0 ≤ t ≤ 0.5
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Solution: SinceY (t) is the height of the object, the average rate of change ofY with
respect to time is an average velocity. For a given time interval, the average velocitȳv, is
simply defined as

v̄ =
Change in height

Time taken
=

∆Y

∆t
=

Y (b)− Y (a)

b− a
.

For example, in the data shown in Fig 2.3, it turns out that over the time interval0 ≤ t ≤ 0.5
the ball fell fromY (0) = 20 to Y (0.5) = 18.775m. This leads to an average velocity over
the given time interval of

v̄ =
Y (0.5)− Y (0)

0.5
=

18.775− 20

0.5
= −2.45m/s.

The average velocity is negative since the height decreasesover the given interval.
The average velocity can be computed between any two data points. As we have

already seen, this quantity depends on the time interval over which it is computed. As a
second computation, we could compute average velocity for1.5 ≤ t ≤ 2. Over that time,
we find that the height changed fromY (1.5) = 8.9750 to Y (2) = 0.4m. Computing the
average velocity over this time interval leads to -17.15 m/s. Clearly the object is falling at
a faster average rate.

We can put a geometric meaning to this formula by making the following observation.
On our graphs of the position of a falling object versus time,let us connect successive points
by straight lines, as shown in Figure 2.3(B). Then we say that: The average rate of change
of the heightY between any two time points is just the slope of the straight line connecting
the corresponding points on the graph ofY (t). We denote that line by the termsecant line.

Example 2.2 (Average rate of change of temperature)Find the average rates of change
of the temperature over the time interval2 < t < 4 for both the heating and the cooling
milk.

Solution: The data shown in Table 2.1 tabulated the temperatureT (t) versus timet in
minutes. Over a given time interval, the average rate of change of the temperature is

Change in temperature
Time taken

=
∆T

∆t
.

For example, the average rate of change of temperature as themilk cools over the interval
2 < t < 4 min is

(164.6− 176)

(4 − 2)
= −5.7◦/min.

Over a similar time interval for the heating milk, the average rate of change of the temper-
ature is

(161.9− 108)

(4− 2)
= 26.95◦/min.

Were we to connect two points(2, T (2)) and (4, T (4) on one of the graphs in Fig. 2.1,
we would find a line segment whose slope matches the average rate of change we have
computed here. As before, this is the secant line.
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We can write down theequation of the secant line(if desired) by using the fact
that it goes through the given points (or, alternately, by using one point and the computed
slope). Since the latter secant line goes through the point(t, T ) = (2, 108) and has slope
26.95, we find that

(yT − 108)

t− 2
= 26.95 ⇒ yT = 108 + 26.95(t− 2) ⇒ yT = 26.5t+ 54.1,

where we have usedyT as the height of the secant line, to avoid confusion withT (t) which
is the actual temperature as a function of the time.

We can extend the definition of the average rate of change to any function.

Definition 2.3 (Average rate of change of a function:).Supposey = f(x) is a function
of some arbitrary variablex. The theaverage rate of changeof f between two pointsx0

andx0 + h is given by

change in y
change in t

=
∆y

∆x
=

[f(x0 + h)− f(x0)]

(x0 + h)− x0
=

[f(x0 + h)− f(x0)]

h

Hereh is the difference of thex coordinates and the ratio we have just computed is the
slope of the secant line shown in Figure 2.4(b).

of(x  +h )

x +hx oo

f(x  )o

y=f(x)

Figure 2.4. The graph of some arbitrary functionf(x) is shown. Two points on
this graph,(x0, f(x0)) and (x0 + h, f(x0 + h)) are identified. and the line connecting
these is the secant line.The slope of this line is the averagerate of change off over the
intervalx0 < x < x0 + h.

We caution that the word “average” sometimes causes confusion. One often speaks in
a different context of the average value of a set of numbers (e.g. the average of{7, 1, 3, 5}
is (7 + 1 + 3 + 5)/4 = 4.) However the average rate of change is always defined in terms
of a pair of points. It is not the average of some arbitrary setof values.

Example 2.4 Prof Molly Lutcavage studied the swimming behaviour of Atlantic bluefin
tuna (Thunnus thynnus L.) in the Gulf of Maine. She recorded their position over a period
of 1-2 days. Here we consider the length of the tuna tracks. Two approximate data sets are
shown in Fig 2.5. Determine the average velocity of each of these two fish over the 35h
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shown in the figure. What is the fastest average velocity shown in this figure, and over what
time interval and which fish did it occur?

km

time (hrs)

Tuna 1

Tuna 2

0.0 35.0

0.0

250.0

Figure 2.5.Distance travelled by two bluefin tuna over 35 hrs

Solution: We find that Tuna 1 swam 180 km over the course of 35 hr, whereas Tuna 2
swam 218 km during the same time period. Thus the average velocity of Tuna 1 was
v̄ = 180/35 ≈ 5.14 km/h, whereas a similar calculation for Tuna 2 yields 6.23 km/h. The
fastest average velocity would correspond to the segent of the graph that has the largest
slope. We see that the blue curve (Tuna 2) has the greatest slope during the time interval
15 < t < 20. Indeed, we find that the tuna covered a distance from the distance covered
over that 5 hr interval was from 78 to 140 km over that time, a displacement of 140-
78=62km. Its average velocity over that tie interval was thus62/5 = 12.4km/h.

2.4 Gallileo’s remarkable finding
Observations recording the position of a falling object were made long ago by Galileo.
He devised some ingenious experiments in which he was able touncover an interesting
relationship between the total distance that an object (falling under the force of gravity)
moves during a given total time. Here we will define the variable y(t) to be the distance
fallen at timet. There is a simple relationship between the heightY (t) and the distance
falleny(t) that the reader should note. (See Exercise 3.)

Galileo realized that a simple relationship exists betweenthe distance fallen by an
object under the effect of gravity and the time taken. Galileo discovered that the distance
fallen under the effect of gravity was proportional to the square of the time, i.e., that

y(t) = ct2, (2.1)
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wherec is a constant. We recognize this quadratic relationship as asimple power function
with a constant coefficient. (Later in this course, we will see that this follows directly from
the fact that gravity causes constant acceleration - but Galileo, did not realize this fact, nor
did he have a clear idea about what acceleration meant.) Whenprecise measurements are
carried out, with units of meters (m) for the distance, and seconds (s) for the time, then it
is found thatc = 4.9m/s2. Although Galileo did not have formulae or graph-paper in his
day, (and was thus forced to express this relationship in a cumbersome verbal way), what
he had discovered was quite remarkable.

to to+h

D(t)=4.9 t^2

Secant line

Secant line through these points

Average velocity for 1.3 < t < 1.4

0.0 2.0

0.0

20.0
t y(t) = 4.9t2

0.0 0.0
0.1 0.0490
0.2 0.1960
...

...
1. 0 4.9
1.1 5.9290
1.2 7.0560
1.3 8.2810
1.4 9.6040
1.5 11.0250
...

...
1.9 17.6890
2. 0 19.6

Table 2.2. The average velocity between timet0 + h and t0 is the slope of the
secant line shown on this graph. Some values of(t, y) for the functiony = 4.9t2 are given
in the table.

We show a graph of the relationship (2.1) forc = 4.9 together with some points on
that graph in Table 2.2. On our sketch, we have superimposed the secant line connecting
the points att0 andt0 + h. We now compute the average velocity in this more general
setting.

Example 2.5 (Average velocity using Galileo’s formula)Consider a falling object. Sup-
pose that the total distance fallen at timet is given by Eqn. (2.1). Find the average velocity
v̄, of the object over the time intervalt0 ≤ t ≤ t0 + h.
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Solution:

v̄ =
y(t0 + h)− y(t0)

h

=
c(t0 + h)2 − c(t0)

2

h

= c

(

(t20 + 2ht0 + h2)− (t20)

h

)

= c

(

2ht0 + h2

h

)

= c(2t0 + h)

Thus the average velocity over the time intervalt0 < t < xt0 + h is v̄ = c(2t0 + h).
In an upcoming section, we will use this result to ask what would be a reasonable

definition of theinstantaneous velocityat some time. The essential idea will be to compute
the average velocity over a smaller and smaller time interval, which is equivalent to letting
the valueh become smaller and smaller. This notion has already been encountered in the
idea of refining the measurements. For the falling object, collecting data over smaller time
intervals corresponds to the letting the time between strobe flashes get smaller and smaller.

2.5 Refining the data

2.5.1 Refined temperature data

In Fig 2.6 we show a similar process of refining the data for temperature versus time. We
not that this process of refinement will allow us to define a better and better concept of the
rate of change close to a given time.

2.5.2 Instantaneous velocity

To arrive at a notion of an instantaneous velocity at some timet0, we will consider defining
average velocities over time intervalst0 ≤ t ≤ t0 + h, that get smaller and smaller: For
example, we might make the strobe flash faster, so that the time between flashes,∆t = h
decreases. (We use the notationh → 0 to denote the fact that we are interested in shrinking
the time interval.)

At each stage, we calculate an average velocity,v̄ over the time intervalt0 ≤ t ≤
t0 + h. As the interval between measurements gets smaller, i.e theprocess of refining our
measurements continues, we arrive at a number that we will call the instantaneous velocity.
This number represents ”the velocity of the ball at the very instantt = t0”.

More precisely,

Instantaneous velocity= v(t0) = lim
h→0

v̄ = lim
h→0

y(t0 + h)− y(t0)

h
.

Example 2.6 Find the instantaneous velocity of the same falling object at time t0.
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Temperature (F)

time (min)0.0 26.0

100.0

200.0 Temperature (F)

time (min)0.0 26.0

100.0

200.0 Temperature (F)

time (min)0.0 26.0

100.0

200.0

(a) (b) (c)

Figure 2.6.Three graphs of the temperature of cooling milk showing (a) acoarse
data set (measurements every∆t = 2 min.), (b) a more refined data set, (measurements
every∆t = 1 min) (c) an even more refined dataset (measurements every∆t = 0.5 min.)

Solution: According to our definition, we must determine

v(t0) = lim
h→0

y(t0 + h)− y(t0)

h

Our calculation would be nearly identical forv(t0) as forv̄, but for a final step of taking
the limit ash, the interval between time-points shrinks to zero:

v(t0) = lim
h→0

y(t0 + h)− y(t0)

h

= lim
h→0

c(t0 + h)2 − c(t0)
2

h

= lim
h→0

c

(

(t20 + 2ht0 + h2)− (t20)

h

)

= lim
h→0

c

(

2ht0 + h2

h

)

= lim
h→0

c(2t0 + h)

= c(2t0) = 2ct0

(2.2)

Remarks: In our final steps, we have allowedh to shrink. In the limit, andh → 0, we
obtain the instantaneous velocity, i.e.v(t0) = 2ct0.
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2.6 Introduction to the derivative
With the concepts introduced in this chapter, we are ready for the the definition of the
derivative.

Definition 2.7 (The derivative:).
denotedf ′(x0) and defined as

f ′(x0) = lim
h→0

[f(x0 + h)− f(x0)]

h

Example 2.8 (Calculating the derivative) Compute the derivative of the functionf(x) =
Cx2 at some pointx = x0.

Solution: In the previous section, we used the functiony = f(t) = ct2 to calculate an
instantaneous velocity. We now recognize that our result inthat problem, namely2ct0 is
the same as the derivative of the function evaluated att0. Thus, in a sense, we have already
solved this problem. By switching notation (t0 → x0 andc → C) we can write down
the answer,2cx0 at once. However, as practice, we can rewrite the steps in thecase of the
general pointx

Fory = f(x) = Cx2 we have

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

C(x + h)2 − Cx2

h

= lim
h→0

C
(x2 + 2xh+ h2)− x2

h

= lim
h→0

C
(2xh+ h2)

h
= lim

h→0
C(2x+ h)

= C(2x) = 2Cx

Evaluating this result forx = x0 we obtain the answer2Cx0.

We recognize from this definition that the derivative is obtained by starting with the
slope of a secant line (average rate of change off over the intervalx0 < x < x0 + h)
and proceeds to shrink the interval (limh→0) so that it approaches a single point (x0). The
resultant line will be denoted thetangent line. , and the value obtained will be identified
as the theinstantaneous rate of changeof the function with respect to the variablex at
the point of interest,x0. Another notation used for the derivative is

df

dx

∣

∣

∣

∣

x0

.

We will explore properties and meanings of this concept in the next chapter.
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Exercises
2.1. Heating milk: Consider the data gathered for heating milk in Table 2.1 and Fig. 2.1(a).

(a) Estimate the slope and the intercept of the straight lineshown in the figure and
use this to write down the equation of this line. According tothis approximate
straight line relationship, what is the average rate of change of the temperature
over the 5 min interval shown?

(b) Find a pair of points such that the average rate of change of the temperature is
smallerthan your result in part (a).

(c) Find a pair of points such that the average rate of change of the temperature is
greaterthan your result in part (a).

(d) Milk boils at 212◦F, and the recipe for yoghurt calls for avoiding a temperature
this high. Use your common knowledge to explain why the data for heating
milk is not actually linear.

2.2. Refining the data: Table 2.3 shows some of the data for cooling milk that was
collected and plotted in Fig. 2.6. Answer the following questions.

time Temp time Temp time Temp
0 190 0 190 0 190
2 176 1 182 0.5 185.5
4 164.6 2 176 1 182
6 155.4 3 169.5 1.5 179.2
8 148 4 164.6 2 176
10 140.9 5 159.8 2.5 172.9

Table 2.3.Partial data for temperature in degrees Farenheit for the three graphs
shown in Fig. 2.6. The pairs of columns indicate that the datahas been collected at more
and more frequent intervals.

(a) Use the above table to determine the average rate of change of the temperature
over the first 10 min.

(b) Compute the average rate of change of the temperature over the intervals0 <
t < 2, 0 < t < 1 and0 < t < 0.5.

(c) Which of your results in (b) would be closest to the “instantaneous” rate of
change of the temperature att = 0?

2.3. Height and distance dropped:We have defined the variableY (t) =height of the
object at timetand the variabley(t) as the distance dropped by timet. State the
connection between these two variables for a ball whose initial height isY0. How is
the displacement over some time intervala < t < b related between these two ways
of describing the motion? (Assume that the ball is in the air throughout this time
interval).
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2.4. Height of a ball: The vertical height of a ball,Y (in meters) at timet (seconds)
after it was thrown upwards was found to satisfyY (t) = 14.7t − (1/2)gt2 where
g = 9.8 m/s2 for the first 3 seconds of its motion.

(a) What happens after 3 seconds?

(b) What is the average velocity of the ball between the timest = 0 andt = 1
second?

2.5. Falling ball: A ball is dropped from heightY0 = 490 meters above the ground. Its
height,Y , at timet is known to follow the relationshipY (t) = Y0 − 1

2gt
2 where

g = 9.8 m /s2.

(a) Find the average velocity of the falling ball betweent = 1 andt = 2 seconds.

(b) Find the average velocity betweent sec andt + ǫ where0 < ǫ < 1 is some
small time increment. (Assume that the ball is in the air during this time inter-
val.)

(c) Determine the time at which the ball hits the ground.

2.6. Average velocity at time t: A ball is thrown from the top of a building of heightY0.
The height of the ball at timet is given by

Y (t) = Y0 + v0t−
1

2
gt2

whereh0, v0, g are positive constants. Find the average velocity of the ball for the
time interval0 ≤ t ≤ 1 assuming that it is in the air during this whole time interval.
Express your answer in terms of the constants given in the problem.

2.7. Average velocity and secant line:The two points on Figure 2.2 through which the
secant line is drawn are(1.3, 8.2810) and(1.4, 9.6040). Find the average velocity
over this time interval and then write down the equation of the secant line.

2.8. Average rate of change:A certain function takes values given in the table below.
t 0 0.5 1.0 1.5 2.0

f(t) 0 1 0 -1 0
Find the average rate of change of the function over the intervals

(a) 0 < t < 0.5,

(b) 0 < t < 1.0,

(c) 0.5 < t < 1.5,

(d) 1.0 < t < 2.0.

2.9. Consider the functionsf1(x) = x, f2(x) = x2, f3(x) = x3.
Find the average rate of change of these functions over each of the following inter-
vals.

(a) Over0 ≤ x ≤ 1.

(b) Over−1 ≤ x ≤ 1.

(c) Over0 ≤ x ≤ 2.

2.10. Find the average rate of change for each of the following functions over the given
interval.



Exercises 35

(a) y = f(x) = 3x− 2 from x = 3.3 to x = 3.5.

(b) y = f(x) = x2 + 4x over[0.7, 0.85].

(c) y = − 4
x andx changes from0.75 to 0.5.

2.11. Trig Minireview: Consider the following table of values of the trigonometricfunc-
tionssin(x) andcos(x):
x sin(x) cos(x)
0 0 1
π
6

1
2

√
3
2

π
4

√
2
2

√
2
2

π
3

√
3
2

1
2

π
2 1 0

Find the average rates of change of the given function over the given interval. Ex-
press your answer in terms of square roots andπ. Do not compute decimal expres-
sions.

(a) Find the average rate of change ofsin(x) over0 ≤ x ≤ π/4.

(b) Find the average rate of change ofcos(x) overπ/4 ≤ x ≤ π/3.

(c) Is there an interval over which the functionssin(x) andcos(x) have the same
average rate of change? (Hint: consider the graphs of these functions over one
whole cycle, e.g. for0 ≤ x ≤ 2π. Where do they intersect?)

2.12. (a) Consider the functiony = f(x) = 1 + x2. Consider the point(1, 2) on its
graph and some point nearby, for example(1+h, 1+(1+h)2). Find the slope
of a secant line connecting these two points.

(b) Use this slope to figure out what the slope of the tangent line to the curve at
(1, 2) would be.

(c) Find the equation of the tangent line through the point(1, 2).

2.13. Given the functiony = f(x) = 2x3 + x2 − 4, find the slope of the secant line
joining the points(4, f(4)) and(4 + h, f(4 + h)) on its graph, whereh is a small
positive number. Then find the slope of the tangent line to thecurve at(4, f(4)).

2.14. Average rate of change:Consider the functionf(x) = x2 − 4x and the point
x0 = 1.

(a) Sketch the graph of the function.

(b) Find the average rate of change over the intervals[1, 3], [−1, 1], [1, 1.1], [0.9, 1]
and[1− h, 1], whereh is some small positive number.

(c) Findf ′(1).

2.15. Giveny = f(x) = x2 − 2x+ 3.

(a) Find the average rate of change over the interval[2, 2 + h].

(b) Findf ′(2).

(c) Using only the information from (a), (b) andf(2) = 3, approximate the value
of y whenx = 1.99, without substitutingx = 1.99 into f(x).
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2.16. Find the average rates of the given function over the given interval. Express your
answer in terms of square roots andπ. Do not compute the decimal expressions.

(a) Find the average rate of change oftan(x) over0 ≤ x ≤ π
4 (Hint: tan(x) =

sin(x)
cos(x) ).

(b) Find the average rate of change ofcot(x) over π
4 ≤ x ≤ π

3 (Hint: cot(x) =
cos(x)
sin(x) ).

2.17. (a) Find the slope of the secant line to the graph ofy = 2/x between the points
x = 1 andx = 2.

(b) Find the average rate of change ofy betweenx = 1 andx = 1+ǫ whereǫ > 0
is some positive constant.

(c) What happens to this slope asǫ → 0 ?

(d) Find the equation of the tangent line to the curvey = 2/x at the pointx = 1.

2.18. For each of the following motions wheres is measured in meters andt is measured
in seconds, find the velocity at timet = 2 and the average velocity over the given
interval.

(a) s = 3t2 + 5 andt changes from2 to 3s.

(b) s = t3 − 3t2 from t = 3s to t = 5s.

(c) s = 2t2 + 5t− 3 on [1, 2].

2.19. The velocityv of an object attached to a spring is given byv = −Aω sin(ωt + δ),
whereA, ω andδ are constants. Find the average change in velocity (“acceleration”)
of the object for the time interval0 ≤ t ≤ 2π

ω .

2.20. Use the definition of derivative to calculate the derivative of the function

f(x) =
1

x+ 1

(intermediate steps required).



Chapter 3

Zooming into the graph
of a function: tangent
lines and derivatives

In Chapter 2 we used the concept of average rate of change (slope of secant line) to motivate
and then define the notion of an instantaneous rate of change (the derivative). We arrived
at a “recipe” for calculating the derivative algebraically. In this chapter we take a more
geometric approach and connect the same idea to the local shape of the graph of a function.

3.1 Tangent lines: zooming in on the graph of a
function

y=x^3-x

-2.0 2.0

-6.0

6.0 y=x^3-x

0.5 2.0

0.0

4.0 y=x^3-x

1.4 1.6

1.6

2.2

(a) (b) (c)

Figure 3.1. Zooming in on the pointx = 1.5 on the graph of the functiony =
f(x) = x3 − x. As we zoom in, we see that locally, the graph “looks like” a straight line.
We refer to this line as the tangent line, and its slope is the derivative of the function at that
point.

37
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Another approach to the idea of the derivative is based on thefollowing geometric
idea. Consider the graph of some function, and pick some point on that graph. In the
example in Figure 3.1 we have shown a graph of the functiony = f(x) = x3 − x and a
point shown by a heavy (red) dot.

Now zoom into the selected point, looking at ever higher magnification. (This is
shown in the sequence of zooms in Figure 3.1). Eventually, aswe get closer to the point of
interest, the hills and valleys on the graph disappear off screen, and we start to feel that we
live in a much flatter world. In fact, locally, the graph looksmore and more like a straight
line. We will refer to this straight line as thetangent line to the graph of the function at the
given point. The slope of this tangent line will be what we refer to as thederivative of the
function, at the given point.

Clearly the configuration of the tangent line will depend on the point we chose to
zoom into. Its slope will also vary from place to place. For this reason, the derivative,
denotedf ′(x) is, itself, a function.

In Figure 3.2 we show a zoom into the origin on the graph of the function

y = sin(x).

y=sin(x)

-3.14 3.14

-1.0

1.0

y=sin(x)

-1.0 1.0

-1.0

1.0

y=sin(x)

-0.3 0.3

-0.3

0.3

(a) (b) (c)

Figure 3.2. Zooming in on the pointx = 0 on the graph of the functiony =
f(x) = sin(x). Eventually, the graph resembles a line of slope 1. This is the tangent line
at x = 0 and its slope is the derivative ofy = sin(x) at x = 0.

We see from this graph that the slope of the line that we obtainas we zoom into
x = 0 is m = 1. We say that the derivative of the functiony = f(x) = sin(x) at x = 0
is 1. We also observe that the line shown in the final image in the sequence of Figure 3.2
is the tangent line to the curve atx = 0. The equation of this line is simplyy = x. (This
follows from the fact that the line has slope 1 and goes through the point(0, 0).) We can
also say that close tox = 0 the graph ofy = sin(x) looks a lot like the liney = x. This is
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equivalent to saying that

sin(x) ≈ x, or
sin(x)

x
≈ 1

for smallx, or, more formally, that

lim
x→0

sin(x)

x
= 1.

We will find this limit useful in later calculations.

y=sin(x)

-3.14 3.14

-1.5

1.5

y=sin(x)

1.5 1.64

0.98

1.01

y=sin(x)

1.56 1.58

0.99

1.01

(a) (b) (c)

Figure 3.3. Here we zoom in on the pointx = π/2 on the graph ofy = f(x) =
sin(x). This point is a “local maximum”. Eventually, we see the tangent line whose slope
is 0 (it is is horizontal). Thus the derivative ofy = sin(x) at x = π/2 is zero.

Example 3.1 (Derivative ofy = C) Use a geometric argument to determine the derivative
of the functiony = f(x) = C at any pointx0 on its graph.

Solution: This function is a horizontal straight line, whose slope is zero everywhere. Thus
“zooming in” at any pointx, leads to the same result, so the derivative is 0 everywhere.

Example 3.2 (Derivative ofy = Bx)

Solution: The functiony = Bx is a straight line of slopeB. At any point on its graph, it
has the same slope,B. Thus the derivative is equal toB at any point on the graph of this
function.

The reader will notice that in the above two examples, we havethereby found the
derivative for the two power functions,y = x0 andy = x1.
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3.2 Equation of the tangent line
The examples above allow us to visualize the tangent line by examining the local (“zoomed
in”) shape of the function. In two examples, we found the slope of that tangent line, which
is identified by the derivative of the function at the given point. Using such information,
we can write down the equation of that tangent line.

Example 3.3 Find the equation of the tangent line to the graph ofy = sin(x) at the points
x = 0 andx = π/2

Solution: In Fig. 3.2 we found that the tangent line toy = sin(x) at x = 0 has slope
m = 1. We also know that this line goes through the point(0, sin(0)) = (0, 0). Thus its
y-intercept is 0 and we can immediately write down its equation in the formy = mx + b.
We obtainy = x as the equation of this line.

In Fig. 3.3, we found that the tangent line to the same function at the pointx = π/2
has slope 0. We must also use the fact that the line goes through the point(π/2, sin(π/2)) =
(π/2, 1). Since the tangent line is horizontal (equivalent to sayingit has slope 0), they
value is constant everywhere, so that the equation of this line is simplyy = 1.

Example 3.4 Find the equation of the tangent line to the graph ofy = f(x) = x3 − x at
the pointx = 1.5 shown in Fig. 3.1.

Solution: The point of interest has coordinates(x, f(x)) = (1.5, 1.875). From the graph
shown in Fig. 3.1 (c) we see that the “tangent line” approximately goes through(1.7, 1.47)
as well as the red point(1.5, 1.875). We can compute its slope and find to be approximately
∆y/∆x ≈ 5.8. To find the equation of the tangent line, we use its slope and apoint on that
line to write

y − 1.875

x− 1.5
= 5.8 ⇒ y = 1.875 + 5.8(x− 1.5) ⇒ y = 5.8x− 6.825

Later, we will use the definition of the derivative and an exact algebraic calculation to
improve on this result.

3.3 Sketching the graph of the derivative

x

f(x)

Figure 3.4.The graph of a function. We will sketch its derivative
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In Figure 3.4 we show the graph of some function,f(x). We would like to sketch
the derivative,f ′(x) corresponding to this function. (Recall that the derivative is also
a function.) Keep in mind that this sketch will be approximate, but will contain some
important elements.

In Figure 3.5 we start by sketching in a number of tangent lines on the graph off(x).
We will pay special attention to the slopes (rather than height, length, or any other property)
of these dashes. Copying these lines in a row along the direction of thex axis, we estimate
their slopes with rather approximate numerical values.

x

f(x)

Tangent
Lines

2    1     0     -1   -0.5    0       1      2    3 Slopes

x

f ’ (x)

Figure 3.5.Sketching the derivative of a function

We notice that the slopes start out positive, decrease to zero, become negative, and
then increase again through zero back to positive values. (We see precisely two dashes that
are horizontal, and so have slope 0.) Next, we plot the numerical values (for slopes) that
we have recorded on a new graph. This is the beginning of the graph of the derivative,
f ′(x). Only a few points have been plotted in our figure off ′(x); we could add other
values if we so chose, but the trend, is fairly clear: The derivative function has twozeros
(places of intersection with thex axis). It dips down below the axis between these places.
In Figure 3.6 we show the original functionf(x) and its derivativef ′(x) now drawn as a
continuous curve. We have aligned these graphs so that the slope off(x) matches the value
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of f ′(x) shown directly below.

x

f(x)

x

f ’ (x)

Figure 3.6.A sketch of the function and its derivative

3.4 For further study: tangent line to a circle
Example 3.5 (A multi-step problem) Find the area of the triangle AOB in Figure 3.7.
The circle shown in the figure has radius 1 and center at the origin. The line AB is tangent
to the circle at the pointx = 1/2.

y

B

0 xA1/2

T

Figure 3.7. Problem: Find the area of triangle AOB, given that the line ABis a
tangent to the circle at the point T.
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3.4.1 The solution

This problem involves multiple steps, and uses several aspects of the geometry shown in
Figure 3.7. Our strategy will be to find the height and the baseof the triangle shown, since
then we can easily find its area. To do so, we first need to know the slope of the line AB, a
line that (we are told) touches the circle at the point T.

The equation and the point

The equation of a circle with radius 1 and center at the originis

x2 + y2 = 1 (3.1)

We are givenx = 1/2 so we can find the corresponding y value:

y2 = 1− x2 = 1− 1

4
=

3

4

Thus

y =

√
3

2

so that the point T has coordinates(x, y) = (1/2,
√
3/2).

Property of tangents to circles

Later on in this course we will find clever ways of determiningslopes of tangent lines using
derivatives. For now, we will use the following property of circles:

In a circle, the tangent line is always perpendicular to the radius vector. See Fig-
ure 3.8.

y

B

0 xA

T

Figure 3.8. In a circle, a tangent line is perpendicular to the radius vector at a
given point.
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More specifically, in the picture shown in Figure 3.7, a line from O to T (the radius
vector), would be perpendicular to the tangent line AB. Thisalso allows us to determine its
slope, using the following geometric fact:

If L1 is a line having slopem1, and L2 is a line perpendicular to L1, then the slope
of line L2 is m2 = −1/m1.

Slopes

The slopemOT of the line OT can be found simply as follows:

mOT =
∆y

∆x
=

√
3/2− 0

1/2− 0
=

√
3.

Thus the slope of the tangent line, (using the perpendicularproperty) is

mAB = − 1

mOT
= − 1√

3
.

Where to go from here?

Now that we have found the slope of the line AB, we are close to our goal. However, we
still need to get the actual points of intersection of line ABwith the axes so that we can
determine the base and height of the triangle AOB. To do this,we will find the equation of
the tangent line, using the fact that it has a known slope and goes through a known point
(x, y) = (1/2,

√
3/2)

Equation of the tangent line AB

We use the following facts: The line AB has slope−1/
√
3 and goes through(1/2,

√
3/2).

Thus
y −

√
3/2

x− 1/2
= − 1√

3
. (3.2)

We could use this relationship directly to find the desired intercepts: plugging iny = 0 and
solving forx would lead to thex intercept, and plugging inx = 0 would similarly lead to
they intercept. However, for practice, we will first determine the equation of the tangent
line in standard form:

Rearranging equation (3.2) leads to

y −
√
3

2
= − 1√

3

(

x− 1

2

)

y = − 1√
3
x+

1

2
√
3
+

√
3

2

or simply

y = − 1√
3
x+

2√
3
. (3.3)
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Intercepts

With the equation of the tangent line (3.3) in hand, we can obtain the desired coordinates
of the points A and B:

Point B is simply the y-intercept, which, from equation (3.3) is: 2/
√
3.

Point A, the x-intercept can be found be settingy = 0 and solving forx in equation
(3.3):

0 = − 1√
3
x+

2√
3
.

We find thatx = (2/
√
3)(

√
3) = 2.

The desired area

We now have the height of the triangle, namely2/
√
3 and the base, i.e.2 as shown in

Figure 3.9.

A

B

3

2

2

Figure 3.9. We find the area by first determining the equation of the tangent line
and, thus, its x and y intercepts. This gives us the height andbase of the triangle, from
which its area is easily computed. (A = hb/2).

We now obtain

Area∆ =
1

2
height · base = 1

2
· 2 · 2√

3
=

2√
3
.

Comments

This problem illustrates that the strategy for solving a problem of this type is to break
it down into a series of steps, each one simple and straightforward, together getting us
to the goal. Many problems in science and mathematics involve multiple steps, not just
one simple formula or method. We have here used some geometric facts about circles,
some knowledge of properties of slopes and straight lines, as well as simple algebraic
manipulations to get to our final destination.
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Exercises
3.1. You are given the following information about the signsof the derivative of a func-

tion, f(x). Use this information to sketch a (very rough) graph of the function for
−3 < x < 3.

x -3 -2 -1 0 1 2 3
f ′(x) 0 + 0 - 0 + +

3.2. You are given the following information about the the values of the derivative of a
function,g(x). Use this information to sketch (very rough) graph the function for
−3 < x < 3.

x -3 -2 -1 0 1 2 3
g′(x) -1 0 2 1 0 -1 -2

3.3. What is the slope of the tangent line to the functiony = f(x) = 5x + 2 when
x = 2? whenx = 4 ? How would this slope change if a negative value ofx was
used? Why?

3.4. Find the equation of the tangent line to the functiony = f(x) = |x+ 1| at:

(a) x = −1,

(b) x = −2,

(c) x = 0.

If there is a problem finding a tangent line at one of these points, indicate what the
problem is.

3.5. A functionf(x) has as its derivativef ′(x) = 2x2 − 3x

(a) In what regions isf increasing or decreasing?

(b) Find any local maxima or minima.

(c) Is there an absolute maximum or minimum value for this function?

3.6. Sketch the graph of a functionf(x) whose derivative is shown in Figure 3.10. Is
there only one way to draw this sketch? What difference mightoccur between the
sketches drawn by two different students?

3.7. Shown in Figure 3.11 is the graph of some functionf(x). Sketch the graph of its
derivative,f ′(x).

3.8. Shown in Figure 3.12 below are three functions,f(x) (dotted lines). Sketch the
derivatives of these functions,f ′(x).

3.9. A functionf(x) satisfiesf(1) = −1 andf ′(1) = 2. What is the equation of the
tangent line off(x) atx = 1?

3.10. Sketch the graph of the derivative of the function shown in Figure 3.13.

3.11. For each of the following functions, sketch the graph for −1 < x < 1, find
f ′(0), f ′(1), f ′(−1) and identify any local minima and maxima.

(a) y = x2,
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x

f ’

Figure 3.10.Figure for Problem 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

–3 –2 –1 1 2 3
x

Figure 3.11.Figure for Problem 7

(b) y = −x3,

(c) y = −x4

(d) Using your observations above, when can you conclude that a function whose
derivative is zero at some point has a local maximum at that point?

3.12. (a) Given the function in Figure 3.14(a), graph its derivative.

(b) Given the function in Figure 3.14(b), graph its derivative

(c) Given the derivativef ′(x) shown in Figure 3.14(c) graph the functionf(x).

(d) Given the derivativef ′(x) shown in Figure 3.14(d) graph the functionf(x).

3.13. Given the derivativef ′(x) shown in Figure 3.14(c), graph the second derivative
f ′′(x).

3.14. Shown in Figure 3.15 is the graph of the velocity of a particle moving in one dimen-
sion. Indicate directly on the graph any time(s) at which theparticle’s acceleration
is zero.

3.15. Use the definition of the derivative to compute the slope of the tangent line to the
graph of the functiony = 3t2 − t+ 2 at the pointt = 1.

3.16. Shown in Figure 3.16 is the functionf(x) = x3 with a tangent line at the point
(1, 1).
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x x

x

y y
y

Figure 3.12.Figure for problem 8

x

f

Figure 3.13.Figure for Problem 10

(a) Find the equation of the tangent line.

(b) Determine the point at which the tangent line intersectsthex axis.

(c) Compute the value of the function atx = 1.1. Compare this with the value ofy
on the tangent line atx = 1.1. (This latter value is thelinear approximationof
the function at the desired point based on its known value andknown derivative
at the nearby pointx = 1.)

3.17. Shown in Figure 3.17 is the functionf(x) = 1/x4 together with its tangent line at
x = 1.

(a) Find the equation of the tangent line.

(b) Determine the points of intersection of the tangent linewith thex and they
axes.

(c) Use the tangent line to obtain a linear approximation to the value off(1.1).
Is this approximation larger or smaller than the actual value of the function at
x = 1.1?
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y=f(x)

0.0 2.3

-0.5

1.0

y=f(x)

0.0 10.0

-10.0

10.0

(a) (b)

f’(x)

0.0 10.0

-10.0

10.0

f ’ (x)

-1.3 1.3

-2.0

3.0

(c) (d)

Figure 3.14.Figures for Problem 12.

3.18. Shown in Figure 3.18 is the graph of a function and its tangent line at the pointx0.

(a) Find the equation of the tangent line expressed in terms of x0, f(x0) and
f ′(x0).

(b) Find the coordinatex1 at which the tangent line intersects thex axis.

3.19. Shown in Figure 3.19 is the graph off ′(x), the derivative of some function. Use
this to sketch the graphs of the two related functions,f(x) andf ′′(x)
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v

t

Figure 3.15.Figure for Problem 14

x

y

(1, 1)

f(x)

Figure 3.16.Figure for Problem 16

x

y
f(x)

1

Figure 3.17.Figure for problem 17
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x

y

f(x)
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1 0

tangent
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Figure 3.18.Figure for problem 18
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Figure 3.19.Figure for Problem 19

3.20. Concentration gradient: Certain types of tissues, called epithelia are made up
of thin sheets of cells. Substances are taken up on one side ofthe sheet by some
active transport mechanism, and then diffuse down a concentration gradient by a
mechanism called facilitated diffusion on the opposite side. Shown in Figure 3.20
is the concentration profilec(x) of some substance across the width of the sheet (x
represents distance). Sketch the corresponding concentration gradient, i.e. sketch
c′(x), the derivative of the concentration with respect tox.

3.21. The vertical height of a ball,d (in meters) at timet (seconds) after it was thrown
upwards was found to satisfyd(t) = 14.7t − 4.9t2 for the first 3 seconds of its
motion.

(a) What is the initial velocity of the ball (i.e. the instantaneous velocity att = 0)
?

(b) What is the instantaneous velocity of the ball att = 2 seconds?

3.22. Shown in Figure 3.21 is the graph ofy = x2 with one of its tangent lines.

(a) Show that the slope of the tangent to the curvey = x2 at the pointx = a is
2a.

(b) Suppose that the tangent line intersects thex axis at the point (1,0). Find the
coordinate,a, of the point of tangency.
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x

c(x) facilitated
diffusion

active
transport

distance across the sheet

Figure 3.20.Figure for Problem 20

x

y

1 a

Figure 3.21.Figure for Problem 22

3.23. The parabolay = x2 has two tangent lines that intersect at the point(2, 3). These
are shown as the dark lines in Figure 3.22. [Remark: note thatthe point(2, 3) is
not on the parabola]. Find the coordinates of the two points at which the lines are
tangent to the parabola.
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unknown
coordinates
to find

(2,3)

x

y

Figure 3.22.Figure for Problem 23
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Chapter 4

The Derivative

In our investigation so far, we have defined the notion of an instantaneous rate of change,
and called this the derivative. We have also identified this mathematical concept with the
slope of a tangent line to the graph of a function. Recall thatour definition for the derivative
of a function,y = f(x) is

dy

dx
= f ′(x) = lim

h→0

f(x+ h)− f(x)

h

In this chapter, we will use this definition to establish how to compute the derivatives
of power functions. In our previous discussions, we observed that power functions are
building blocks of polynomials, a family of well-behaved functions that are exceedingly
useful in approximations. Using some further elementary properties of derivatives we will
arrive at a simple way of calculating the derivative of any polynomial. This will permit
interesting and useful calculations, on a variety of applied problems.

In this and the following sections, we will gain experience with the many-faceted
properties of derivatives that use relatively simple differentiation calculations. (Some of
the problems we address will be challenging nevertheless, but all of them will be based
on polynomial and power function forms.) Using the definition of the derivative, we can
compute derivatives of a power function. While we here show aspecific example for the
cubic, the general idea can be extended to other cases, and leads to a pattern that we will
call thepower rule of differentiation.

4.1 The derivative of power functions: the power rule
We have already computed the derivatives of several of the power functions. See Exam-
ple 3.1 fory = x0 = 1 and Example 3.2 fory = x1. See also Example 2.8 fory = x2. We
tabulate these results in Table 4.1. Let us extend our set of results by another calculation of
the derivative of a cubic function.

Example 4.1 (Derivative of the cubic power function)Compute the derivative of the func-
tion y = f(x) = Kx3.

55



56 Chapter 4. The Derivative

solution: Fory = f(x) = Kx3 we have

dy

dx
= lim

h→0

f(x+ h)− f(x)

h

= lim
h→0

K(x+ h)3 −Kx3

h

= lim
h→0

K
(x3 + 3x2h+ 3xh2 + h3)− x3

h

= lim
h→0

K
(3x2h+ 3xh2 + h3)

h

= lim
h→0

K(3x2 + 3xh+ h2)

= K(3x2) = 3Kx2

We see from simple experimentation that a derivatives of a power function consists of
reducing the power (by 1) and multiplying the result by the original power. See Table 4.1,
where we have taken all the coefficients to be 1 for simplicity. We refer to this pattern as
thepower rule of differentiation.

Function Derivative
f(x) f ′(x)

1 0
x 1
x2 2x
x3 3x2

...
...

xn nxn−1

Table 4.1. The Power Rule of differentiation states that the derivative of the
power functiony = xn is nxn−1. For now, we have established this result for integern.
Later, we will find that this result holds for other values ofn.

We can show that this rule applies for any power function of the formy = f(x) = xn

wheren is an integer power. The calculation is essentially the sameas the examples we
have shown, but the step of expanding the binomial(x+h)n entails lengthier algebra. Such
expansion contains terms of the formxn−khk multiplied bybinomial coefficients, and we
omit the details here. From now on, we will use this convenient result to simply write down
the derivative of a power function, without having to recalculate it from the definition.

Example 4.2 Find the equation of the tangent line to the graph of the powerfunctiony =
f(x) = 4x5 atx = 1, and determine they intercept of that tangent line.

Solution: The derivative of this function is

f ′(x) = 20x4.



4.2. The derivative is a linear operation 57

At the pointx = 1, we havedy/dx = f ′(1) = 20 andy = f(1) = 4. This means that the
tangent line goes through the point(1, 4) and has slope20. Thus, its equation is

y − 4

x− 1
= 20

y = 4 + 20(x− 1) = 20x− 16.

(At this point is is a good idea to do a quick check that the point (1, 4) satisfies this equation,
and that the slope of the line is 20.) Thus, we find that they intercept of the tangent line is
y = −16.

Next, we find that the result for derivatives of power functions can be extended to
derivatives of polynomials, using further simple properties of the derivative.

4.2 The derivative is a linear operation
The derivative satisfies several convenient properties: The sum of two functions or the con-
stant multiple of a function has a derivative that is relatedsimply to the original function(s).
The derivative of a sum is the same as the sum of the derivatives. A constant multiple of a
function can be brought outside the differentiation.

d

dx
(f(x) + g(x)) =

df

dx
+

dg

dx
(4.1)

d

dx
Cf(x) = C

df

dx
(4.2)

We can summarize these observations by saying that the derivative is alinear oper-
ation. In general, a linear operationL is a rule or process that satisfies two properties: (1)
L[f + g] = L[f ] + L[g] andL[cf ] = cL[f ], wheref, g are objects (such as functions,
vectors, etc) on whichL acts, andc is a constant multiple. We will refer to (4.1) and (4.2)
as the “linearity” properties of the derivative.

4.3 The derivative of a polynomial
Using the properties (4.1) and (4.2), we can extend our differentiation power rule to com-
pute the derivative of any polynomial. Recall that polynomials are sums of power functions
multiplied by constants. A polynomial ofdegreen has the form

p(x) = anx
n + an−1x

n−1 + . . . a1x+ a0 (4.3)

where the coefficients,ai are constant andn is an integer. Thus, by the above two prop-
erties, the derivative of a polynomial is just the sum of derivatives of power functions
(multiplied by constants). Thus the derivative of (4.3) is

p′(x) =
dy

dx
= an · nxn−1 + an−1 · (n− 1)xn−2 + . . . a1 (4.4)
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(Observe that each term consists of the coefficient times thederivative of a power functions.
The constant terma0 has disappeared since the derivative of any constant is zero.) The
derivative,p′(x), is apparently also a function, and a polynomial as well. Itsdegree is
n − 1, one less than that ofp(x). In view of this observation, we could ask what is the
derivative of the derivative, which we henceforth call thesecond derivative., written in
the notationp′′(x) or, equivalentlyd

2y
dx2 . Using the same rules, we can compute this easily,

obtaining

p′′(x) =
d2y

dx2
= an · n(n− 1)xn−2 + an−1 · (n− 1) · (n− 2)xn−3 + . . . a2 (4.5)

We demonstrate the idea with a few examples

Example 4.3 Find the first and second derivatives of the function (a)y = f(x) = 2x5 +
3x4 + x3 − 5x2 + x− 2 with respect tox and (b)y = f(t) = At3 +Bt2 + Ct+D with
respect tot.

Solution: We obtain the results (a)f ′(x) = 10x4 + 12x3 + 3x2 − 10x+ 1 andf ′′(x) =
40x3 + 36x2 + 6x− 10. (b) f ′(t) = 3At2 + 2Bt+ C andf ′′(t) = 6At+ 2B. In (b) the
independent variable ist, but, of course, the rules of differentiation are the same.

Example 4.4 Find the equation of the tangent line to the graph ofy = f(x) = x3 − x at
the pointx = 1.5.

Solution: In Example 3.4, we approximated the slope of the tangent lineshown in Fig. 3.1,
and used that value to solve the problem. We return to this problem using the rules of
differentiation to get an exact result. As we have learned, the derivative of the polynomial
f(x) = x3 − x is f ′(x) = 3x2 − 1. At x = 1.5 we havef ′(1.5) = 3(1.5)2 − 1 = 5.75, so
the slope of the tangent line is 5.75 (an exact result, betterthan our eyeball approximation
in Example 3.4). The coordinates of the point of interest aref(1.5) = 1.875), as before.
Thus the equation of the tangent line is

y − 1.875

x− 1.5
= 5.75 ⇒ y = 1.875 + 5.75(x− 1.5) ⇒ y = 5.75x− 6.75.

4.4 Antiderivatives of polynomials
As seen above, when we differentiate a polynomial, we obtaina polynomial of a lower
degree, that is, the highest power decreases by 1. We now consider the idea of ”antidiffer-
entiation”, which reverses the operation of the derivative. Suppose we are given that the
second derivative of some function is

y′′(t) = c1t+ c2.

(This is a polynomial of degree 1.) Evidently, this functionresulted by taking the derivative
of y′(t), which had to be a polynomial of degree 2. We can check that

y′(t) =
c1
2
t2 + c2t



4.5. Position, velocity, and acceleration 59

could be such a function, but so could

y′(t) =
c1
2
t2 + c2t+ c3

for any constantc3. In turn, the functiony(t) had to be a polynomial of degree 3. We can
see that one such function is

y(t) =
c1
6
t3 +

c2
2
t2 + c3t+ c4

wherec4 is any constant. (This can be checked by differentiating.) The steps we have just
illustrated are “antidifferentiation”. In short, the relationship is:

for differentiation y(t) → y′(t) → y′′(t)

whereas
for antidifferentiation y′′(t) → y′(t) → y(t).

(Arrows denote what is done to one function to arrive at the next.) We also note an impor-
tant result that holds for functions other than polynomials:

Given a function, f(x) we can only determine its antiderivative up to some (additive)
constant.

We apply these ideas in the following section.

4.5 Position, velocity, and acceleration
As an example of the relation between a function and its first and second derivative, we
return to the discussion of displacement, velocity and acceleration of an object falling under
the force of gravity. Here we will use the notationy(t) to denote the position of the object
at timet. From now on, we will refer to the instantaneous velocity of aparticle or object at
time t simply asthe velocity, v(t).

Definition 4.5 (The velocity). Given the position of some particle as a function of time,
y(t), we define the velocity as the rate of change of the position, i.e. the derivative ofy(t):

v(t) =
dy

dt
= y′(t)

Here we have just used two equivalent notations for the derivative. In general,v may
depend on time, a fact we indicated by writingv(t).

Definition 4.6 (The acceleration).We will also define the acceleration as the (instanta-
neous) rate of change of the velocity, i.e. as the derivativeof v(t).

a(t) =
dv

dt
= v′(t).
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(Acceleration could also depend on time, hencea(t).)

Since the acceleration is the derivative of a derivative of the original function, we
also use the notation

a(t) =
d

dt

(

dy

dt

)

=
d2y

dt2
= y′′(t)

Here we have used three equivalent ways of writing a second derivative. (This notation
evolved for historical reasons, and is used interchangeably in science.) The acceleration is
hence the second derivative of the position.

In view of our discussion of antidifferentiation, given information about the acceler-
ation as a function oft, we can obtain the velocityv(t) (up to some constant) by antidif-
ferentiation. Similarly, we can use the velocityv(t) to determine the positiony(t) (up to
some constant). The constants must be obtained from other information, as examples that
follow will illustrate.

Example 4.7 (Uniformly accelerated motion)Suppose that the acceleration of an object
is constant in time, i.e.a(t) = g = constant. Use antidifferentiation to determine the
velocity and the position of the object as functions of time.

Solution: We ask: what function of timev(t) has the property that

a(t) = v′(t) = g = constant?

The functiona(t) = v′(t) is a polynomial of degree 0 in the variablet. To find the velocity,
we apply antidifferentiation to obtain a polynomial of degree 1,

v(t) = gt.

This is one antiderivative of the acceleration, but in fact,other functions such as

v(t) = gt+ c, (4.6)

would work for any constantc. How can we decide which value of the constantc to use?
To determinec we need additional information about the velocity, for example att = 0.
Suppose we are told thatv(0) = v0 is the known value of theinitial velocity 5. Then,
substitutingt = 0 into (4.6), we find thatc = v0. Thus in general,

v(t) = gt+ v0

wherev0 is the initial velocity of the object.
To now determine the position of the particle as a function ofthe timet, we recall

thatv(t) = y′(t). Thus, using the result (4.6), we have

y′(t) = v(t) = gt+ v0 (4.7)

5The statementv(0) = v0 will later be called an “initial condition”, since it specifies how fast the particle was
moving initially.
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Then, by antidifferentiation of (4.7), we obtain a polynomial of degree 2,

y(t) =
1

2
gt2 + v0t+ k (4.8)

where, as before we allow for some additive constantk. It is a simple matter to check that
the derivative of this function is the given expression forv(t). By reasoning as before, the
constantk can be determined from the initial position of the objecty(0) = y0. A before,
(pluggingt = 0 into (4.9)) we find thatk = y0, so that

y(t) =
1

2
gt2 + v0t+ y0. (4.9)

Here we use the acceleration due to gravity,g, but any other motion with constant acceler-
ation would be treated in the same way.

Summary, uniformly accelerated motion: If an object moves with constant acceleration
g, then given its initial velocityv0 and initial positiony0 at timet = 0, the position at any
later time is described by:

y(t) =
1

2
gt2 + v0t+ y0.

This powerful and general result is a direct result of the assumption that the acceler-
ation is constant, using the elementary rules of calculus, and the definitions of velocity and
acceleration as first and second derivatives of the position. We further illustrate these ideas
with examples of motion under the influence of gravity.

Example 4.8 (The motion of a falling object, revisited)A falling object experiences uni-
form acceleration (downwards) witha(t) = −g = constant6. Suppose that an object is
thrown upwards at initial velocityv0 from a building of heighth0.

(a) Find the velocity and the acceleration of the object at any time t.

(b) When does the object hit the ground?

(c) Determine when the object reaches its highest point, andwhat is its velocity at that
time.

(d) Find the velocity of the object when it hits the ground.

Solution: By previous reasoning, the height of the object at timet, denotedy(t) is given
by

y(t) = −1

2
gt2 + v0t+ h0.

6Here we have chosen a coordinate system in which the positivedirection is “upwards”, and so the acceleration,
which is in the opposite direction, is negative. On Earth,g = 9.8 m /s2.
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(a) The velocity is given by:

v(t) = y′(t) = v0 − 2(
1

2
gt) = v0 − gt.

We may observe that att = 0, the initial velocity is v(0) = v0. If the object was
thrown upwards thenv0 > 0, i.e., it is initially heading up. Differentiating one more
time, we find that the acceleration is:

a(t) = v′(t) = −g.

We observe that the acceleration is constant. The negative sign means that the object
is accelerating downwards, in the direction opposite to thepositive direction of the
y axis. This makes sense, since the force of gravity acts downwards, causing this
acceleration.

(b) We will assume that the object hits the ground at levely = 0. Then we must solve
for t in the equation:

y(t) = h0 + v0t−
1

2
gt2 = 0.

Here we must observe that the highest power of the independent variable is 2, so
thaty is a quadratic function oft, and solving fort requires us to solve a quadratic
equation. This is a quadratic equation, which could be written in the form

1

2
gt2 − v0t− h0 = 0, ⇒ gt2 − 2v0t− 2h0 = 0.

Using the quadratic formula, we obtain

tground=
2v0 ±

√

4v20 + 8gh0

2g
⇒ tground=

v0
g

±
√

v20 + 2gh0

g
.

We have found two roots. One is positive and the other is negative. Since we are
interested int > 0, we will reject the negative root, so

tground=
v0
g

+

√

v20 + 2gh0

g
.

(c) To find when the object reaches its highest point, we note that the object shoots up,
but it slows down with time. Eventually, it can no longer continue to go up: this
happens precisely when its velocity is zero. From then on it will start to fall to the
ground. The top of its trajectory is determined by finding when the velocity of the
object is zero. Equating

v(t) = v0 − gt = 0

we solve fort, to get

ttop =
v0
g
.
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(d) To find the velocity of the object when it hits the ground. we need to use the time
determined in part (b). Substitutingtground into the expression for velocity, we obtain:

v(tground) = v0 − gtground= v0 − g

(

v0
g

+

√

v20 + 2gh0

g

)

.

After some algebraic simplification, we obtain

v(tground) = −
√

v20 + 2gh0.

We observe that this velocity is negative, indicating (as expected) that the object is
falling down.

Figure 4.1 illustrates the relationship between the three functions.

t

t

t

y

v

a

0

0

0

Figure 4.1. The position, velocity, and acceleration of an object that is thrown
upwards and falls under the force of gravity.

4.6 Sketching skills
We have already encountered the idea of sketching the derivative of a function, given a
sketch of the original function. Here we practice this skillfurther. In the examples below,
we make no attempt to be accurate about heights of peaks and valleys in our sketches (as
would be certainly possible using numerical methods like a spreadsheet). Rather, we are
aiming for qualitative features, where the most important aspects of the graphs (locations
of key points such as peaks and troughs) are indicated.
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Example 4.9 (Sketching the derivative from the original function) Use the function shown
in Figure 4.2 to sketch the first and second derivatives.

Solution: See the panels of Figure 4.2 for the functiony(t), its first derivative,v(t) = y′(t),
and its second derivative,a(t) = y′′(t). (This was done in two steps: in each case, we
determined the slopes of tangent lines as a first step.) An important feature to notice is that
wherever a tangent line to a curve is horizontal, e.g. at the “tops of peaks” (local maxima)
or “bottoms of valleys”(local minima), the derivative is zero. This is indicated at several
places in Figure 4.2.

 0    +                     +            0+

0   +     0     -       0

t

t

t

y

v

a

Figure 4.2.Figure for Example 4.9.

Example 4.10 (Sketching a function from a sketch of its derivative) Use the sketch of
f ′(x) in the top panel of Figure 4.3 to sketch the original functionf(x)

Solution: See the bottom panel of Figure 4.3. An important point is thatthere are many
possible ways to drawf(x) given f ′(x), becausef ′(x) only contains information about
changesin f(x), not about how high the function is at any point. This means that:
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Given the derivative of a function, f ′(x), we can only determinef(x) up to some
(additive) constant.

In Figure 4.3 we show a number of possibilities forf(x). If we were given anaddi-
tional piece of information, for example thatf(0) = 0, we would be able to select out one
specific curve out of this family of solutions.

+   0     -ve       0    +

x

x

f ’ (x)

f (x)

Figure 4.3.Using the sketch of a functionf ′(x) to sketch the functionf(x).
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4.7 A biological speed machine

Figure 4.4. The parasiteLysterialives inside a host cell. It assembles a “rocket-
like” tail made up of actin, and uses this assembly to move around the cell, and to pass
from one host cell to another.

Lysteria monocytogenesis a parasite that lives inside cells of the host, causing a nasty
infection. It has been studied by cellular biologists for its amazingly fast propulsion, which
uses the host’s actin filaments as “rocket fuel”. Actin is part of the structural component
of all animal cells, and is known to play a major role in cell motility. Lysteria manages to
“hijack” this cellular mechanism, assembling it into its own comet tail, which can be used
to propel inside the cell and pass from one cell to the next. Figure 4.4 illustrates part of
these curious traits.

Researchers in cell biology use Lysteria to find out more about motility at the cellular
level. It has been discovered that certain proteins on the external surface of this parasite
(ActA) are responsible for the ability of Lysteria to assemble an actin filament tail. Surpris-
ingly, even small plastic beads artificially coated in Lysteria’s ActA proteins can perform
the same “trick”: they assemble an actin tail which pushes the bead like a tiny rocket.

A recent paper in the literature (Bernheim-Groswasser A, Weisner S, Goldsteyn RM,
Carlier M-F, Sykes C (2002) The dynamics of actin-based motility depend on surface pa-
rameters Nature 417: 308-311.) describes the motion of these beads, shown in Figure 4.5.
When the position of the bead is plotted on a graph with time asthe horizontal axis, (see
Figure 4.6) we find that the trajectory is not a simple one: it appears that the bead slows
down periodically, and then accelerates.

With the techniques of this chapter, we can analyze the experimental data shown
in Figure 4.6 to determine both the average velocity of the beads, and the instantaneous
velocity over the course of the motion.

Average velocity of the bead

We can get a rough idea of how fast the micro-beads are moving by computing an average
velocity over the time interval shown on the graph. We can usetwo (approximate) data
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Figure 4.5. Small spherical beads coated with part of Lysteria’s special actin-
assembly kit also gain the ability to swim around. Based on Bernheim-Groswasser et al,
2002.

Figure 4.6. The distance traveled by a little bead is shown as a function of time.
The arrows point to times when the particle slowed down or stopped. We can use this data
to analyze the velocity of the particles. Based on Bernheim-Groswasser et al, 2002.

points(t,D(t), at the beginning and end of the run, for example (45,20) and (80,35): Then
the average velocity is

v̄ =
∆D

∆t

v̄ =
35− 20

80− 45
≈ 0.43µmin−1

so the beads move with average velocity 0.43 microns per minute. (One micron is10−6

meters.)
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The changing instantaneous velocity:

Because the actual data points are taken at finite time increments, the curve shown in Fig-
ure 4.6 is not smooth. We will smoothen it, as shown in Figure 4.7 for a simpler treatment.
In Figure 4.8 we sketch this curve together with a collectionof lines that represent the
slopes of tangents along the curve. A horizontal tangent hasslope zero: this means that
at all such points (also indicated by the arrows for emphasis), the velocity of the beads is
zero. Between these spots, the bead has picked up speed and moved forward until the next
time in which it stops.

We show the velocityv(t), which is the derivative of the original functionD(t) in
Figure 4.9. As shown here, the velocity has periodic increases and decreases.

 40             50            60            70              80            90            

40

30

20

Figure 4.7.The (slightly smoothened) bead trajectory is shown here.

4.8 Additional problems and examples
We now turn to a number of problems based on derivatives, tangent lines, and slopes of
polynomials. We use these to build up our problem-solving skills in examples where the
calculations are relatively straight-forward. In the two examples below, we use information
about a function to identify the slope and/or equation of itstangent line.

Example 4.11 (a) Find the equation of the tangent line to

y = f(x) = x3 − ax

for a > 0 a constant, at the pointx = 1. (b) Find where that tangent line intersects thex
axis.

Solution: The function given in the example is a simple polynomial, so we easily calculate
its derivative. The idea is very similar to that of the previous example, but the constanta
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 40             50            60            70              80            90            
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Figure 4.8. We have inserted a sketch of the tangent line configurations along
the trajectory from beginning to end. We observe that some ofthese tangent lines are
horizontal, implying a zero derivative, and, thus, a zero instantaneous velocity at that time.

40
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20

D(t)

v(t)

40 50 60 70 9080

Figure 4.9.Here we have sketched the velocity on the same graph.

makes this calculation a little less straightforward. (a)y = f(x) = x3−ax so the derivative
is

dy

dx
= f ′(x) = 3x2 − a

and atx = 1 the slope (in terms of the constanta) is f ′(1) = 3 − a. The point of interest
on the curve has coordinatesx = 1, y = 13 − a · 1 = 1− a.
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We look for a line through(1, 1− a) with slopem = 3− a. That, is,

y − (1− a)

x− 1
= 3− a.

Simplifying algebraically leads to

y = (3− a)(x − 1) + (1− a)

or simply
y = (3 − a)x− 2.

[Remark: at this point is is wise to check that the tangent line goes through the desired
point and has the slope we found. One way to do this is to pick a simple value fora, e.g.
a = 1 and do a quick check that the answer matches what we have found.]

(b) To find the point of intersection, we set

y = (3− a)x− 2 = 0

and solve forx. We find that

x =
2

3− a
.

Example 4.12 Find any value(s) of the constanta such that the liney = ax is tangent to
the curve

y = f(x) = −x2 + 3x− 2.

x
x

y

o

y=f(x)

y=ax

Figure 4.10.Figure for Example 4.12

Solution: This example, too, revolves around the properties of a polynomial, but the prob-
lem is somewhat more challenging. We must use some geometricproperties of the function
and the tentative candidate for a tangent line to determine the value of the unknown constant
a.

As shown in Figure 4.10, there may be one (or more) points at which tangency occurs.
We do not know the coordinate of any such point, but we will label it x0 to denote that it
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is some definite (as yet to be determined) value. Notation cansometimes be confusing.
We must remember that while we can compute the derivative off at any point, only the
specific point at which the tangent touches the curve will have special properties that we
will outline below. Finding that point of tangency,x0, will be part of the problem.

What we know is that, atx0,

• The straight line and the graph of the functionf(x) go through the same point.

• The straight liney = ax and the tangent line to the graph coincide, i.e. the derivative
of f(x) atx0 is the same as the slope of the straight line, which is clearlya

Using these two facts, we can write down the following equations:

• Equating slopes:
f ′(x0) = −2x0 + 3 = a

• Equatingy values on line and graph off(x):

f(x0) = −x2
0 + 3x0 − 2 = ax0

We now have two equations for two unknowns, (a andx0). We can solve this system easily
by substituting the value ofa from the first equation into the second, getting

−x2
0 + 3x0 − 2 = (−2x0 + 3)x0.

Simplifying:
−x2

0 + 3x0 − 2 = −2x2
0 + 3x0

so
x2
0 − 2 = 0, x0 = ±

√
2.

This shows that there are two points at which the conditions would apply. In Fig-
ure 4.11 we show two such points.

x
x

y

o

y=f(x)

y=ax

Figure 4.11.Figure for solution to Example 4.12

We can now find the slopea usinga = −2x0 + 3. We get:

x0 =
√
2 a = −2

√
2 + 3,
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and
x0 = −

√
2 a = 2

√
2 + 3.

Remark: This problem illustrates the idea that in some cases, we proceed by listing
properties that are known to be true, using the information to obtain a set of (algebraic)
equations, and then solving those equations. The challengeis to use these sequential steps
properly - each step on its own is relatively understandableand clearcut. Most problems
encountered in scientific and engineering applications require a whole chain of reasoning,
calculation, or logic, so practicing such multi-step problems is an important part of training
for science, medicine, engineering, and other fields.



Chapter 5

What the Derivative tells
us about a function

The derivative of a function contains a lot of important information about the behaviour of
a function. In this chapter we will focus on how properties ofthe first and second derivative
can be used to help up refine curve-sketching techniques.

5.1 The shape of a function: from f ′(x) and f ′′(x)

x x

f(x) f(x)

(a)                                           (b)

x x

f ’ (x) f ’ (x)

Figure 5.1. In (a) the function is concave up, and its derivative thus increases
(in the positive direction). In (b), for a concave down function, we see that the derivative
decreases.

Consider a function given byy = f(x). We first make the following observations:

1. If f ′(x) > 0 thenf(x) is increasing.

73



74 Chapter 5. What the Derivative tells us about a function

2. If f ′(x) < 0 thenf(x) is decreasing.

Naturally, we read graphs from left to right, i.e. in the direction of the positivex axis,
so when we say “increasing” we mean that as we move from left toright, the value of the
function gets larger.

We can use the same ideas to relate the second derivative to the first derivative.

1. If f ′′(x) > 0 thenf ′(x) is increasing. This means that the slope of the original
function is getting steeper (from left to right). The function curves upwards: we say
that it isconcave up. See Figure 5.1(a).

2. If f ′′(x) < 0 thenf ′(x) is decreasing. This means that the slope of the original
function is getting shallower (from left to right). The function curves downwards:
we say that it isconcave down. See Figure 5.1(b).

We see examples of the above two types in Figure 5.1. In Figure5.1(a),f(x) is
concave up, and its second derivative (not shown) would be positive. InFigure 5.1(b),
f(x) is concave down, and second derivative would be negative.

To summarize, the second derivative of a function provides information about the
curvature of the graph of the function, also called the concavity of the function.

5.2 Points of inflection

Definition 5.1. A point of inflection of a functionf(x) is a pointx at which the concavity
of the function changes.

f ’’(x) >0

f ’’ (x) <0

f ’’ (x) = 0

concave
up

concave
down

Inflection point

Figure 5.2.An inflection point is a place where the concavity of a function changes.

We can deduce from the definition and previous remarks that ata point of inflection
the second derivative changes sign. This is illustrated in Figure 5.2.Note carefully: It
is not enough to show thatf ′′(x) = 0 to conclude thatx is an inflection point. We must
actually check thatf ′′(x) changes sign at opposite sides of the valuex, as the following
example shows:

Example 5.2 Show that the functionf(x) = x4 does not have a point of inflection at the
origin, even though its second derivative is zero at that point.
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Solution: Consider the function

y = f(x) = x4.

The first and second derivatives off are:

dy

dx
= f ′(x) = 4x3, and

d2y

dx2
= f ′′(x) = 12x2.

Thenf ′′(x) = 0 whenx = 0. However,x = 0 is NOT an inflection point. In fact, it is a
local minimum, as is evident from Figure 5.3.

x

y

Figure 5.3. The functiony = f(x) = x4 has a minimum atx = 0. The fact that
the second derivative is zero at the origin,f ′′(0) = 0, is clearly NOT associated with an
inflection point. This results from the fact thatf ′′ does not change sign as we crossx = 0.

5.3 Critical points

Definition 5.3. A critical point of the functionf(x) is any pointx at which the first
derivative is zero, i.e.f ′(x) = 0.

Figure 5.4. A critical point (place wheref ′(x) = 0) can be a local maximum,
local minimum, or neither.

Clearly, this will occur whenever the slope of the tangent line to the graph of the
function is zero, i.e. the tangent line is horizontal. Figure 5.4 shows several possible shapes
of the graph of function close to a critical point.

We will call the first of these (on the left) alocal maximum, the second alocal
minimum , and the last two cases (which are bends in the curve) inflection points.

In many scientific applications, critical points play a veryimportant role. (We will
see examples of this sort shortly.) We would like criteria for determining whether a critical
point is a local maximum, minimum, or neither. We will develop such diagnoses in the
next section.
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5.4 What happens close to a critical point

x x

x x

f (x) f (x)

f ’(x) f ’ (x)

x x

f ’’(x)
f ’’(x)

local max local min

Figure 5.5. Close to a local maximum,f(x) is concave down,f ′(x) is decreas-
ing, so thatf ′′(x) is negative. Close to a local minimum,f(x) is concave up,f ′(x) is
increasing, so thatf ′′(x) is positive.

From Figure 5.5 we see the behaviour of the first and second derivatives of a function
close to critical points. We already know that at the point inquestion,f ′(x) = 0, so clearly
the graph off ′(x) crosses thex axis at each critical point. However, note that next to
a local maximum, (and reading from left to right, as is the convention in any graph) the
slope off(x) is first positive (to the left), then becomes zero (at the critical point) and then
becomes negative (to the right of the point). This means thatthe derivative isdecreasing
from left to right, as indicated in Figure 5.5.

Since the changes in the first derivative are measured byits derivative, i.e. byf ′′(x),
we can say, equivalently that the second derivative is negative at a local maximum.

The converse is true near any local minimum. This is shown on the right column of
Figure 5.5. We conclude from this discussion that the following diagnosis would distin-
guish a local maximum from a local minimum:

Test for maxima and minima

• First derivative test: Near a local maximum, the first derivative has a transition from
positive to zero to negative values reading across the graphfrom left to right. Near a
local minimum, the first derivative goes from negative to zero to positive values.

• Second derivative test: Near a local maximum, the second derivative is negative.



5.5. Sketching the graph of a function 77

Near a local minimum, the second derivative is positive.

Summary: first derivative

f ′(x) < 0 f ′(x0) = 0 f ′(x) > 0
decreasing function critical point increasing function

atx0

Summary: second derivative

f ′′(x) < 0 f ′′(x0) = 0 f ′′(x) > 0
curve concave down check for curve concave up

inflection point
atx0

if f ′′ changes sign

Summary: type of critical point

Here we assume thatx0 is a critical point, i.e. a point at whichf ′(x0) = 0. Then the
following table summarizes what happens at that point

f ′′(x0) < 0 f ′′(x0) = 0 f ′′(x0) > 0

local maximum inconclusive local minimum

Important note:

The fact thatf ′′(x0) = 0 may alert us to look for an inflection point. However, only iff ′′

changes sign from left to right ofx0 can we conclude thatx0 is an inflection point.
We will apply some of these ideas to a number of examples and applications.

5.5 Sketching the graph of a function
Example 5.4 Sketch the graph of the function defined byB(x) = C(x2 − x3).

Solution: To prepare the way, we compute the derivatives:

B′(x) = C(2x− 3x2), B′′(x) = C(2 − 6x).

The following set of steps will be a useful way to proceed:

1. We can easily find thezerosof the function by settingB(x) = 0. We find that

C(x2 − x3) = 0, ⇒ x2 = x3

sox = 0 or x = 1 are the solutions.
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x

B(x)

close to 0 far from 0

Figure 5.6.Figure for Example 5.4 showing which power dominates.

2. By considering powers, we note that close to the origin, the powerx2 would domi-
nate (so we expect to see something resembling a parabola opening upwards close to
the origin), whereas, far away, where the term−x3 dominates, we expect an (upside
down) cubic curve, as shown in a preliminary sketch in Figure5.6.

3. To find the critical points, we setB′(x) = 0, obtaining

B′(x) = C(2x− 3x2) = 0, ⇒ 2x− 3x2 = 0, ⇒ 2x = 3x2

so eitherx = 0 or x = 2/3. From the sketch in Figure 5.6 it is clear that the
first is a local minimum, and the second a local maximum. (But we will also get a
confirmation of this fact from the second derivative.)

4. From the second derivative we find thatB′′(0) = 2 > 0 so thatx = 0 is indeed a
local minimum. Further,B′′(2/3) = 2 − 6 · (2/3) = −2 < 0 so thatx = 2/3 is a
local maximum. This is the confirmation that our sketch makessense.

5. Now identifying whereB′′(x) = 0, we find that

B′′(x) = C(2− 6x) = 0, when 2− 6x = 0 ⇒ x =
2

6
=

1

3

we also note that the second derivative changes sign here: i.e. forx < 1/3,B′′(x) >
0 and forx > 1/3, B′′(x) < 0. Thus there is an inflection point atx = 1/3. The
final sketch would be as given in Figure 5.7.
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x
1      2      0 1

3      3

local max

local min

B(x)

inflection

Figure 5.7.Figure for Example 5.4.

Example 5.5 Sketch the graph of the functiony = f(x) = 8 x5 + 5 x4 − 20 x3

Solution:

x

y

Figure 5.8.The functiony = f(x) = 8 x5+5 x4−20 x3 of Example 5.5 behaves
roughly like the negative cubic near the origin, and like8 x5 for largex.

1. Consider the powers:

The highest power is8 x5 so that far from the origin we expect a typical positive odd
function behavior.

The lowest power is−20 x3, which means that close to zero, we would expect to see
a negative cubic. This already indicates to us that the function “turns around”, and
so, must have some local maxima and minima. We draw a rough sketch in Figure 5.8.

2. Zeros: Factoring the expression fory leads to

y = x3(8x2 + 5x− 20).

Using the quadratic formula, we can find the places wherey = 0, i.e. thezerosof
the function. They are
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0

y=f(x)

-2.0 1.5

-10.0

35.0

0

y=f’(x)

-2.0 1.5

-40.0

200.0

0

y=f’’(x)

-2.0 1.5

-800.0

400.0

Figure 5.9.The functiony = f(x) = 8 x5+5 x4−20 x3, and its first and second
derivatives,f ′(x) andf ′′(x)

x = 0, 0, 0, − 5

16
+

1

16

√
665, − 5

16
− 1

16

√
665

In decimal form, these are approximatelyx = 0, 0, 0, 1.3,−1.92

3. First derivative: Calculating the derivative off(x) and then factoring leads to

dy

dx
= f ′(x) = 40 x4 + 20 x3 − 60 x2 = 20x2(2x+ 3)(x− 1)



5.6. Product and Quotient rules for derivatives 81

so that the places where this derivative is zero are:x = 0, 0, 1,−3/2. We expect
critical points at these places.

4. Second derivative:We calculate the second derivative and factor to obtain

d2y

dx2
= f ′′(x) = 160 x3 + 60 x2 − 120 x = 20x(8x2 + 3x− 6)

Thus, we can find places where the second derivative is zero. This occurs at

x = 0, − 3

16
+

1

16

√
201, − 3

16
− 1

16

√
201

The values of these roots can be approximated by:x = 0, 0.69,−1.07

5. Classifying the critical points: To identify the types of critical points, we can use
the second derivative test, i.e. determine the sign of the second derivative at each of
the critical points.

At x = 0 we see thatf ′′(0) = 0 so the test is inconclusive. Atx = 1, we have
f ′′(1) = 20(8 + 3 − 6) > 0 implying that this is a local minimum. Atx = −3/2
we havef ′′(−1.5) = −225 < 0 so this is a local maximum. In fact we find that the
value of the function atx = −1.5 is y = f(−1.5) = 32.0625, whereas atx = 1
f(1) = −7.

The table below summarizes what we have found, and what we concluded. Each of
the values ofx across its top row has some significance in terms of the behaviour of the
function.

x = −1.92 −1.5 −1.07 0 0.69 1 1.3
f(x) = 0 32.0 0 −7 0
f ′(x) = 0 0 0
f ′′(x) = < 0 0 0 0 > 0

zero max inflection inflection min zero

We can now sketch the shape of the function, and its first and second derivatives in
Figure 5.9.

5.6 Product and Quotient rules for derivatives
So far, using a single “rule” for differentiation, the powerrule, together with properties of
the derivative such as additivity and constant multiplication (described in Section 4.2), we
were able to calculate derivatives of polynomials. here we state without proof, two other
rules of differentiation that will prove to be useful in due time.
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The product rule: If f(x) andg(x) are two functions, each differentiable in the domain
of interest, then

d[f(x)g(x)]

dx
=

df(x)

dx
g(x) +

dg(x)

dx
f(x).

Another notation for this rule is

[f(x)g(x)]′ = f ′(x)g(x) + g′(x)f(x).

Example 5.6 Find the derivative of the product of the two functionsf(x) = x andg(x) =
1 + x.

Solution: Using the product rule leads to

d[f(x)g(x)]

dx
=

d[x(1 + x)]

dx
=

d[x]

dx
·(1+x)+

d[(1 + x)]

dx
·x = 1 ·(1+x)+1 ·x = 2x+1.

(This can be easily checked by noting thatf(x)g(x) = x(1+x) = x+x2, whose derivative
agrees with the above.)

The quotient rule: If f(x) andg(x) are two functions, each differentiable in the domain
of interest, then

d

dx

[

f(x)

g(x)

]

=
df(x)
dx g(x)− dg(x)

dx f(x)

[g(x)]2
.

We can also write this in the form
[

f(x)

g(x)

]′
=

f ′(x)g(x) − g′(x)f(x)

[g(x)]2
.

Example 5.7 Find the derivative of the functiony = ax−n = a/xn wherea is a constant
andn is a positive integer.

Solution: We can rewrite this as the quotient of the two functionsf(x) = a andg(x) = xn.
Theny = f(x)/g(x) so, using the quotient rule leads to the derivative

dy

dx
=

f ′(x)g(x) − g′(x)f(x)

[g(x)]2
=

0 · xn − (nxn−1) · a
(xn)2

=
−anxn−1

x2n

After algebraic simplification, we obtaindy/dx = a(−n)xn−1−2n = a(−n)x−n−1. This
is an interesting result:The power rule of differentiation holds for negative integer
powers.
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5.7 Global maxima and minima: behaviour at the
endpoints of an interval

Global (absolute) maxima and minima:

A global (or absolute) maximum of a functiony = f(x) over some interval is the largest
value that the function attains on that interval. Similarlya global (or absolute) minimum is
the smallest value.

Comment: If the function is defined on a closed interval, we must check both the
local maxima and minima as well as the endpoints of the interval to determine where the
global maxima and minima occur.

Example 5.8 Consider the functiony = f(x) = 2
x + x2 0.1 < x < 4. Find the largest

and smallest values that this function takes over the given interval.

Solution: We first compute the derivatives:

f ′(x) = −2
1

x2
+ 2x,

f ′′(x) = 4
1

x3
+ 2.

We now determine where critical pointsf ′(x) = 0 occur:

−2
1

x2
+ 2x = 0.

Simplifying, we find−2 1
x2 = 2x, sox3 = 1 and the critical point is atx = 1. Observe that

the second derivative at this point is

f ′′(1) = 4
1

13
+ 2 = 6 > 0,

so thatx = 1 is a local minimum.
We now calculate the value of the function at the endpointsx = 0.1 andx = 4

as well as at the critical pointx = 1 to determine where global and local minima and/or
maxima occur:

f(0.1) = 20.01 f(1) = 3 f(4) = 16.5
global maximum global minimum

We see that the global minimum occurs atx = 1. There are no local maxima. The
global maximum occurs at the left endpoint.

5.8 For further study: Automatic landing system
We now discuss a practical example that uses many of the ideasso far. Our goal is to design
an automatic landing system for an airplane.

We would like to find a polynomial of smallest degree that would describe the trajec-
tory of an airplane as it makes its final approach to a landing site. We will assume that the
landing trajectory starts when the plane is at a distancex0 from the site where it touches
down (atx = 0) and that it has been flying at a level (horizontal) directionup to that point.
(See Figure 5.10.) We also want to make sure that the landing is as smooth as possible!
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xo0

h

Figure 5.10.The trajectory of a plane landing

5.8.1 Solution:

Letx stand for the distance of the plane from its touch down site atany point in its landing
maneuver. A polynomial is a function of the form

y = p(x) = Axn +Bxn−1 + . . . .

“Finding a polynomial” is the same as determining the coefficients of the various powers.
To do so, we will make following observations:

1. The plane it at heighth when it is at positionx0. Thus

p(x0) = h.

2. The plane is moving horizontally before it starts to descend. This means that, pre-
cisely at the pointx0, at which the descent starts, the tangent line to the curve is
horizontal. The derivative ofp(x) is zero atx0:

p′(x0) = 0.

3. The plane is supposed to be on the ground by the time it gets to x = 0. Thus

p(0) = 0.

4. If the plane lands at an angle to the ground, we’d have a bumpy and dangerous
landing. The nose of the plane might get damaged too! To prevent this, we want the
plane to be moving horizontally on the final part of its approach. Thus atx = 0 we
want

p′(0) = 0.

The above observations have resulted in four conditions that the polynomial is to
satisfy. The polynomial of smallest degree in which we can select four coefficients is:

p(x) = ax3 + bx2 + cx+ d.
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Below, we show how to solve for each of these coefficients in terms of the heighth and the
locationx0 at which descent starts. (Note: if we use a polynomial of higher degree, our
four conditions would not suffice to completely determine all the coefficients. Since we are
asked to find the polynomial of least degree, we shall settle on this cubic polynomial.)

We will need to use the fact that the derivative of this polynomial is

p′(x) = 3ax2 + 2bx+ c.

From the above conditions we get:

1. p(x0) = h. Thus
p(x0) = ax3

0 + bx2
0 + cx0 + d = h.

2. p′(x0) = 0. Thus
p′(x0) = 3ax2

0 + 2bx0 + c = 0.

3. p(0) = 0. Thus
p(0) = a · 03 + b · 02 + c · 0 + d = 0.

All the terms disappear but one, from which we conclude thatd = 0.

4. p′(0) = 0. Thus
p′(0) = 3a · 02 + 2b · 0 + c = 0.

Again, all terms but one disappear, leavingc = 0.

Using the fact thatc, d = 0, and returning to the first two equations, we are left with
two equations and two unknowns:

ax3
0 + bx2

0 = h,

3ax2
0 + 2bx0 = 0

(Remember that here we are trying to find the values of the unknown coefficientsa, b, and
the quantitiesx0 andh are known fixed constants that represent the starting point of the
plane as it initiates landing procedures.)

Solving fora andb we get, from the second equation:

3ax2
0 = −2bx0, a = − 2b

3x0
.

Plugging into the first we arrive at:

− 2b

3x0
x3
0 + bx2

0 = h

−2b

3
x2
0 + bx2

0 = h

bx2
0

(

−2

3
+ 1

)

= h
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so, after simplification, we get

b =
3h

x2
0

, a = − 2b

3x0
= −2h

x3
0

.

Thus, we have arrived at the desired result:

p(x) =

(

−2h

x3
0

)

x3 +

(

3h

x2
0

)

x2.

(The expression looks cumbersome, but we remember that the terms in brackets are actually
constants.)

To illustrate how this would work in a specific example, suppose that the plane starts
its descent 20 km away from the airport at a height of 1 km. Thenx0 = 20, h = 1, so

b =
3

202
= 0.0075, a = − 2

203
= −0.00025.

In this case, the polynomial that describes the landing trajectory would be:

p(x) = −0.00025x3 + 0.0075x2
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Exercises
5.1. A zero of a function is a place wheref(x) = 0.

(a) Find the zeros, local maxima, and minima of the polynomial y = f(x) =
x3 − 3x

(b) Find the local minima and maxima of the polynomialy = f(x) = (2/3)x3 −
3x2 + 4x.

(c) A point of inflection is a point at which the second derivative changes sign.
Determine whether each of the polynomials given in parts (a)and (b) have an
inflection point.

5.2. Find the absolute maximum and minimum values on the given interval:

(a) y = 2x2 on−3 ≤ x ≤ 3

(b) y = (x − 5)2 on0 ≤ x ≤ 6

(c) y = x2 − x− 6 on1 ≤ x ≤ 3

(d) y =
1

x
+ x on−4 ≤ x ≤ −1

2
.

5.3. Sketch the graph ofx4 − x2 + 1 in the range−3 to 3. Find its minimum value.

5.4. Identify all the critical points of the following function.
y = x3 − 27

5.5. Consider the functiong(x) = x4 − 2x3 + x2. Determine locations of critical points
and inflection points.

5.6. Consider the polynomialy = x3 + 3x2 + ax + 1. Show that whena > 3 this
polynomial has no critical points.

5.7. Find the values ofa, b, andc if the parabolay = ax2 + bx+ c is tangent to the line
y = −2x+ 3 at (2,−1) and has a critical point whenx = 3.

5.8. The position of a particle is given by the functiony = f(t) = t3 + 3t2.

(a) Find the velocity and the acceleration of the particle.

(b) A second particle has position given by the functiony = g(t) = at4 + t3

wherea is some constant anda > 0. At what time(s) are the particles in the
same position?

(c) At what times do the particles have the same velocity?

(d) When do the particles have the same acceleration?

5.9. Double Wells and Physics:In physics, a function such as

f(x) = x4 − 2x2

is often called adouble well potential. Physicists like to think of this as a “land-
scape” with hills and valleys. They imagine a ball rolling along such a landscape:
with friction, the ball eventually comes to rest at the bottom of one of the valleys
in this potential. Sketch a picture of this landscape and useinformation about the
derivative of this function to predict where the ball might be found, i.e. where the
valley bottoms are located.
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5.10. A ball is thrown from a tower of heighth0. The height of the ball at timet is

h(t) = h0 + v0t− (1/2)gt2

whereh0, v0, g are positive constants.

(a) When does the ball reach its highest point?

(b) How high is it at that point?

(c) What is the instantaneous velocity of the ball at its highest point ?

5.11. (From Final Exam, Math 100 Dec 1996) Find the first and second derivatives of the
function

y = f(x) =
x3

1− x2
.

Use information about the derivatives to determine any local maxima and minima,
regions where the curve is concave up or down, and any inflection points.

5.12. Find all the critical points of the function

y = f(x) = 2x3 + 3ax2 − 12a2x+ 1

and determine what kind of critical point each one is. Your answer should be given
in terms of the constanta, and you may assume thata > 0.

5.13. (From Final Exam Dec 1995) The functionf(x) is given by

y = f(x) = x5 − 10kx4 + 25k2x3

wherek is a positive constant.

(a) Find all the intervals on whichf is either increasing or decreasing. Determine
all local maxima and minima.

(b) Determine intervals on which the graph is either concaveup or concave down.
What are the inflection points off(x) ?

5.14. Muscle shortening: In 1938 Av Hill proposed a mathematical model for the rate of
shortening of a muscle,v, (in cm/sec) when it is working against a loadp (in gms).
His so called force-velocity curve is given by the relationship

(p+ a)v = b(p0 − p)

wherea, b, p0 are positive constants.

(a) Sketch the shortening velocity versus the load, i.e.,v as a function ofp. (Note:
the best way to do this is to find the intercepts of the two axes,i.e. find the
value ofv corresponding top = 0 and vice versa.)

(b) Find the rate of change of the shortening velocity with respect to the load, i.e.
calculatedv/dp.

(c) What is the largest load for which the muscle will contract? (Hint: A contract-
ing muscle has a positive shortening velocity, whereas a muscle with a very
heavy load will stretch, rather than contract, i.e. will have a negative value of
v.)



Exercises 89

5.15. Reaction kinetics: Chemists often describe the rate of a saturating chemical reac-
tion by using simplified expressions. Two examples of such expressions are:

Michaelis-Menten kinetics: Rm(c) =
Kc

kn + c
, Sigmoidal kinetics: Rs(c) =

Kc2

k2n + c2

wherec is the concentration of the reactant,K > 0, kn > 0 are constants.R(c)
is the speed of the reaction (Observe that the speed of the reaction depends on the
concentration of the reactant).

(a) Sketch the two curves. To do this, you should analyze the behaviour forc = 0,
for smallc, and for very largec. You will find a horizontal asymptote in both
cases. We refer to that asymptote as the “maximal reaction speed”. What is the
“maximal reaction speed” for each of the functionsRm, Rs ? (Note: express
your answer in terms of the constantsK, kn.)

(b) Show that the valuec = kn leads to a half-maximal reaction speed.
For the questions below, you may assume thatK = 1 andkn = 1.

(c) Sketch the curvesRm(c), Rs(c).

(d) Show that sigmoidal kinetics, but not Michaelis Menten kinetics has an inflec-
tion point.

(e) Explain how these curves would change ifK is increased; ifkn is increased.

5.16. Checking the endpoints !:Find the absolute maximum and minimum values of the
function

f(x) = x2 +
1

x2

on the interval[ 12 , 2]. Be sure to verify if any critical points are maxima or minima
and to check the endpoints of the interval.

5.17. Find the first derivative for each of the following functions.

(a) f(x) = (2x2 − 3x)(6x+ 5)

(b) f(x) = (x3 + 1)(1− 3x)

(c) g(x) = (x − 8)(x2 + 1)(x+ 2)

(d) f(x) = (x − 1)(x2 + x+ 1)

(e) f(x) =
x2 − 9

x2 + 9

(f) f(x) =
2− x3

1− 3x

(g) f(b) =
b3

2− b
2
3

(h) f(m) =
m2

3m− 1
− (m− 2)(2m− 1)

(i) f(x) =
(x2 + 1)(x2 − 2)

3x+ 2
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Chapter 6

Optimization

In this chapter, we collect a variety of problems in which theideas developed in earlier
material are put to use. In particular, we will use calculus to find local (and global) maxima,
and minima so as to get the best (optimal) values of some desirable quantity. Setting up
these problems, from first verbal description, to clear cut mathematical formulation is the
main challenge we will face. Often, we will use geometric ideas to express relationships
between variables leading to our solution.

6.1 Density dependent (logistic) growth in a
population

Biologists often notice that the growth rate of a populationdepends not only on the size
of the population, but also on how crowded it is. When individuals have to compete for
resources, nesting sites, mates, or food, they cannot reproduce as quickly, leading to a
decline in the rate of growth of the population.

The rule that governs this growth, calledlogistic growth assumes that the growth
rateG depends on the density of the populationN as follows:

G(N) = rN

(

K −N

K

)

wherer > 0 is a constant, called theintrinsic growth rate andK > 0 is a constant called
the carrying capacity of the environment for the population. We will soon see that the
largest population that would grow at all isN = K. We show a sketch of this function in
Figure 6.1. But how would we arrive at such a sketch?

Example 6.1 Answer the following questions:

• Find the population density that leads to the maximal growthrate.

• What is the maximal growth rate?

• For what population size is the growth rate zero?

91
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Solution:

G(N) = rN

(

K −N

K

)

= rN − r

K
N2

To find the maximal growth rate we differentiateG with respect to the variableN ,
remembering thatK, r are here treated as constants. We get

G′(N) = r − 2
r

K
N.

SettingG′(N) = 0 and solving forN leads to

r = 2
r

K
N

so

N =
K

2
.

By taking a second derivative we find that

G′′(N) = −2
r

K

which is negative for all population sizes. This tells us that the functionG(N) is concave
down, and thatN = K/2 is a local maximum. Thus the density leading to largest growth
rate is one half of the carrying capacity.

The growth rate at this density is

G(
K

2
) = r

(

K

2

)

(

K − K
2

K

)

= r
K

2

1

2
=

rK

4
.

To find the population size at which the growth rate is zero, wesetG = 0 and solve
for N :

G(N) = rN

(

K −N

K

)

= 0.

The two solutions areN = 0 (which is not very interesting, since when there is no popula-
tion there is no growth) andN = K.

We will have many more things to say about this type of densitydependent growth a
little later on in this course.

6.2 Cell size and shape
Consider a spherical cell that is absorbing nutrients at a rate proportional to its surface area
and consuming them at a rate proportional to its volume. Determine the size of the cell for
which the net rate of increase of nutrients is largest.
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N
K/2 K0

G

Figure 6.1. The growth rateG depends on population sizeN as shown here for
logistic growth.

Solution:

We have seen in a previous chapter that the absorption (A and consumption (C) rates for
this simple spherical cell are:

A = k1S = 4k1πr
2,

C = k2V =
4

3
πk2r

3,

wherek1, k2 > 0 are constants andr is the radius of the cell.
The net rate of increase of nutrients is just the rate of absorption minus the rate of con-
sumption, and it follows that it depends on the size of the cell:

N = A− C = 4k1πr
2 − 4

3
πk2r

3.

To find the size for greatest net nutrient increase rate, we find critical points of this function:

N ′(r) = 8k1πr − 4k2πr
2.

Critical points occur whenN ′(r) = 0, i.e.

N ′(r) = 8k1πr − 4k2πr
2 = 0.

Simplifying leads to
4πr(2k1 − k2r) = 0.

This is satisfied (trivially) whenr = 0, and also when

r = 2
k1
k2

.

We need to check that this is a local maximum. We obtain the second derivative

N ′′(r) = 8k1π − 8k2πr = 8π(k1 − k2r).

plugging inr = 2k1/k2 we get

N ′′ = 8π(k1 − k2
2k1
k2

) = −8πk1 < 0.

This verifies that we have a local maximum.
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6.3 A cylindrical cell
Not all cells are spherical. Some are skinny cylindrical filaments, or sausage shapes. Some
even grow as helical tubes, but we shall leave such complicated examples aside here. We
will explore how minimization of surface area would determine the overall shape of a
cylindrical cell.

Consider a cell shaped like a cylinder with a circular cross-section. The volume
of the cell will be assumed to be fixed, because the cytoplasm in its interior cannot be
“compressed”. However, suppose that the cell has a “rubbery” membrane that tends to take
on the smallest surface area possible. (In physical language, the elastic energy stored in the
membrane tends to a minimum.) We want to find the proportions of the cylinder (e.g. the
ratio of length to radius) so that the cell has minimal surface area.

Recall the following properties for a cylinder:

2  r  

L

r

L

π

Figure 6.2.Properties of a cylinder

• the volume of a cylinder is the product of its base areaA and its height,h. That is,
V = Ah. For a cylinder with circular cross-section:V = πr2L.

• A cylinder can be “cut and unrolled” into a rectangle. One side of the rectangle has
lengthL and the other has length that made the perimeter of the circle, 2πr. The
surface area of the unrolled rectangle is thenSside= 2πrL. See Figure 6.2

• If the “ends” of the cylinder are two flat circular caps, then the sum of the areas of
these two ends isSends= 2πr2.

• The total surface area of the cylinder with flat ends is then

S = 2πrL+ 2πr2.

We would expect that in a cell surrounded by a rubbery membrane, the end caps
would not really be flat. However for simplicity, we will hereneglect this issue and assume
that the ends are flat and circular. Then, mathematically, our problem can be restated as
follows

Example 6.2 Minimize the surface areaS = 2πrL + 2πr2 given that the volumeV =
πr2L = K is constant.
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Solution: The shape of the cell depends on both the lengthL, and the radiusr of the
cylinder. However, these are not independent . They are related to one another because the
volume of the cell has to be constant. This is an example of an optimization problem witha
constraint, i.e. a condition that has to be satisfied. The constraint will allow us to eliminate
one of the variables, as we show below.

The constraint is “the volume is fixed”, i.e.,

V = πr2L = K

whereK > 0 is a constant that represents the volume of the given cell. Wecan use this to
express one variable in terms of the other. For example, we can solve forL.

L =
K

πr2
. (6.1)

The function to minimize is
S = 2πrL + 2πr2.

We eliminateL by using the previous relationship, (6.1) to obtainS as a function ofr
alone:

S(r) = 2πr
K

πr2
+ 2πr2

Simplification leads to

S(r) = 2
K

r
+ 2πr2.

observe thatS is now clearly a function of the single variable,r, (K andπ are constants).
In order to find local minima, we will look for critical pointsof the functionS(r).

We compute the relevant derivatives:

S′(r) = −2
K

r2
+ 4πr,

The second derivative will also be useful.

S′′(r) = 4
K

r3
+ 4π.

From the last calculation, we observe that the second derivative is always positive since
K, r > 0, so the functionS(r) is concave up. Any critical point we find thus will be a
minimum automatically.

To find a critical point, setS′(r) = 0:

S′(r) = −2
K

r2
+ 4πr = 0.

Solving forr:

2
K

r2
= 4πr, r3 =

K

2π
so

r =

(

K

2π

)1/3

.
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We also find the length of this cell using Eqn. 6.1.

L =

(

4K

π

)1/3

.

This comes about from a manipulation of powers:

L =
K

πr2
= Kπ−1

(

K

2π

)−2/3

= K1−2/3π−1+2/322/3 = K1/3 π−1/3 41/3.

We can finally characterize the shape of the cell. One way to dothis is to specify the ratio of
its radius to its length. Based on our previous results, we can compute that ratio as follows:

L

r
=

(4K/π)1/3

(K/2π)1/3
= 81/3 = 2

Thus, the length of this cylinder is the same as its diameter (which is twice the radius). This
means that in a cylindrical cell with a rubbery membrane, we find a short and fat shape. In
order for the cell to grow as a long skinny cylinder, it has to have some structural support
that prevents the surface area from contracting to the smallest possible area. An example of
this type occurs in fungal cells. These grow as long branchedfilaments. The outer cell wall
contains structural components that prevent the cell surface from contracting elastically.

I would like to thank Prof Nima Geffen (Tel Aviv University) with providing the inspi-
ration for this example.

6.4 Geometric optimization
We consider several other examples of optimization where volumes, lengths, and/or surface
areas are considered.

Example 6.3 (Wrapping a rectangular box:) A box with square base and arbitrary height
has string tied around each of its perimeter. The total length of string so used is 10 inches.
Find the dimensions of the box with largest surface area. (That is, figure out what is the
largest amount of wrapping paper needed to wrap this box.)

Solution: The total length of string shown in Figure 6.3, consisting ofthree perimeters of
the box is as follows:

L = 2(x+ x) + 2(x+ y) + 2(x+ y) = 8x+ 4y = 10

This total length is to be kept constant, so the above equation is the constraint in this
problem. This means thatx andy are related to one another. We will use this fact to
eliminate one of them from the formula for surface area.

The surface area of the box is

S = 4(xy) + 2x2
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x
x

y

Figure 6.3.A rectangular box is to be wrapped with paper

since there are two faces (top and bottom) which are squares (areax2) and four rectangular
faces with areaxy. At the moment, the total area is expressed in terms of both variables.

Suppose se eliminatey by rewriting the constraint in the form:

y =
5

2
− 2x.

Then

S(x) = 4x

(

5

2
− 2x

)

+ 2x2 = 10x− 8x2 + 2x2 = 10x− 6x2.

We show the shape of this function in Figure 6.4. Note thatS(x) = 0 at x = 0 and at
10 − 6x = 0 which occurs atx = 5/3. Now thatS is expressed as a function of one

S(x)

x
0                5/6         5/3

Figure 6.4.Figure for Example 6.3.

variable, we can find its critical points by settingS′(x) = 0, i.e., solving

S′(x) = 10− 12x = 0

for x: We getx = 10/12 = 5/6. To find the corresponding value ofy we can substitute
our result back into the constraint. We get

y =
5

2
− 2

(

5

6

)

=
15− 10

6
=

5

6
.
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Thus the dimensions of the box of interest are all the same, i.e. it is a cube with side length
5/6.

We can verify that
S′′(x) = −12 < 0,

(indeed this holds for allx), which means thatx = 5/6 is a local maximum.
Further, we can find that

S = 4

(

5

6

)(

5

6

)

+ 2

(

5

6

)2

=
25

6

square inches. Figure 6.4 shows how the surface area varies as the dimensionx of the box
is varied.

6.5 Checking endpoints
In some cases, the optimal value of a function will not occur at any of its local maxima, but
rather at one of the endpoints of an interval.

The following example illustrates this point:

Example 6.4 (maximal perimeter) The area of a rectangle having sides of lengthx and
y is A = xy. Suppose that that the variablex is only allowed to take values in the range
0.5 ≤ x ≤ 4 Find the dimensions of the rectangle having largest perimeter whose area is
fixed. (The perimeter of a rectangle is the total length of itsouter edge.)

Solution: The perimeter of a rectangle whose sides are lengthx, y is

P = x+ y + x+ y = 2x+ 2y.

We are asked to maximize this quantity, wherexy = 1 is our constraint.
Using the constraint, we can solve fory and eliminate it:

y =
1

x
.

Then

P (x) = 2x+
2

x
.

To find critical points, we set

P ′(x) = 2

(

1− 1

x2

)

= 0.

Thus,x2 = 1 or x = ±1. We reject the negative root as it is irrelevant for the (positive)
side length of the rectangle. Checking if this is a maximum wefind that

P ′′(x) =
4

x3
> 0

so we have found a localminimum! This is clearly not the maximum we were looking for.
We must thus check the endpoints of the interval for the maximal value of the func-

tion. We find thatP (4) = 8.5 andP (0.5) = 5. The largest perimeter for the rectangle will
thus occur whenx = 4, indeed at the endpoint of the domain, as shown in Figure 6.5.
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Figure 6.5. In Example 6.4, the critical point we found is a local minimum. To
maximize the perimeter of the rectangle, we must consider the end points of the interval
0.5 ≤ x ≤ 4.

6.6 Kepler’s wedding
In 1613, Kepler set out to purchase a few barrels of wine for his wedding party. The
merchant selling the wine had an interesting way of computing the cost of the wine: He
would plunge a measuring rod through a hole in the barrel, as shown in Figure 6.6. The
price was proportional to the length of the “wet” part of rod.We will refer to that length as
L in what follows.

Kepler noticed that barrels come in different shapes. Some are tall and skinny, while
others are squat and fat. He conjectured that some shapes would contain larger volumes
for a given length of the measuring rod, i.e. would contain more wine for the same price.
Knowing mathematics, he set out to determine which barrel shape would be the best bargain
for his wedding.

Figure 6.6. Barrels come in various shapes. But the cost of a barrel of wine was
determined by the length of the wet portion of the rod inserted into the barrel diagonally.
Some barrels contain larger volume, but have identical cost.

Suppose we ask what shape of barrel will contain the most winefor a given cost. This
is equivalent to askingwhich cylinder has the largest volume for a fixed (constant) length
L. Below, we show how this optimization problem can be solved.
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Solution

To simplify the problem, we will assume that the barrel is a simple cylinder, as shown in
Figure 6.7. We also assume that the tap-hole (normally covered to avoid leaks) is half-way
up the height of the barrel. We will definer as the radius andh as the height of the barrel.
These two variables uniquely determine the shape as well as the volume of the barrel. We’ll
also assume that the barrel is full up to the top with delicious wine, so that the volume of
the cylinder is the same as the volume of wine.

The volume of a cylinder is

V = base area× height.

The base is a circle of areaA = πr2, so that the volume of the barrel is:

V = πr2h.

The rod used to “measure” the amount of wine (and hence determine the cost of the barrel)
is shown as the diagonal of lengthL in Figure 6.7. Because the cylinder walls are perpen-
dicular to its base, the lengthL is the hypotenuse of a right-angle triangle whose other sides
have lengths2r andh/2. (This follows from the assumption that the tap hole is half-way
up the side.) Thus, by the Pythagorean theorem,

L2 = (2r)2 +

(

h

2

)2

.

The problem can be restated: maximizeV subject to a fixed value ofL. The fact
thatL is fixed means that we have a constraint. That constraint willbe used to reduce the
number of variables in the problem.

L

h

h/2

2 r

Figure 6.7. Here we simplify and idealize the problem to consider a cylindrical
barrel with diameter2r and heighth. We assumed that the tap-hole is at heighth/2. The
lengthL denotes the “wet” portion of the merchant’s rod, used to determine the cost of this
barrel of wine. We observe that the dotted lines form a Pythagorian triangle.

The function to be maximized is:

V = πr2h.
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After expanding the squares, the constraint is:

L2 = 4r2 +
h2

4
.

We can use the constraint to eliminate one variable; in this case the simplest way is to
replacer2 using:

r2 =
1

4

(

L2 − h2

4

)

.

Then

V = πr2h =
π

4

(

L2 − h2

4

)

h =
π

4

(

L2h− 1

4
h3

)

.

We now have a function of one variable, namely

V (h) =
π

4

(

L2h− 1

4
h3

)

.

For this function, the variableh could sensibly take on any value in the range0 ≤ h ≤ 2L.
Outside this range, the volume is negative, and at the two endpoints the volume is zero.
Thus, we anticipate that somewhere inside this range of values we should find the desired
optimum.

To find any critical points of the functionV (h), we calculate the derivativeV ′(h)
and set it to zero:

V ′(h) =
π

4

(

L2 − 3

4
h2

)

= 0

This implies thatL2 − 3
4h

2 = 0, i.e.

3h2 = 4L2,

h2 = 4
L2

3
,

h = 2
L√
3
.

Now we must check whether this solution is a localmaximum(or a minimum).
The second derivative is:

V ′′(h) =
π

4

(

0− 2 · 3
4
h

)

= −3

8
πh < 0.

From this we see thatV ′′(h) < 0 for any positive value ofh. The the functionV (h) is
concave down whenh > 0. This verifies that the solution above is a local maximum.
According to the discussion of the relevant range of values of h, this local maximum is also
the optimal solution we need. i.e. there are no larger valuesat endpoints of the interval
0 ≤ h ≤ 2L.
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To finish the problem, we can find the radius of the barrel having this height by
plugging this result forh into the constraint equation, i.e. using

r2 =
1

4

(

L2 − h2

4

)

=
1

4

(

L2 − L2

3

)

=
1

4

(

2

3
L2

)

.

After simplifying and rewriting, we get

r =
1√
3
√
2
L.

The shape of the wine barrel with largest volume for the givenprice can now be specified.
One way to do this is to specify the ratio of height to radius. (Tall skinny barrels have a
high ratioh/r and squat fat ones have a low ratio.) By the above reasoning, the ratio of
h/r for the optimal barrel is

h

r
=

2 L√
3

1√
3
√
2
L

= 2
√
2

The height of the barrel should be2
√
2 ≈ 3 times the radius in these most economical wine

barrels.

6.7 Additional examples: A cylinder in a sphere

Figure 6.8.The largest cylinder that fits inside a sphere of radiusR

Example 6.5 (Fitting a cylinder inside a sphere)Find the cylinder of maximal volume
that would fit inside a sphere of radiusR. See Figure 6.8.

Solution:
We label Figure 6.9 and define the following:

h = height of cylinder,

r = radius of cylinder,

R = radius of sphere.



6.8. For further study: Optimal foraging 103

h/2

r

R R h/2

r

Figure 6.9.Definition of variables and geometry to consider

ThenR is assumed a given fixed positive constant, andr andh are dimensions of the
cylinder to be determined.

From Figure 6.9 we see that the cylinder will fit if the top and bottom rims touch the
circle. When this occurs, the dark line in Figure 6.9 will be aradius of the sphere, and so
would have lengthR.

The connection between the variables (which will be our constraint) is given from
Pythagoras’ theorem by:

R2 = r2 +

(

h

2

)2

.

We would like to maximize the volume of the cylinder,

V = πr2h

subject to the above constraint.
Eliminatingr2 leads to

V (h) = π(R2 − h2

4
)h.

We see that the problem is very similar to our previous discussion. The reader can show by
working out the steps that

V ′(h) = 0

occurs at the critical point

h =
2√
3
R

and that this is a local maximum.

6.8 For further study: Optimal foraging
Biological background

Animals need to spend a considerable part of their time searching for food. There is a
limited time available for this activity, since when the sungoes down, risk of becoming
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food (to a predator) increases, and chances of finding more food items decreases. There are
also limited resources, so those who are most successful at finding and utilizing these over
the available time will likely survive, produce offspring,and have an adaptive advantage.
It is argued by biologists that evolution tends to optimize animal behaviour by selecting
in favour of those that are faster, more efficient, stronger,or more fit. In this section we
investigate how foraging behaviour is optimized.

nest

travel time  

   patchesn

t o

Figure 6.10.A bird travels daily to forage in food patches. We want to determine
how long it should stay in the patch to optimize its efficiency.

We will assume that animals try to maximize the efficiency of collecting food. Ac-
cording to Charnov (1976), the efficiency of foraging is defined by the following ratio:

R(t) =
Total energy gained

total time spent

i.e.,R, is energy gain per unit time. This quantity will depend on the amount of timet that
is spent foraging during a day. The question we ask is whetherthere is an optimal foraging
time (i.e. a value of the time,t), that maximizesR(t). As we show below, whether or
not an optimum exists depends greatly on how hard it is to extract food from a food patch.
When an optimal foraging time exists, we will see that it alsodepends on how much time
is wasted in transit to such foraging sites.

Notation for our model

The following notation will be useful in discussing this problem:

• t0 = travel time between nest and food patches. (This is considered as time that is
unavoidably wasted.)

• n = number of patches encountered on average per day,

• t = residence time in patch (i.e. how long to spend foraging in one patch), also called
foraging time,
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• f(t) = energy gained by foraging in a patch for timet,

• R(t) = efficiency of foraging, i.e. total energy gained per unit time over the day.

Energy gain in food patches

In some patches, it is easy to quickly load up on resources: this would be true if it is easy
to find the nectar (or hunt the prey) or spot the berries. In other places, it may take some
effort to locate the food items or process them so they can be eaten. This is reflected by
a gain functionf(t), that may have one of several shapes. Some examples are shownin
Figure 6.11.

t t t

t t t

f(t) f(t) f(t)

f(t) f(t) f(t)

(1)                               (2)                              (3)

 (4)                                   (5)                              (6)

Figure 6.11.Examples of various total energy gainf(t) for a given foraging time
t. The shapes of these functions determine how hard or easy it is to extract food from a food
patch. See text for details about what these functions implyabout the given food patch.

In the examples shown in Figure 6.11 we see the following assortment of cases:

1. The energy gain is linearly proportional to time spent in the patch. In this case it
appears that the patch has so much food in it that it is never depleted. It would make
sense to stay in such a patch as long as possible, we might suspect.

2. Here the energy gain is independent of time spent. The animal gets the full quantity
as soon as it gets to the patch. (This is not very realistic from a biological perspec-
tive.)

3. In this case, the food is gradually depleted in a given patch, (the total gain levels off
to some constant level ast increases). There is diminishing return for staying longer.
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Here, we may expect to have some choice to make as to when to leave and look for
food elsewhere.

4. In this example, the rewards for staying longer actually multiply: the net energy gain
has an increasing slope (or, otherwise stated,f ′′(t) > 0). We will see that in this
case, there is no optimal residence time: some other strategy, such as staying in just
one patch would be optimal.

5. It takes some time to begin to gain energy but later on the gain increases rapidly.
Eventually, the patch is depleted.

6. Here we have the case where staying too long in a patch is actually disadvantageous
in that it leads to a net loss of energy. This might happen if the animal spends more
energy looking for food that is already depleted. Here it is clear that leaving the patch
early enough is the best strategy.

The optimal residence time

We now turn to the task of finding the optimalresidence time, i.e. time to spend in the
patch. We will make a simplifying assumption that all the patches are identical, making it
equally easy to utilize each one. Now suppose on average, thetime spent in a patch ist.
Then, the total energy gained during the day, after visitingn patches isnf(t). It takes a
time t0 to get from the nest to the food, and a timet in each ofn patches to feed, so that
the total time spent ist0 + nt. Thus

R(t) =
nf(t)

t0 + nt
.

We wish to maximize this function with respect to the residence time, i.e. find the
time t such thatR(t) is as large as possible.

Differentiating, we find the first derivative,

R′(t) =
nf ′(t)(t0 + nt)− n2f(t)

(t0 + nt)2
=

G(t)

H(t)

(For our own convenience, we have defined two functions that represent the numerator and
the denominator ofR′(t).)

G(t) = nf ′(t)(t0 + nt)− n2f(t),

H(t) = (t0 + nt)2.

We will find a later calculation easier with this notation.
To maximizeR(t) we set

R′(t) = 0

which can occur only when the numerator of the above equationis zero, i.e.

G(t) = 0.
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This means that

nf ′(t)(t0 + nt)− n2f(t) = 0

so that, after simplifying algebraically,

f ′(t) =
nf(t)

t0 + nt
,

f ′(t) =
f(t)

(t0/n) + t
. (6.2)

A geometric argument

In practice, we would need to specify a function forf(t) in order to solve for the optimal
time t. However, we can also solve this problem using a geometric argument. The last
equation equates two quantities that can be interpreted as slopes. On the right is the slope
of a tangent line, On the left is the slope (rise over run) of some right triangle whose height
is f(t) and whose base length is(t0/n) + t. In Figure 6.12, we show each slope on its
own: In the right panel,f ′(t) is the slope of the tangent line to the graph off(t). In the
central panel, we have constructed some triangle with the property that its hypotenuse has
slopef(t)/[(t0/n) + t]. On the left panel we have superimposed both, selecting a value
of t for which the slope of the triangle is the same as the slope of the tangent line. Notice
that in order to fit the triangle on the same diagram, we had to place its tip at the point
−(t0/n) along the horizontal axis. When these slopes coincide, it means that we have
satisfied equation (6.2), and we have found the desired timet for optimal foraging.

We can use this observation in general to come up with the following steps to solve
an optimal foraging problem:

1. A biologist conducts some field experiments to determine the mean number of patches
that the organism can visit daily,n, the mean travel time from food to nest,t0, and
the shape of the energy gain functionf(t). (This may require capturing the animal
and examining the contents of its stomach. . . an unappetizing thought; we will leave
this to task to our brave biological colleagues.)

2. We draw a sketch off(t) as shown in rightmost panel of Figure 6.12 and extend the
t axis in the negative direction. At the point−t0/n we draw a line that just touches
the curvef(t) at some point (i.e. a tangent line). The slope of this line isf ′(t) for
some value oft.

3. The value oft at the point of tangency is the optimal time to spend in the patch!

The diagram drawn in our geometric solution (right panel in Figure 6.12 is often called a
“rooted tangent”).

We have shown that the point labeledt indeed satisfies the condition that we derived
above forR′(t) = 0, and hence is a critical point.
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00

f(t)

tt   / n   + t 

f(t)
f(t)

f’(t)

t

energy gain energy gain

0t   / n

Figure 6.12.The solution to the optimal foraging problem can be expressed geo-
metrically in the form shown in this figure. The tangent line at the (optimal) timet should
have the same slope as the hypotenuse of the right triangle shown above. The diagram on
the far right is sometimes termed the “rooted tangent” diagram.

Checking the type of critical point

We still need to show that this solution leads to a maximum efficiency, (rather than, say a
minimum or some other critical point). We will do this by examiningR′′(t).

Recall that

R′(t) =
G(t)

H(t)

in terms of the notation used above. Then

R′′(t) =
G′(t)H(t)−G(t)H ′(t)

H2(t)
.

But, according to our remark above, at the patch time of interest (the candidate for optimal
time)

G(t) = 0

so that

R′′(t) =
G′(t)H(t)

H2(t)
=

G′(t)

H(t)
.

Now we substitute the derivative ofG′(t), H(t) into this ratio:

G(t) = nf ′(t)(t0 + nt)− n2f(t)

i.e.
G′(t) = nf“(t)(t0 + nt) + n2f ′(t)− n2f ′(t) = nf ′′(t)(t0 + nt)

We find that

R“(t) =
nf ′′(t)(t0 + nt)

(t0 + nt)2
=

nf ′′(t)

(t0 + nt)
.

The denominator of this expression is always positive, so that the sign ofR′′(t) will be the
same as the sign off ′′(t). But in order to have a maximum efficiency at some residence
time, we needR′′(t) < 0. This tells us that the gain function has to have the propertythat
f ′′(t) < 0, i.e. has to be concave down at the optimal residence time.
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Going back to some of the shapes of the functionf(t) that we discussed in our
examples, we see that only some of these will lead to an optimal solution. In cases (1),
(2), (4) the functionf(t) hasno points of downwards concavity on its graph. This means
that in such cases there will be no local maximum. The optimalefficiency would then be
attained by spending as much time as possible in just one patch, or as little time as possible
in any patch, i.e. it would be attained at the endpoints.

6.8.1 References:

1. Stephens DW, Krebs J R (1986) Foraging Theory, Princeton University Press, Prince-
ton, NJ.

2. Charnov EL (1976) Optimal Foraging: the marginal value theorem; Theor. Pop.
Biol. 9 : 129-136.
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Exercises
6.1. The sum of two positive number is20. Find the numbers

(a) if their product is a maximum.

(b) if the sum of their squares is a minimum.

(c) if the product of the square of one and the cube of the otheris a maximum.

6.2. A tram ride at Disney World departs from its starting place att = 0 and travels
to the end of its route and back. Its distance from the terminal at time t can be
approximately described by the expression

S(t) = 4t3(10− t)

(wheret is in minutes,0 < t < 10, andS is distance in meters.)

(a) Find the velocity as a function of time.

(b) When is the tram moving at the fastest rate?

(c) At what time does it get to the furthest point away from itsstarting position?

(d) Sketch the acceleration, the velocity, and the positionof the tram on the same
set of axes.

6.3. At9A.M., carB is 25 km west of another carA. CarA then travels to the south at
30 km/h and carB travels east at40 km/h. When will they be the closest to each
other and what is this distance?

6.4. A cannonball is shot vertically upwards from the groundwith initial velocity v0 =
15m/sec. It is determined that the height of the ball,y (in meters), as a function of
the time,t (in sec) is given by

y = v0t− 4.9t2

Determine the following:

(a) The time at which the cannonball reaches its highest point,

(b) The velocity and acceleration of the cannonball att = 0.5 s, andt = 1.5 s.

(c) The time at which the cannonball hits the ground.

6.5. (From Final Exam, Math 100, Dec 1997) A closed 3-dimensional box is to be con-
structed in such a way that its volume is 4500 cm3. It is also specified that the length
of the base is 3 times the width of the base. Find the dimensions of the box which
satisfy these conditions and have the minimum possible surface area. Justify your
answer.

6.6. A box with a square base is to be made so that its diagonal has length1. See
Figure 6.13.

(a) What heighty would make the volume maximal?

(b) What is the maximal volume?
[Hint: A box having side lengthsℓ, w, h has diagonal lengthD whereD2 =
ℓ2 + w2 + h2 and volumeV = ℓwh.]
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Figure 6.13.Figure for Problem 6

6.7. Find the minimum distance from a point on the positivex-axis(a, 0) to the parabola
y2 = 8x.

6.8. The largest garden: You are building a fence to completely enclose part of your
backyard for a vegetable garden. You have already purchasedmaterial for a fence
of length 100 ft. What is the largest rectangular area that this fence can enclose?

6.9. “Good Fences make Good Neighbors”:A fence of length 100 ft is to be used to
enclose two gardens. One garden is to have a circular shape, and the other to be
square. Find out how the fence should be cut so that the sum of the areas inside both
gardens is as large as possible.

6.10. A rectangular piece of cardboard with dimension12 cm by24 cm is to be made into
an open box (i.e., no lid) by cutting out squares from the corners and then turning
up the sides. Find the size of the squares that should be cut out if the volume of the
box is to be a maximum.

6.11. Find the shortest path that would take a milk-maid fromher house at(10, 10) to
fetch water at the river located along thex axis and then to the thirsty cow at(3, 5).

6.12. Water and ice: Why does ice float on water? Because the density of ice is lower!
In fact, water is the only common liquid whose maximal density occurs above its
freezing temperature. (This phenomenon favors the survival of aquatic life by pre-
venting ice from forming at the bottoms of lakes.) Accordingto theHandbook of
Chemistry and Physics,a mass of water that occupies one liter at0◦C occupies a
volume (in liters) of

V = −aT 3 + bT 2 − cT + 1

atT ◦C where0 ≤ T ≤ 30 and where the coefficients are

a = 6.79× 10−8, b = 8.51× 10−6, c = 6.42× 10−5.

Find the temperature between0◦C and30◦C at which the density of water is the
greatest. (Hint: maximizing the density is equivalent to minimizing the volume.
Why is this?)

6.13. Drug doses and sensitivity:TheReactionR(x) of a patient to a drug dose of size
x depends on the type of drug. For a certain drug, it was determined that a good
description of the relationship is:

R(x) = Ax2(B − x)
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whereA andB are positive constants. TheSensitivityof the patient’s body to the
drug is defined to beR′(x).

(a) For what value ofx is the reaction a maximum, and what is that maximum
reaction value?

(b) For what value ofx is the sensitivity a maximum? What is the maximum
sensitivity?

6.14. Thermoregulation in a swarm of bees:: In the winter, honeybees sometimes es-
cape the hive and form a tight swarm in a tree, where, by shivering, they can produce
heat and keep the swarm temperature elevated. Heat energy islost through the sur-
face of the swarm at a rate proportional to the surface area (k1S wherek1 > 0 is
a constant). Heat energy is produced inside the swarm at a rate proportional to the
mass of the swarm (which you may take to be a constant times thevolume). We
will assume that the heat production isk2V wherek2 > 0 is constant. Swarms that
are not large enough may lose more heat than they can produce,and then they will
die. The heat depletion rate is the loss rate minus the production rate. Assume that
the swarm is spherical. Find the size of the swarm for which the rate of depletion of
heat energy is greatest.

6.15. A right circular cone is circumscribed about a sphere of radius5. Find the dimension
of this cone if its volume is to be a minimum. (Remark: this is arather challenging
geometric problem.)

6.16. Optimal Reproductive Strategy: Animals that can produce many healthy babies
that survive to the next generation are at an evolutionary advantage over other, com-
peting, species. However, too many young produce a heavy burden on the parents
(who must feed and care for them). If this causes the parents to die, the advantage is
lost. Also, competition of the young with one another for food and parental attention
jeopardizes the survival of these babies. Suppose that the evolutionaryAdvantage
A to the parents of having litter sizex is

A(x) = ax− bx2.

Suppose that theCostC to the parents of having litter sizex is

C(x) = mx+ e.

TheNet Reproductive GainG is defined as

G = A− C.

(a) Explain the expressions forA,C andG.

(b) At what litter size is the advantage,A, greatest?

(c) At what litter size is there least cost to the parents?

(d) At what litter size is the Net Reproductive Gain greatest?.

6.17. Behavioural Ecology:: Social animals that live in groups can spend less time scan-
ning for predators than solitary individuals. However, they do waste time fighting
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with the other group members over the available food. There is some group size
at which the net benefit is greatest because the animals spendleast time on these
unproductive activities, and thus can spend time on feeding, mating, etc.
Assume that for a group of sizex, the fraction of time spent scanning for predators
is

S(x) = A
1

(x+ 1)

and the fraction of time spent fighting with other animals over food is

F (x) = B(x + 1)2

whereA,B are constants. Find the size of the group for which the time wasted on
scanning and fighting is smallest.

6.18. Logistic growth: Consider a fish population whose density (individuals per unit
area) isN . The rate of growthR of this population is found to satisfy

R(N) = rN(1−N/K)

wherer andK are positive constants. This type of growth rate is calledlogistic (or
density dependent) growth.

(a) SketchR and a function ofN .

(b) For what density of fish is the growth rate maximal?

6.19. Logistic growth with harvesting: Consider a fish population of densityN growing
logistically, i.e. with rate of growthR(N) = rN(1 − N/K) wherer andK are
positive constants. The rate of harvesting (i.e. removal) of the population is

h(N) = qEN

whereE, the effort of the fishermen, andq, the catchability of this type of fish, are
positive constants.
At what density of fish does the growth rate exactly balance the harvesting rate ?
(This density is called the maximal sustainable yield: MSY.)

6.20. Conservation of a harvested population:Conservationists insist that the density
of fish should never be allowed to go below a level at which growth rate of the
fish exactly balances with the harvesting rate. (At this level, the harvesting is at its
maximal sustainable yield. If more fish are taken, the population will keep dropping
and the fish will eventually go extinct.) What level of fishingeffort should be used to
lead to the greatest harvest at this maximal sustainable yield? [Remark: you should
first do the previous problem.]
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Chapter 7

The Chain Rule, Related
Rates, and Implicit
Differentiation

7.1 Function composition

x
u

yf g

Figure 7.1.Function composition

Shown in the diagram above is an example of function composition: An independent
variable,x, is used to evaluate a function, and the result,u = f(x) then acts as an input to a
second function,g. The result,y = g(u) = g(f(x)) can be related to the original variable,
and we are interested in understanding how changes in that original variable affect the final
outcome: That is, we want to know howy changes when we changex. The chain rule will
apply to this situation.

7.2 The chain rule
Thechain rule of differentiation helps to calculate the result of this chain of effects. Ba-
sically, this rule states that the change iny with respect tox is a product of two rates of
change: (1) the rate of change ofy with respect to its immediate inputu, and (2) the rate of
change ofu with respect to its input,x.

If y = g(u) andu = f(x) are both differentiable functions (meaning that their
derivatives exist everywhere), and we consider the composite functiony = g(f(x)) then
the chain rule says that

dy

dx
=

dy

du

du

dx

It is common to use the notationd/dx as shown here when stating the chain rule,
simply because this notation helps to remember the rule. Although the derivative is not

115
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merely a quotient, we can recall that it is arrived at from a quotient through a process of
shrinking an interval. If we write

∆y

∆x
=

∆y

∆u

∆u

∆x

then it is apparent that the “cancellation” of terms∆u in numerator and denominator lead
to the correct fraction on the left. The proof of the chain rule (optional) uses this essential
idea, but care is taken to ensure that the quantity∆u is nonzero, to avoid the embarrassment
of dealing with the nonsensical ratio0/0.

The most important aspect of the chain rule to students of this course is an under-
standing of why it is needed, and how to use it in practical examples. The following intu-
itive examples may help to motivate why the chain rule is based on a product of two rates
of change. Later in this chapter, we discuss examples of applications of this rule.

Example 7.1 (Pollution level in a lake)A species of fish is sensitive to pollutants in its
lake. As humans settle and populate the area adjoining the lake, one may see a decline in
the population of these fish due to increased levels of pollution. Quantify the rate at which
the pollution level changes with time based on the pollutionproduced per human and the
rate of increase of the human population.

Solution: The rate of decline of the fish would depend on the rate of change in the human
population around the lake, and the rate of change in the pollution created by each person.
If either of these factors increases, one would expect an increase in the effect on the fish
population and their possible extinction. The chain rule says that the net effect is a product
of the two interdependent rates. To be more specific, we couldthink of time t in years,
x = f(t) as the number of people living at the lake in yeart, andp = g(x) as the pollution
created byx people. Then the rate of change of the pollutionp over the years will be a
product in the rate of change of pollution per human, and the rate of increase of humans
over time:

dp

dt
=

dp

dx

dx

dt

Example 7.2 (Population of carnivores, prey, and vegetation) The population of large
carnivores,C, on the African Savannah depends on the population of gazelles that are
prey,P . The population of these gazelles, in turn, depends on the abundance of vegetation
V , and this depends on the amount of rain in a given year,r. Quantify the rate of change
of the carnivore population with respect to the rainfall.

Solution: We can express these dependencies through functions; for instance, we could
write V = g(r), P = f(V ) andC = h(P ), where we understand thatg, f, h are some
functions (resulting from measurement or data collection on the savanna).

As one specific example, shown in Figure 7.2, consider the case that

C = h(P ) = P 2, P = f(V ) = 2V, V = g(r) = r1/2.

If there is a drought, and the rainfall changes, then there will be a change in the
vegetation. This will result in a change in the gazelle population, which will eventually
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r

V

V

P

P

C

Figure 7.2. An example in which the population of carnivores,C = h(P ) =
P 2 depends on preyP , while the prey depend on vegetationP = f(V ) = 2V, and the
vegetation depends on rainfallV = g(r) = r1/2.

affect the population of carnivores on the savanna. We wouldlike to compute the rate of
change in the carnivores population with respect to the rainfall, dC/dr.

According to the chain rule,

dC

dr
=

dC

dP

dP

dV

dV

dr
.

The derivatives we need are

dV

dr
=

1

2
r−1/2,

dP

dV
= 2,

dC

dP
= 2P.

so that
dC

dr
=

dC

dP

dP

dV

dV

dr
=

1

2
r−1/2(2)(2P ) =

2P

r1/2
.

We can simplify this result by using the fact thatV = r1/2 andP = 2V . Plugging these
in, we obtain

dC

dr
=

2P

V
=

2(2V )

V
= 4.

This example is simple enough that we can also express the number of carnivores
explicitly in terms of rainfall, by using the fact thatC = h(P ) = h(f(V )) = h(f(g(r))).
We can eliminate all the intermediate variables and expressP in terms ofr directly:

C = P 2 = (2V )2 = 4V 2 = 4(r1/2)2 = 4r.

(This may be much more cumbersome in more complicated examples.) We can compute
the desired derivative in the simple old way, i.e.

dC

dr
= 4.

We can see that our two answers agree.

Example 7.3 (Budget for coffee)The budget spent on coffee depends on the number of
cups consumed per day and on the price per cup. The total budget might change if the price
goes up or if the consumption goes up (e.g. during late nightspreparing for midterm ex-
ams). Quantify the rate at which your budget for coffee wouldchange if both consumption
and price change.
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Solution: The total rate of change of the coffee budget is a product of the change in the
price and the change in the consumption. (In this example, wemight think of timet in days
as the independent variable,x = f(t) as the number of cups of coffee consumed on dayt,
andy = g(x) as the price forx cups of coffee.)

dy

dt
=

dy

dx

dx

dt

7.3 Applications of the chain rule to “related rates”

Volume of sphere V = 4
3πr

3

Surface area of sphere S = 4πr2

Area of circle A = πr2

Perimeter of circle P = 2πr
Volume of cylinder V = πr2h

Volume of cone V = 1
3πr

2h
Area of rectangle A = xy

Perimeter of rectangle P = 2x+ 2y
Volume of box V = xyz

Sides of Pythagorean trianglec2 = a2 + b2

Table 7.1.Common relationships on which problems about related ratesare often based.

In most of the applications given below, we are interested inprocesses that take place
over time. We ask how the relationships between certain geometric (or physical) variables
affects that rates at which they change over time. Many of these examples are given as word
problems, and we are called on to assemble the required geometric or other relationships
in solving the problem.

A few relationships that we will find useful are concentratedin Table 7.1 shown
below

Example 7.4 (Tumor growth:) A tumor grows so that its radius expands at a constant
rate,k. Determine the rate of growth of the volume of the tumor when the radius is one
centimeter. Assume that the shape of the tumor is well approximated by a sphere.

Solution: The volume of a sphere of radiusr is V = (4/3)πr3. Here bothr andV are
changing with time so that

V (t) =
4

3
π[r(t)]3.

Thus
d

dt
V (t) =

4

3
π
d

dt
[r(t)]3.

dV

dt
=

4

3
π3[r(t)]2

dr

dt
= 4πr2

dr

dt
.
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r

Figure 7.3.Growth of a spherical tumor

But we are told that the radius expands at a constant rate,k, so that

dr

dt
= k.

Hence
dV

dt
= 4πr2k.

We see that the rate of growth of the volume actually goes as the square of the radius.
(Indeed a more astute observation is that the volume grows ata rate proportional to the
surface area, since the quantity4πr2 is precisely the surface area of the sphere.

In particular, forr = 1 cm we have

dV

dt
= 4πk.

Example 7.5 (A spider’s thread:) A spider moves horizontally across the ground at a
constant rate,k, pulling a thin silk thread with it. One end of the thread is tethered to a
vertical wall at heighth above ground and does not move. The other end moves with the
spider. Determine the rate of elongation of the thread.

h

x

l

Figure 7.4.The length of a spider’s thread

Solution: We use the Pythagorean Theorem to relate the height of the tether pointh, the
position of the spiderx, and the length of the threadℓ:

ℓ2 = h2 + x2.
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We note thath is constant, and thatx, ℓ are changing so that

[ℓ(t)]2 = h2 + [x(t)]2.

Differentiating with respect tot leads to

d

dt

(

[ℓ(t)]2
)

=
d

dt

(

h2 + [x(t)]2
)

2ℓ
dℓ

dt
= 0 + 2x

dx

dt
.

Thus
dℓ

dt
=

2x

2ℓ

dx

dt
.

Simplifying and using the fact that
dx

dt
= k

leads to
dℓ

dt
=

x

ℓ
k = k

x√
h2 + x2

.

Example 7.6 (A conical cup:) Water is leaking out of a conical cup of heightH and radius
R. Find the rate of change of the height of water in the cup at theinstant that the cup is
full, if the volume is decreasing at a constant rate,k.

H

R
R

r

h

Figure 7.5.The geometry of a conical cup

Solution: Let us defineh andr as the height and radius of water inside the cone. Then we
know that the volume of this (conically shaped) water in the cone is

V =
1

3
πr2h,

or, in terms of functions of time,

V (t) =
1

3
π[r(t)]2h(t).
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We are told that
dV

dt
= −k,

where the negative sign indicates that volume is decreasing.
By similar triangles, we note that

r

h
=

R

H

so that we can substitute

r =
R

H
h

and get the volume in terms of the height alone:

V (t) =
1

3
π

[

R

H

]2

[h(t)]3.

We can now use the chain rule to conclude that

dV

dt
=

1

3
π

[

R

H

]2

3[h(t)]2
dh

dt

Now using the fact that volume decreases at a constant rate, we get

−k = π

[

R

H

]2

[h(t)]2
dh

dt

or
dh

dt
=

−kH2

πR2h2
.

The rate computed above holds at any time as the water leaks out of the container. At
the instant that the cup is full, we haveh(t) = H andr(t) = R, and then

dh

dt
=

−kH2

πR2H2
=

−k

πR2
.

For example, for a cone of heightH = 4 and radiusR = 3,

dh

dt
=

−k

9π
.

It is important to remember to plug in the information about the specific instant at the very
end of the calculation, after the derivatives are computed.

7.4 Implicit differentiation
Often we would like to find the slope of a tangent line to a curvewhose equation is not easily
expressed in a form wherey is a function ofx. In such cases,implicit differentiation is a
useful tool to use.
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(x,y)

x

y

x

y

(x,y)

tangent line

ZOOM

(a) (b)

Figure 7.6.The curve in (a) cannot be described by a single function (since there
are values ofx that have more than one corresponding values ofy). Hence it can only be
described implicitly. However, if we zoom in to a point in (b), we can define the derivative
as the slope of the tangent line to the curve at the point of interest.

Shown in Figure 7.6 is a curve in thexy plane. By inspection, we see that it is
unlikely that the relationship of the variables can be expressed by a single formula in which
y is written explicitly as a function ofx, such asy = f(x). We have trouble doing so
because this curve evidently is not a function: it does not satisfy the vertical line property.
Nevertheless, we can reasonably ask what the slope of a tangent to the curve would be at
some point along this curve, such as the one shown in the zoom.The slope will still be in
the form∆y/∆x, and the slope of the tangent line will bedy/dx. We now show how to
compute this slope in several examples where is is inconvenient, or impossible to isolatey
as a function ofx.

Example 7.7 (Tangent to a circle:) In the first example, we find the slope of the tangent
line to a circle. This example can be done in a number of different ways, but here we focus
on the method of implicit differentiation.

(a) Find the slope of the tangent line to the pointx = 1/2 in the first quadrant on a circle
of radius 1 and center at the origin.

(b) Find the second derivatived2y/dx2 at the above point.

x

y

Figure 7.7.Tangent line to a circle by implicit differentiation

Solution:
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(a) The equation of a circle with radius 1 and center at the origin is

x2 + y2 = 1.

Whenx = 1/2 we havey = ±
√

1− (1/2)2 = ±
√

1− (1/4) = ±
√
3/2. However

only one of these two values is in the first quadrant, i.e.y = +
√
3/2, so we are

concerned with the behaviour close to this point.

In the original equation of the circle, we see that the two variables are linked in a
symmetric relationship: although we could solve fory, we would not be able to
express the relationship as a single function. Indeed, the top of the circle can be
expressed as

y = f1(x) =
√

1− x2

and the bottom as
y = f2(x) = −

√

1− x2.

However, this makes the work of differentiation more complicated than it needs be.

Here is how we can handle the issue conveniently: We will think of x as the indepen-
dent variable andy as the dependent variable. That is, we will think of the behaviour
close to the point of interest as a small portion of the upper part of the circle, in which
y varies locally asx varies. Then the equation of the circle would look like this:

x2 + [y(x)]2 = 1.

Now differentiate each side of the above with respect tox:

d

dx

(

x2 + [y(x)]2
)

=
d1

dx
= 0. ⇒

(

dx2

dx
+

d

dx
[y(x)]2

)

= 0.

We now apply the chain rule to the second term, and obtain

2x+ 2[y(x)]
dy

dx
= 0

Thus

2y
dy

dx
= −2x ⇒ dy

dx
= −2x

2y
= −x

y

Here the slot of the tangent line to the circle is expressed asa ratio of the coordinates
of the point of the circle. We could, in this case, simplify to

y′(x) =
dy

dx
= − x√

1− x2
.

(This will not always be possible. In many cases we will not have an easy way to
expressy as a function ofx in the final equation).

The point of interest isx = 1/2 (and herey =
√
3/2). Thus

y′ =
dy

dx
= − 1/2√

3/2
=

−1√
3
=

−
√
3

3
.
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(b) The second derivative can be computed by differentiating

y′ =
dy

dx
= −x

y

We use the quotient rule:
d2y

dx2
=

d

dx

(

−x

y

)

d2y

dx2
= −1y − xy′

y2
= −

y − x−x
y

y2
= −y2 + x2

y3
= − 1

y3
.

Substitutingy =
√
3/2 from part (a) yields

d2y

dx2
= − 1

(
√
3/2)3

= − 8

3(3/2)
.

We have used the equation of the circle, and our previous result for the first deriva-
tive in simplifying the above. We can see from this last expression that the second
derivative is negative fory > 0, i.e. for the top semi-circle, indicating that this part of
the curve is concave down (as expected). Similarly, fory < 0, the second derivative
is positive, and this agrees with the concave up property of that portion of the circle.

As in the case of simple functions, the second derivative canthus help identify con-
cavity of curves.

7.5 The power rule for fractional powers
Implicit differentiation can help in determining the derivatives of a number of new func-
tions. In this case, we use what we know about the integer powers to determine the deriva-
tive for a fractional power such as1/2. A similar idea will recur several times later on in
this course, when we encounter a new type of function and its inverse function.

Example 7.8 (Derivative of
√
x:) Consider the function

y =
√
x

Use implicit differentiation to compute the derivative of this function.

Solution: We can re-express this function in the form

y = x1/2.

In this example, we will show that the power rule applies in the same way to fractional
powers: That is, we show that

y′(x) =
1

2
x−1/2
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We rewrite the functiony =
√
x in the form

y2 = x

but we will continue to think ofy as the dependent variable, i.e. when we differentiate, we
will remember that

[y(x)]2 = x

Taking derivatives of both sides leads to

d

dx

(

[y(x)]2
)

=
d

dx
(x)

2[y(x)]
dy

dx
= 1

dy

dx
=

1

2y
.

We now use the original relationship to eliminatey, i.e. we substitutey =
√
x. We find

that
dy

dx
=

1

2
√
x
=

1

2
x−1/2.

This verifies the power law for the above example.
A similar procedure can be applied to a power function with fractional power. When

we apply similar steps, we find that

Derivative of fractional-power function: The derivative of

y = f(x) = xm/n

is
dy

dx
=

m

n
x(m

n
−1).

This is left as an exercise for the reader.

Example 7.9 Compute the derivative of the function

y = f(x) =
√

x2 + a2, wherea is some positive real number

Solution: This function can be considered as the composition ofg(u) =
√
u andu(x) =

x2+a2, That is, we can writef(x) = g(h(x)) We rewriteg in the form of a power function
and then use the chain rule to compute the derivative. We obtain

dy

dx
=

1

2
· (x2 + d2)−1/2 · 2x =

x

(x2 + d2)1/2
=

x√
x2 + d2
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Example 7.10 Compute the derivative of the function

y = f(x) =
x√

x2 + d2
, whered is some positive real number

Solution: We use both the quotient rule and the chain rule for this calculation.

dy

dx
=

[x]′ ·
√
x2 + d2 − [

√
x2 + d2]′ · x

(
√
x2 + d2)2

Here the′ denotes differentiation. Then

dy

dx
=

1 ·
√
x2 + d2 − [ 12 · 2x · (x2 + d2)−1/2] · x

(x2 + d2)

We simplify algebraically by multiplying top and bottom by(x2 + d2)1/2 and canceling
factors of 2 to obtain

dy

dx
=

x2 + d2 − x2

(x2 + d2)1/2(x2 + d2)
=

d2

(x2 + d2)3/2

Example 7.11 (The astroid:) The curve

x2/3 + y2/3 = 22/3

has the shape of anastroid. It describes the shape generated by a ball of radius1
2 rolling

inside a ball of radius 2. Find the slope of the tangent line toa point on the astroid.

Solution: We use implicit differentiation as follows:

d

dx

(

x2/3 + y2/3
)

=
d

dx
22/3

2

3
x−1/3 +

d

dy
(y2/3)

dy

dx
= 0

2

3
x−1/3 +

2

3
y−1/3 dy

dx
= 0

x−1/3 + y−1/3 dy

dx
= 0

We can rearrange into the form:

dy

dx
= −x−1/3

y−1/3
.

We can see from this form that the derivative fails to exist atbothx = 0 (wherex−1/3

would be undefined) and aty = 0 (wherey−1/3 would be undefined. This stems from the
sharp points that the curve has at these places.

In the next example we put the second derivative to work in an implicit differentiation
problem. The goal is as follows:



7.5. The power rule for fractional powers 127

Example 7.12 (Horizontal tangent and concavity on a rotatedellipse:) Find the highest
point on the (rotated) ellipse

x2 + 3y2 − xy = 1

Solution: The highest point on the ellipse will have a horizontal tangent line, so we should
look for the point on this curve at whichdy/dx = 0. We proceed as follows:

1. Finding the slope of the tangent line:By implicit differentiation,

d

dx
[x2 + 3y2 − xy] =

d

dx
1

d(x2)

dx
+

d(3y2)

dx
− d(xy)

dx
= 0.

We must use the product rule to compute the derivative of the last term on the LHS:

2x+ 6y
dy

dx
− x

dy

dx
− dx

dx
y = 0

2x+ 6y
dy

dx
− x

dy

dx
− 1y = 0

Grouping terms, we have

(6y − x)
dy

dx
+ (2x− y) = 0

Thus
dy

dx
=

(y − 2x)

(6y − x)
.

We can also use the notation

y′(x) =
(y − 2x)

(6y − x)

to denote the derivative. Settingdy/dx = 0, we obtainy − 2x = 0 so thaty = 2x
at the point of interest. However, we still need to find the coordinates of the point
satisfying this condition.

2. Determining the coordinates of the point we want:To do so, we look for a point
that satisfies the equation of the curve as well as the conditiony = 2x. Plugging into
the original equation of the ellipse, we get:

x2 + 3y2 − xy = 1

x2 + 3(2x)2 − x(2x) = 1.

After simplifying, this equation becomes11x2 = 1, leading to the two possibilities

x = ± 1√
11

, y = ± 2√
11

.
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Figure 7.8.A rotated ellipse

We need to figure out which one of these two points is the top. (Evidently, the other
point would also have a horizontal tangent, but would be at the “bottom” of the
ellipse.)

3. Finding which point is the one at the top: The top point on the ellipse will be lo-
cated at a portion of the curve that is concave down. We can determine the concavity
close to the point of interest by using the second derivative, which we will compute
(from the first derivative) using the quotient rule:

y′′(x) =
d2y

dx2
=

[y − 2x]′(6y − x)− [6y − x]′(y − 2x)

(6y − x)2

y′′(x) =
[y′ − 2](6y − x)− [6y′ − 1](y − 2x)

(6y − x)2
.

In the above, we have used the “prime” notation (’) to denote aderivative.

4. Plugging in information about the point: Now that we have set down the form
of this derivative, we make some important observations about the specific point of
interest: (Note that this is done as a final step, only after all derivatives have been
calculated!)

• We are only concerned with the sign of this derivative. The denominator is always
positive (since it is squared) and so will not affect the sign. (It is possible to work
with the sign of the numerator alone, though, in the interestof providing detailed
steps, we go through the entire calculation below.)

• At the point of interest (top of ellipse)y′ = 0, simplifying some of the terms above.

• At the point in question,y = 2x so the term(y − 2x) = 0.

We can thus simplify the above to obtain

y′′(x) =
[−2](6y − x)− [−x](0)

(6y − x)2
=

[−2](6y − x)

(6y − x)2
=

−2

(6y − x)
.
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Using again the fact thaty = 2x, we get the final form

y′′(x) =
−2

(6(2x)− x)
=

−2

11x
.

We see directly from this result that the second derivative is negative (implying concave
down curve) wheneverx is positive. This tells us that at the point with positivex value,
x = 1/

√
11, we are at the top of the ellipse. A graph of this curve is shownin Figure 7.8.

7.6 Food choice and attention
The example described in this section is taken from actual biological research. It has several
noteworthy features: First, we do put the chain rule to use inthe problem. Second, we
encounter a surprise in some of our elementary calculations. Third, we find that not every
problem has an elegant or analytically simple solution. Finally, we see that some very
general observations can provide insight that we do not get as easily from the specific
cases. The problem is taken from the study of animal behaviour.

Paying attention

Behavioural ecologist Reuven Dukas (McMaster U) studies the choices that animals make
when deciding which food to look for. His work has resulted inboth theoretical and ex-
perimental conclusions about choices and strategies that animals follow. The example de-
scribed below is based on his work with blue jays described inseveral publications. (See
references.)

Many types of food arecryptic , i.e. hidden in the environment, and require time
and attention to find. Some types of food are more easy to detect than other types, and
some foods provide more nourishment than other types. Clearly, the animal that succeeds
in gaining the greatest nourishment during a typical day will have a greater chance of
surviving and out-competing others. Thus, it makes sense that animals should chose to
divide their time and attention between food types in such a way as to maximize the total
gain over the given time period available for foraging.

Setting up a model

Suppose that there are two types of food available in the environment. We will define a
variable that represents the attention that an animal can devote to finding a given food type.

• Letx = attention devoted to finding food of some type. Assume that0 < x < 1, with
x = 0 representing no attention at all to that type of food andx = 1 full attention
devoted to finding that item.

• Let P (x) denote the probability of finding the food given that attentionx is devoted
to the task. Then0 < P < 1, as is commonly assumed for a probability.P = 0
means that the food is never found, andP = 1 means that the food is always found.

• Consider foods that have the propertyP (0) = 0, P (1) = 1. This means that if no
attention is payed (x = 0) then there is no probability of finding the food (P = 0),
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whereas if full attention is given to the taskx = 1 then there is always success
(P = 1).

• Suppose that there is more than one food type in the animal’s environment. Then we
will assume that the attentions paid to finding these foods,x andy sum up to 1: i.e.
since attention is limited,x+ y = 1, or, simply,y = 1− x.

In figure 7.9, we show typical examples of the success versus attention curves for
four different types of food labeled 1 through 4. On the horizontal axis, we show the
attention0 < x < 1, and on the vertical axis, we show the probability of successat finding
food, 0 < P < 1. We observe that all the curves share in common the features we have
described: Full success for full attention, and no success for no attention.

However the four curves shown here differ in their values at intermediate levels of
attention.

0 1

1
P

attention, x

1
2

3

4

Figure 7.9.The probability,P , of finding a food depends on the level of attention
x devoted to finding that food. We show possible curves for fourtypes of foods, some easier
to find than others.

Questions:

1. What is the difference between foods of type 1 and 4?

2. Which food is easier to find, type 3 or type 4?

3. What role is played by the concavity of the curve?

You will have observed that some curves, notably those concave down, such as curves
3 and 4 rise rapidly, indicating that the probability of finding food increases a lot just by
increasing the attention by a little: These represent foodsthat are relatively easy to find. In
other cases, where the function is concave up, (curves 1 and 2), we must devote much more
attention to the task before we get an appreciable increase in the probability of success:
these represent foods that are harder to find, or more cryptic. We now explore what happens
when the attention is subdivided between several food types.
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Suppose that two foods available in the environment can contribute relative levels of
nutrition 1 and N per unit. We wish to determine for what subdivision of the attention,
would the total nutritional value gained be as large as possible.

Suppose thatP1(x) andP2(y) are probabilities of finding food of type 1 or 2 given
that we spend attentionx or y in looking for that type.

Let x = the attention devoted to finding food of type 1. Then attentiony = 1− x can
be devoted to finding food of type 2.

Suppose that the relative nutritional values of the foods are 1 andN .
Then the total value gained by splitting up the attention between the two foods is:

V (x) = P1(x) +N P2(1 − x).

Example 7.13 (P1 and P2 as power function with integer powers:) Consider the case that
the probability of finding the food types is given by the simple power functions,

P1(x) = x2, P2(y) = y3

Find the optimal food valueV (x) that can be attained.

Solution: We note that these functions satisfyP (0) = 0, P (1) = 1, in accordance with
the sketches shown in Figure 7.9. Further, suppose that bothfoods are equally nutritious.
ThenN = 1, and the total value is

V (x) = P1(x) +N P2(1− x) = x2 + (1− x)3.

We look for a maximum value ofV : SettingV ′(x) = 0 we get (using the Chain Rule:)

V ′(x) = 2x+ 3(1− x)2(−1) = 0.

We observe that a negative factor(−1) comes from applying the chain rule to the factor
(1− x)3.

The above equation can be expanded into a simple quadratic equation:

−3x2 + 8x− 3 = 0

whose solutions are

x =
4±

√
7

3
≈ 0.4514, 2.21.

Since the attention must take on a value in0 < x < 1, we must reject the second of the two
solutions. It would appear that the animal may benefit most byspending a fraction 0.4514
of its attention on food type 1 and the rest on type 2.

However, to confirm our speculation, we must check whether the critical point is a
maximum. To do so, consider the second derivative,

V ′′(x) =
d

dx

(

2x− 3(1− x)2
)

= 2− 3(2)(1− x)(−1) = 2 + 6(1− x).

(The factor(−1) that appears in the computation is due to the Chain Rule applied to(1−x)
as before.)
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Observing the result, and recalling thatx < 1, we note that the second derivative
is positivefor all values ofx! This is unfortunate, as it signifies alocal minimum! The
animal gains least by splitting up its attention between thefoods in this case. Indeed, from
Figure 7.10, we see that the most gain occurs at eitherx = 0 (only food of type 2 sought)
or x = 1 (only food of type 1 sought). Again we observe the importanceof checking for
the type of critical point before drawing hasty conclusions.

V1(x)

0.0 1.0

0.0

1.0

V2(x)

0.0 1.0

1.0

1.6

(a) (b)

Figure 7.10.(a) Figure for Example 7.13 and (b) for Example 7.14

Example 7.14 (Fractional-power functions forP1, P2:) As a second example, consider
the case that the probability of finding the food types is given by the concave down power
functions,

P1(x) = x1/2, P2(y) = y1/3

and both foods are equally nutritious (N = 1). Find the optimal food valueV (x)

Solution: These functions also satisfyP (0) = 0, P (1) = 1, in accordance with the
sketches shown in Figure 7.9. Then

V (x) = P1(x) + P2(1− x) =
√
x+ (1− x)(1/3)

V ′(x) =
1

2
√
x
− 1

3 (1.0− x)(2/3)

V ′′(x) = − 1

4 x(3/2)
− 2

9 (1.0− x)(5/3)

Calculations to actually determine the critical point are rather ugly, and best handled nu-
merically. We state without details the fact that a criticalpoint occurs atx = 0.61977 (and
y = 1−x = 0.38022.) within the interval of interest. A plotting program is used to display
the Value obtained by splitting up the attention in this way in Figure??. It is clear from this
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figure that a maximum occurs in the middle of the interval, i.efor attention split between
finding both foods. We further see fromV ′′(x) that the second derivative is negative for all
values ofx in the interval, indicating that we have obtained a local maximum, as expected.

Epilogue

While the conclusions drawn above were disappointing in onespecific case, it is not always
true that concentrating all one’s attention on one type is optimal. We can examine the
problem in more generality to find when the opposite conclusion might be satisfied. In the
general case, the value gained is

V (x) = P1(x) +N P2(1 − x).

A critical point occurs when

V ′(x) =
d

dx
[P1(x) +N P2(1 − x)] = P ′

1(x) +NP ′
2(1 − x)(−1) = 0

(By now you realize where the extra term(−1) comes from - yes, from the Chain Rule!)
Suppose we have found a value ofx in 0 < x < 1 at which this is satisfied. We then
examine the second derivative:

V ′′(x) =
d

dx
[V ′(x)] =

d

dx
[P ′

1(x)−NP ′
2(1−x)] = P1“(x)−NP ′′

2 (1−x)(−1) = P1“(x)+NP ′′
2 (1−x).

The concavity of the functionV is thus related to the concavity of the two functionsP1(x)
andP2(1− x). If these are concave down (e.g. as in food types 3 or 4 in Figure 7.9), then
V ′′(x) < 0 and a local maximum will occur at any critical point found by our differentia-
tion.

Another way of stating this observation is: if both food types are relatively easy to
find, one can gain most benefit by splitting up the attention between the two. Otherwise, if
both are hard to find, then it is best to look for only one at a time.

7.7 Shortest path from food to nest
Ants are good mathematicians! They are able to find the shortest route that connects their
nest to a food source, to be as efficient as possible in bringing the food back home.

But how do they do it? It transpires that each ant secretes a chemicalpheromone
that other ants like to follow. This marks up the trail that they use, and recruits nest-
mates to food sources. Thepheromone(chemical message for marking a route) evaporates
after a while, so that, for a given number of foraging ants, a longer trail will have a less
concentrated chemical marking than a shorter trail. This means that whenever a shorter
route is found, the ants will favour it. After some time, thisleads to selection of the shortest
possible trail.

Shown in the figure below is a common laboratory test scenario, where ants at a nest
are offered two equivalent food sources to utilize. We will use the chain rule and other
results of this chapter to determine the shortest path that will emerge after the ants explore
for some time.
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Food

Nest

D

d
Food Food

Nest

D

d
Food Food

Nest

D

x

d
Food

(a) (b) (c)

Figure 7.11. Three ways to connect the ants’ nest to two food sources, showing
(a) a V-shaped, (b) T-shaped, and (c) Y-shaped paths.

Example 7.15 (Minimizing the total path length for the ants) Use the diagram to deter-
mine the length of the shortest path that connects the nest toboth food sources. Assume
thatd << D.

Solution: We consider two possibilities before doing any calculus. The first is that the
shortest path has the shape of the letterT whereas the second is that it has the shape of a
letterV. Then for a T-shaped path, the total length isD + 2d whereas for a V-shaped path
it is 2

√
D2 + d2. Now we consider a third possibility, namely that the path has the shape

of the letterY. This means that the ants start to walk straight ahead and then veer off to the
food after a while.

It turns out to simplify our calculations if we label the distance from the nest to the
Y-junction asD − x. Thenx is the remaining distance shown in the diagram. The length
of the Y-shaped path is then given by

L = L(x) = (D − x) + 2
√

d2 + x2 (7.1)

Now we observe that whenx = 0, thenLT = D + 2d, which corresponds exactly to the
T-shaped path, whereas whenx = D thenLV = 2

√
d2 +D2 which is the length of the

V-shaped path. Thus in this problem, we have0 < x < D as the appropriate domain, and
we have determined the values ofL at the two domain endpoints.

To find the minimal path length, we look for critical points ofthe functionL(x).
Differentiating, we obtain (using results of Example 7.9)

L′(x) =
dL

dx
= −1 + 2

x√
x2 + d2

Critical points occur atL′(x) = 0, which corresponds to

−1 + 2
x√

x2 + d2
= 0
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We simplify this algebraically to obtain

√

x2 + d2 = 2x ⇒ x2 + d2 = 4x2 ⇒ 3x2 = d2 ⇒ x =
d√
3
.

To determine the kind of critical point, we find the second derivative (See Example 7.10).
Then

L′′(x) =
d2L

dx2
= 2

d2

(x2 + d2)−3/2
> 0

Thus the second derivative is positive and the critical point is a local maximum.
To determine the actual length of the path, we substitutex = d/

√
3 into the function

L(x) and obtain (after simplification, see Exercise 7.28)

L = L(x) = D +
√
3d

x=d/sqrt(3)

D

d

(a) (b)

Figure 7.12. (a) In the configuration for the shortest path we found thatx =
d/

√
3. (b) The total length of the pathL(x) as a function ofx for D = 2, d = 1. The

minimal path occurs whenx = 1/
√
3 ≈ 0.577. The length of the shortest path is then

L = D +
√
3d = 2 +

√
3 ≈ 3.73.

7.8 Optional: Proof of the chain rule
First note that if a function is differentiable, then it is also continuous. This means that
whenx changes a very little,u can change only by a little. (There are no abrupt jumps).
Then∆x → 0 means that∆u → 0.

Now consider the definition of the derivativedy/du:

dy

du
= lim

∆u→0

∆y

∆u
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This means that for any (finite)∆u,

∆y

∆u
=

dy

du
+ ǫ

whereǫ → 0 as∆u → 0. Then

∆y =
dy

du
∆u + ǫ∆u

Now divide both sides by some (nonzero)∆x: Then

∆y

∆x
=

dy

du

∆u

∆x
+ ǫ

∆u

∆x

Taking∆x → 0 we get∆u → 0, (by continuity) and hence alsoǫ → 0 so that as desired,

dy

dx
=

dy

du

du

dx

• Dukas R, Kamil A C(2001) Limited attention: The constraint underlying search im-
age. Behavioral Ecology. 12(2): 192-199.

• Dukas R; Kamil A C (2000) The cost of limited attention in bluejays. Behavioral
Ecology 11(5): 502-506.

• Dukas R, Ellner S, (1993) Information processing and prey detection. Ecology.
74(5): 1337-1346.
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Exercises
7.1. For each of the following, find the derivative ofy with respect tox.

(a) y6 + 3y − 2x− 7x3 = 0

(b) ey + 2xy =
√
3

(c) y = xcos x

7.2. Consider the growth of a cell, assumed spherical in shape. Suppose that the radius
of the cell increases at a constant rate per unit time. (Call the constantk, and assume
thatk > 0.)

(a) At what rate would the volume,V , increase ?

(b) At what rate would the surface area,S, increase ?

(c) At what rate would the ratio of surface area to volumeS/V change? Would
this ratio increase or decrease as the cell grows? [Remark: note that the an-
swers you give will be expressed in terms of the radius of the cell.]

7.3. Growth of a circular fungal colony: A fungal colony grows on a flat surface start-
ing with a single spore. The shape of the colony edge is circular (with the initial site
of the spore at the center of the circle.) Suppose the radius of the colony increases
at a constant rate per unit time. (Call this constantC.)

(a) At what rate does the area covered by the colony change ?

(b) The biomass of the colony is proportional to the area it occupies (factor of
proportionalityα). At what rate does the biomass increase?

7.4. Limb development: During early development, the limb of a fetus increases in size,
but has a constant proportion. Suppose that the limb is roughly a circular cylinder
with radiusr and lengthl in proportion

l/r = C

whereC is a positive constant. It is noted that during the initial phase of growth, the
radius increases at an approximately constant rate, i.e. that

dr/dt = a.

At what rate does the mass of the limb change during this time?[Note: assume that
the density of the limb is 1 gm/cm3 and recall that the volume of a cylinder is

V = Al

whereA is the base area (in this case of a circle) andl is length.]

7.5. A rectangular trough is2 meter long,0.5 meter across the top and1 meter deep. At
what rate must water be poured into the trough such that the depth of the water is
increasing at1 m/min when the depth of the water is0.7 m?

7.6. Gas is being pumped into a spherical balloon at the rate of 3 cm3/s.
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(a) How fast is the radius increasing when the radius is15 cm?

(b) Without using the result from (a), find the rate at which the surface area of the
balloon is increasing when the radius is15 cm.

7.7. A point moves along the parabolay =
1

4
x2 in such a way that atx = 2 the x-

coordinate is increasing at the rate of5 cm/s. Find the rate of change ofy at this
instant.

7.8. Boyle’s Law: In chemistry, Boyle’s law describes the behaviour of an ideal gas:
This law relates the volume occupied by the gas to the temperature and the pressure
as follows:

PV = nRT

wheren,R are positive constants.

(a) Suppose that the pressure is kept fixed, by allowing the gas to expand as the
temperature is increased. Relate the rate of change of volume to the rate of
change of temperature.

(b) Suppose that the temperature is held fixed and the pressure is decreased gradu-
ally. Relate the rate of change of the volume to the rate of change of pressure.

7.9. Spread of a population: In 1905 a Bohemian farmer accidentally allowed several
muskrats to escape an enclosure. Their population grew and spread, occupying
increasingly larger areas throughout Europe. In a classical paper in ecology, it was
shown by the scientist Skellam (1951) that the square root ofthe occupied area
increased at a constant rate,k. Determine the rate of change of the distance (from
the site of release) that the muskrats had spread. For simplicity, you may assume
that the expanding area of occupation is circular.

7.10. A spherical piece of ice melts so that its surface area decreases at a rate of 1 cm2/min.
Find the rate that the diameter decreases when the diameter is 5 cm.

7.11. A Convex lens: A particular convex lens has a focal length off = 10 cm. The
distancep between an object and the lens, the distanceq between its image and the
lens and the focal lengthf are related by the equation:

1

f
=

1

p
+

1

q
.

If an object is 30 cm away from the lens and moving away at 4 cm/sec, how fast is
its image moving and in which direction?

7.12. A conical cup: Water is leaking out of a small hole at the tip of a conical paper cup
at the rate of 1 cm3/min. The cup has height 8 cm and radius 6 cm, and is initially
full up to the top. Find the rate of change of the height of water in the cup when the
cup just begins to leak. [Remark: the volume of a cone isV = (π/3)r2h.]

7.13. Conical tank: Water is leaking out of the bottom of an inverted conical tankat the

rate of
1

10
m3/min, and at the same time is being pumped in the top at a constant

rate ofk m3/min. The tank has height6 m and the radius at the top is2 m. De-

termine the constantk if the water level is rising at the rate of
1

5
m/min when the
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height of the water is2m. Recall that the volume of a cone of radiusr and heighth
is

V =
1

3
πr2h.

7.14. The gravel pile: Gravel is being dumped from a conveyor belt at the rate of30 ft3/min
in such a way that the gravel forms a conical pile whose base diameter and height
are always equal. How fast is the height of the pile increasing when the height is

10 ft? (Hint: the volume of a cone of radiusr and heighth is V =
1

3
πr2h.)

7.15. The sand pile: Sand is piled onto a conical pile at the rate of10m3/min. The
sand keeps spilling to the base of the cone so that the shape always has the same
proportions: that is, the height of the cone is equal to the radius of the base. Find
the rate at which the height of the sandpile increases when the height is 5 m. Note:
The volume of a cone with heighth and radiusr is

V =
π

3
r2h.

7.16. Water is flowing into a conical reservoir at a rate of4 m3/min. The reservoir is3 m
in radius and12 m deep.

(a) How fast is the radius of the water surface increasing when the depth of the
water is8 m?

(b) In (a), how fast is the surface rising?

7.17. A ladder10 meters long leans against a vertical wall. The foot of the ladder starts to
slide away from the wall at a rate of3 m/s.

(a) Find the rate at which the top of the ladder is moving downward when its foot
is 8 meters away from the wall.

(b) In (a), find the rate of change of the slope of the ladder.

7.18. Sliding ladder: A ladder 5 m long rests against a vertical wall. If the bottom of the
ladder slides away from the wall at the rate of 0.5 meter/min how fast is the top of
the ladder sliding down the wall when the base of the ladder is1 m away from the
wall ?

7.19. Ecologists are often interested in the relationship between the area of a region (A)
and the number of different speciesS that can inhabit that region. Hopkins (1955)
suggested a relationship of the form

S = a ln(1 + bA)

wherea and b are positive constants. Find the rate of change of the numberof
species with respect to the area. Does this function have a maximum?

7.20. The burning candle: A candle is placed a distancel1 from a thin block of wood of
heightH . The block is a distancel2 from a wall as shown in Figure 7.13. The candle
burns down so that the height of the flame,h1 decreases at the rate of3 cm/hr. Find
the rate at which the length of the shadowy cast by the block on the wall increases.
(Note: your answer will be in terms of the constantsl1 andl2. Remark: This is a
challenging problem.)
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Figure 7.13.Figure for Problem 20

7.21. Use implicit differentiation to show that the derivative of the function

y = x1/3

is
y′ = (1/3)x−2/3.

First write the relationship in the formy3 = x, and then finddy/dx.

7.22. Generalizing the Power Law:

(a) Use implicit differentiation to calculate the derivative of the function

y = f(x) = xn/m

wherem andn are integers. (Hint: rewrite the equation in the formym = xn

first.)

(b) Use your result to derive the formulas for the derivatives of the functionsy =√
x andy = x−1/3.

7.23. The equation of a circle with radiusr and center at the origin is

x2 + y2 = r2

(a) Use implicit differentiation to find the slope of a tangent line to the circle at
some point(x, y).

(b) Use this result to find the equations of the tangent lines of the circle at the
points whosex coordinate isx = r/

√
3.

(c) Use the same result to show that the tangent line at any point on the circle is
perpendicular to the radial line drawn from that point to thecenter of the circle

Note: Two lines are perpendicular if their slopes are negative reciprocals.



Exercises 141

7.24. The equation of a circle with radius5 and center at(1, 1) is

(x− 1)2 + (y − 1)2 = 25

(a) Find the slope of the tangent line to this curve at the point (4, 5).

(b) Find the equation of the tangent line.

7.25. Tangent to a hyperbola:The curve

x2 − y2 = 1

is a hyperbola. Use implicit differentiation to show that for largex andy values, the
slopedy/dx of the curve is approximately1.

7.26. An ellipse: Use implicit differentiation to find the points on the ellipse

x2

4
+

y2

9
= 1

at which the slope is -1/2.

7.27. Motion of a cell: In the study of cell motility, biologists often investigatea type of
cell called a keratocyte, an epidermal cell that is found in the scales of fish. This
flat, elliptical cell crawls on a flat surface, and is known to be important in healing
wounds. The 2D outline of the cell can be approximated by the ellipse

x2/100 + y2/25 = 1

wherex andy are distances inµ (Note: 1 micron is10−6 meters). When the motion
of the cell is filmed, it is seen that points on the “leading edge” (top arc of the ellipse)
move in a direction perpendicular to the edge. Determine thedirection of motion of
the point(xp, yp) on the leading edge.

7.28. Shortest path from nest to food sources:

(a) Use the first derivative test to verify that the valuex = d√
3

is a local minimum

of the functionL(x) given by Eqn (7.1)

(b) Show that the shortest path isL = D +
√
3d.

(c) In Section 7.7 we assumed thatd << D, so that the food sources were close
together relative to the distance from the nest. Now supposethatD = d/2.
How would this change the solution to the problem?

7.29. Geometry of the shortest ants’ path:Use the results of Section 7.7 to show that in
the shortest path, the angles between the branches of the Y-shaped path are all 120◦,
You may find it helpful to recall thatsin(30) = 1/2, sin(60) =

√
3/2.

7.30. The Folium of Descartes:A famous curve (see Figure 7.14) that was studied his-
torically by many mathematicians (including Descartes) is

x3 + y3 = 3axy

You may assume thata is a positive constant.
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a

-a

(1.5a,1.5a)

Figure 7.14.The Folium of Descartes in Problem 30

(a) Explain why this curve cannot be described by a function such asy = f(x)
over the domain−∞ < x < ∞.

(b) Use implicit differentiation to find the slope of this curve at a point(x, y).

(c) Determine whether the curve has a horizontal tangent line anywhere, and if so,
find thex coordinate of the points at which this occurs.

(d) Does implicit differentiation allow you to find the slopeof this curve at the
point (0,0) ?

7.31. Isotherms in the Van-der Waal’s equation: In thermodynamics, the Van der
Waal’s equation relates the mean pressure,p of a substance to its molar volume
v at some temperatureT as follows:

(p+
a

v2
)(v − b) = RT

wherea, b, R are constants. Chemists are interested in the curves described by this
equation when the temperature is held fixed. (These curves are called isotherms).

(a) Find the slope,dp/dv, of the isotherms at a given point(v, p).

(b) Determine where points occur on the isotherms at which the slope is horizon-
tal.

7.32. The circle and parabola: A circle of radius 1 is made to fit inside the parabola
y = x2 as shown in figure 7.15. Find the coordinates of the center of this circle,
i.e. find the value of the unknown constantc. [Hint: Set up conditions on the points
of intersection of the circle and the parabola which are labeled (a, b) in the figure.
What must be true about the tangent lines at these points?]

7.33. Consider the curve whose equation is

x3 + y3 + 2xy = 4, y = 1 whenx = 1.

(a) Find the equation of the tangent line to the curve whenx = 1.

(b) Findy′′ atx = 1.

(c) Is the graph ofy = f(x) concave up or concave down nearx = 1?

Hint: Differentiate the equationx3 + y3 + 2xy = 4 twice with respect tox.
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x

y

(0,c)

(a,b)

Figure 7.15.Figure for Problem 32
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Chapter 8

Exponential functions

8.1 The Andromeda Strain
”The mathematics of uncontrolled growth are frightening. Asingle cell of the bacterium E.
coli would, under ideal circumstances, divide every twentyminutes. That is not particularly
disturbing until you think about it, but the fact is that bacteria multiply geometrically: one
becomes two, two become four, four become eight, and so on. Inthis way it can be shown
that in a single day, one cell of E. coli could produce a super-colony equal in size and
weight to the entire planet Earth.”

Michael Crichton (1969) The Andromeda Strain, Dell, N.Y. p247

8.2 Powers of 2
Note that210 ≈ 1000 = 103. This is a useful approximation in converting binary numbers
(powers of 2) to decimal numbers (powers of 10).

8.3 Growth of E. coli
• Mass of 1 E. coli cell : 1 nanogram =10−9gm =10−12kg.

• Mass of Planet Earth :6 · 1024 kg

• Size of E. coli colony equal in mass to Planet Earth:

m =
6 · 1024
10−12

= 6 · 1036

In a period of 24 hours, there are many 20-minute generations. To be exact, there are
24×3 = 72 generations, with each one producing a doubling. This meansthat there would
be, after 1 day, a number of cells equal to

272.

145
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-4.0 10.0

0.0

1000.0

n 2n

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024

Table 8.1. Powers of 2 including both negative and positive integers: Here we
show2n for −4 < n < 10. Note that210 ≈ 1000 = 103.

We can estimate it using the approximate decimal form as follows:

272 = 22 · 270 = 4 · (210)7 ≈ 4 · (103)7 = 4 · 1021.

The actual value is found to be4.7 · 1021, so the approximation is relatively good.
Apparently, the estimate made by Crichton is not quite accurate. However it can be

shown that it takes less than 2 days to produce a number far in excess of the desired size.
(The exact number of generations is left as an exercise for the reader.. but we will return to
this in due time.)

8.4 The function 2x

From previous familiarity with power functions such asy = x2 (not to be confused with
2x), we know the value of

21/2 =
√
2 ≈ 1.41421 . . .

We can use this value to compute

23/2 = (
√
2)3

25/2 = (
√
2)5

and all other fractional exponents that are multiples of1/2. We can add these to the graph
of our previous powers of 2 to fill in additional points. This is shown on Figure 8.1(a).

In this way, we could also calculate exponents that are multiples of1/4 since

21/4 =

√√
2
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-4.0 10.0

0.0

1000.0

-4.0 10.0

0.0

1000.0

(a) (b)

Figure 8.1. (a) Values of the function2x for x = 0, 0.5, 1, 1.5, etc. (b) The
function2x is shown extended to negative values ofx and connected smoothly to form a
continuous curve.

is a value that we can obtain. We show how adding these values leads to an even finer set
of points. By continuing in the same way, we fill in the graph ofthe emerging function.
Connecting the dots smoothly allows us to define a value for any realx, of the new function,

y = f(x) = 2x

This function is shown in Figure 8.1(b) as the smooth curve superimposed on the points we
have gathered.

We can generalize this idea to defining an exponential function with an arbitrary
base. Given some positive constanta, we will define the new functionf(x) = ax as the
exponential function with basea. Shown in Figure 8.2 are the functionsy = 2x, y = 3x,
y = 4x andy = 10x.

8.5 Derivative of an exponential function
In this section we show how to compute the derivative of the new exponential function just
defined. We first consider an arbitrary positive constanta that will be used for the base of
the function. Then fora > 0 let

y = f(x) = ax.



148 Chapter 8. Exponential functions

10^x

4^x 3^x
2^x

-4.0 10.0

0.0

1000.0

Figure 8.2.The functiony = f(x) = ax is shown here for a variety of bases,a =
2, 3, 4, and 10.

Then

dax

dx
= lim

h→0

(

ax+h − ax
)

h

= lim
h→0

(

axah − ax
)

h

= lim
h→0

ax
(ah − 1)

h

= ax
[

lim
h→0

ah − 1

h

]

Notice that the variablex appears only in the form ofax. Everything inside the limit does
not depend onx at all, but does depend on the base we used.

Example 8.1 (Derivative of2x) Compute the derivative for the basea = 2 using the
above result.

Solution: For basea = 2, we have

d2x

dx
= 2x

(

lim
h→0

2h − 1

h

)

Let

C2(h) = lim
h→0

2h − 1

h
.
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We can calculate this quantity, or at least find a good estimate, by taking small values ofh
i.e. by the approximation

C2(h) ≈
2h − 1

h

Example 8.2 (The value ofC2) ComputeC2 for h = 1, 0.1, 0.01, etc. Does this value
approach a fixed real number? Use your calculation to find the derivative of the function
y = 2x. How would this result change if we computed the derivative of y = 10x?

Solution: We find thath = 1 leads toC2 = 1.0, h = 0.1 leads toC2 = 0.7177, h = 0.001
leads toC2 = 0.6934, h = 0.00001 to C2 = 0.6931. Using this result, we see that
C2 → 0.6931, so that

d2x

dx
= C22

x = (0.6931) · 2x.

Example 8.3 (The base 10 and the derivative of10x) Determine the derivative ofy =
f(x) = 10x.

Solution: If we had chosen base 10 for our exponential function, we would have

C10(h) =
10h − 1

h
.

We find, by similar approximation, that

C10 = 2.3026,

so that
d10x

dx
= C1010

x = (2.3026) · 10x.

Thus, different bases come with different constant multipliers when derivatives are com-
puted.

8.5.1 A convenient base for the exponential function

These are rather messy constants, and hard to remember. We ask whether we can find some
more convenient base (call it “e”) such that the constant is nice and simple, e.g.Ce = 1.

Such a base would have to have the property that

Ce = lim
h→0

eh − 1

h
= 1

i.e. that, for smallh
eh − 1

h
≈ 1.

This means that

eh − 1 ≈ h ⇒ eh ≈ h+ 1 ⇒ e ≈ (1 + h)1/h
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More specifically,

e = lim
h→0

(1 + h)1/h

We can find an approximate value for this interesting new baseby calculating the expression
shown above for some very small (but finite value) ofh, e.g.h = 0.00001. Using this value,
we find that

e ≈ (1.00001)100000 ≈ 2.71826

To summarize, we have found that for this special base,e, we have the following property:

The derivative of the function ex is the same function,ex.

Remark: In the above computation, we came up with a little “recipe” for calculating
the value of the basee. The recipe involves shrinking some valueh and computing a limit.
We can restate this recipe in another way. Letn = 1/h. Then ash shrinks,n will be a
growing number, i.eh → 0 impliesn → ∞. We find that

e = lim
n→∞

(1 +
1

n
)n

8.6 Properties of the function ex

We list below some of the key features of this function:

1. eaeb = ea+b as with all similar exponent manipulations.

2. (ea)b = eab also stems from simple rules for manipulating exponents

3. ex is a function that is defined, continuous, and differentiable for all real numbersx.

4. ex > 0 for all values ofx.

5. e0 = 1, ande1 = e.

6. ex → 0 for increasing negative values ofx

7. ex → ∞ for increasing positive values ofx

8. The derivative ofex is ex.

9. By parts 3. and 6. above, the slope of the tangent toex at x = 0 is e0, which is 1.
This is shown in Figure 8.3
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e^x

tangent line 

-4.0 4.0

0.0

4.0

Figure 8.3. The functiony = ex has the property that its tangent line atx = 0
has slope 1. (Note that the horizontal scale on this graph is−4 < x < 4.)

8.7 An interesting observation
We have seen that the function

y = f(x) = ex

satisfies the relationship
dy

dx
= f ′(x) = f(x) = y

in other words, when differentiating, we get the same function back again.

The functiony = f(x) = ex is equal to its own derivative and hence, it satisfies the
equation

dy

dx
= y.

An equation of this type, linking a function and its derivative(s) is called adifferential
equation.

This is a new type of equation, unlike ones seen before in thiscourse. We will see
later in this course that such equations have important applications..

8.8 The natural logarithm, an inverse function for ex

We have defined a new functiony = f(x) = ex.
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Here is it’s inverse function, shown on Figure 8.4. We will call this function the
logarithm (basee), and write it as

y = f−1(x) = ln(x).

e^x

ln(x)

y=x

-4.0 4.0

-4.0

4.0

Figure 8.4.The functiony = ex is shown here with its inverse function,y = lnx.

We have the following connection:y = ex impliesx = ln(y).
The fact that the functions are inverses also implies that

eln(x) = x and ln(ex) = x.

Properties of the logarithm stem directly from properties of the exponential function,
and include the following:

1. ln(ab) = ln(a) + ln(b)

2. ln(ab) = b ln(a)

3. ln(1/a) = ln(a−1) = − ln(a)

The inverse function can be quite helpful in changing from one base to another.

Example 8.4 Rewritey = 2x in terms of basee.

Solution:
y = 2x ⇒ ln(y) = ln(2x) = x ln(2)
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eln(y) = ex ln(2) ⇒ y = ex ln(2)

We find (using a calculator) thatln(2) = 0.6931.. so we have

y = ekx where k = ln(2) = 0.6931..

Example 8.5 Find the derivative ofy = ekx.

Solution: The simple chain rule withu = kx leads to

dy

dx
=

dy

du

du

dx

but
du

dx
= k so

dy

dx
= euk = kekx.

This is a useful result, which we highlight for future use:

The derivative ofy = f(x) = ekx is f ′(x) = kekx

Example 8.6 Find the derivative ofy = 2x.

Solution: We have expressed this function in the alternate form

y = 2x = ekx

with k = ln(2). From example 2 we have

dy

dx
= kekx = ln(2)eln(2)x = ln(2)2x

Thus we now see that the constant obtained by computing this derivative from the definition
is actuallyC2 = ln(2).

8.9 How many bacteria
We can now return to our Andromeda strain and answer a question we had left unanswered:
How long will it take for the population to attain a size of6 · 1036 cells, i.e. to grow to an
Earth-sized colony.

We recall that the doubling time for the bacteria is20 min, so that one generation (or
one doubling occurs for every multiple oft/20). However, it is not necessarily true that all
cells will split in a synchronized way. This means that aftert minutes, we expect that the
number,B(t) of bacteria would be roughly given by the smooth function:

B(t) = 2t/20.

(Note that this function agrees with our previous table and graph for powers of 2 at all
integer multiples of the generation time, i.e. fort = 20, 40, 60, 80..minutes.)
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Example 8.7 How long will it take to reach sizeB = 6 · 1036?

Solution: We can compute this as follows:

6 · 1036 = 2t/20 ⇒ ln(6 · 1036) = ln(2t/20)

ln(6) + 36 ln(10) =
t

20
ln(2)

so

t = 20
ln(6) + 36 ln(10)

ln(2)
= 20

1.79 + 36(2.3)

0.693
= 2441.27

This is the time in minutes. In hours, it would take 2441.27/60 = 40.68 hours for the colony
to grow to such a size.

Example 8.8 (Using basee) Express the number of bacteria can in terms of basee (for
practice with base conversions).

Solution: We would do this as follows:

B(t) = 2t/20 ⇒ ln(B) =
t

20
ln(2)

eln(B(t)) = e
t
20

ln(2) ⇒ B(t) = ekt where k =
ln(2)

20
.

The constantk will be referred to as the growth rate of the bacteria. We observe that this
constant can be written as:

k =
ln(2)

doubling time
.

We will see the usefulness of this approach very soon.

8.10 Derivative of the natural logarithm
Here we use Implicit differentiation to find the derivative of the newly defined function,
y = ln(x) as follows: First, restate the relationship in the inverse form, but considery as
the dependent variable:

y = ln(x) ⇒ ey = x ⇒ d

dx
ey =

d

dx
x

Here we apply the chain rule:

dey

dy

dy

dx
= 1 ⇒ ey

dy

dx
= 1 ⇒ dy

dx
=

1

ey
=

1

x

We have thus shown the following:

The derivative ofln(x) is 1/x:

d ln(x)

dx
=

1

x
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8.11 Additional problems
8.11.1 Chemical reactions

According to the collision theory of bimolecular gas reactions, a reaction between two
molecules occurs when the molecules collide with energy greater than some activation
energy,Ea, referred to as the Arrhenius activation energy. We will assume thatEa > 0
is constant for the given substance. The fraction of bimolecular reactions in which this
collision energy is achieved is

F = e−(Ea/RT )

whereT is temperature (in degrees Kelvin) andR > 0 is the gas constant.

Example 8.9 Suppose that the temperatureT increases at some constant rateC per unit
time. Determine the rate of change of the fractionF of collisions that result in a successful
reaction.

Solution: We are given
F = e−(Ea/RT )

and
dT

dt
= C

Let u = −Ea/RT thenF = eu, We use the chain rule to calculate:

dF

dt
=

dF

du

du

dT

dT

dt

Further, we have
dF

du
= eu

du

dT
=

Ea

RT 2

Assembling these parts, we have

dF

dt
= eu

Ea

RT 2
C = C

Ea

R
T−2e−(Ea/RT ).
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Exercises
8.1. Graph the following functions:

(a) f(x) = x2e−x

(b) f(x) = ln(x2 + 3)

(c) f(x) = ln(e2x)

8.2. Express the following in terms of basee:

(a) y = 3x

(b) y = 1
7x

(c) y = 15x
2+2

Express the following in terms of base 2:

(d) y = 9x

(e) y = 8x

(f) y = −ex
2+3

Express the following in terms of base 10:

(g) y = 21x

(h) y = 1000−10x

(i) y = 50x
2−1

8.3. Compare the values of each pair of numbers (i.e. indicate which is larger):

(a) 50.75, 50.65

(b) 0.4−0.2, 0.40.2

(c) 1.0012, 1.0013

(d) 0.9991.5, 0.9992.3

8.4. Rewrite each of the following equations in logarithmicform:

(a) 34 = 81

(b) 3−2 = 1
9

(c) 27−
1
3 =

1

3
8.5. Solve the following equations forx:

(a) lnx = 2 lna+ 3 ln b

(b) loga x = loga b− 2
3 loga c

8.6. Reflections and transformations: What is the relationship between the graph of
y = 3x and the graph of each of the following functions?

(a)y = −3x (b) y = 3−x (c) y = 31−x

(d) y = 3|x| (e)y = 2 · 3x (e)y = log3 x

8.7. Solve the following equations forx:
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(a) e3−2x = 5

(b) ln(3x− 1) = 4

(c) ln(ln(x)) = 2

(d) eax = Cebx, wherea 6= b andC > 0.

8.8. Find the first derivative for each of the following functions:

(a) y = ln(2x+ 3)3

(b) y = ln3(2x+ 3)

(c) y = ln(cos 1
2x)

(d) y = loga(x
3 − 2x) (Hint :

d

dx
(loga x) =

1

x ln a
)

(e) y = e3x
2

(f) y = a−
1
2
x

(g) y = x3 · 2x

(h) y = ee
x

(i) y =
et − e−t

et + e−t

8.9. Find the maximum and minimum points as well as all inflection points of the fol-
lowing functions:

(a) f(x) = x(x2 − 4)

(b) f(x) = x3 − ln(x), x > 0

(c) f(x) = xe−x

(d) f(x) = 1
1−x + 1

1+x ,−1 < x < 1

(e) f(x) = x− 3 3
√
x

(f) f(x) = e−2x − e−x

8.10. Shown in Figure 10 is the graph ofy = Cekt for some constantsC, k, and a tangent
line. Use data from the graph to determineC andk.

8.11. Consider the two functions

(a) y1(t) = 10e−0.1t,

(b) y2(t) = 10e0.1t.

Which one is decreasing and which one is increasing? In each case, find the value
of the function att = 0. Find the time at which the increasing function has doubled
from this initial value. Find the time at which the decreasing function has fallen to
half of its initial value. [Remark: these values oft are called, the doubling time, and
the half-life, respectively]

8.12. Shannon Entropy: In a recent application of information theory to the field of
genomics, a function called the Shannon entropy,H , was considered. A given gene
is represented as a binary device: it can be either “on” or “off” (i.e. being expressed
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(0, 4)

(2, 0)

y = Cekt

Figure 8.5.Figure for Problem 10

or not). If x is the probability that the gene is “on” andy is the probability that it is
“off”, the Shannon entropy function for the gene is defined as

H = −x log(x) − y log(y)

[Remark: the fact thatx andy are probabilities, just means that they satisfy0 < x ≤
1, and0 < y ≤ 1.] The gene can only be in one of these two states, sox + y = 1.
Use these facts to show that the Shannon entropy for the gene is greatest when the
two states are equally probable, i.e. forx = y = 0.5.

8.13. A threshold function: The response of a regulatory gene to inputs that affect it is
not simply linear. Often, the following so called “squashing function” or “threshold
function” is used to link the inputx to the outputy of the gene.

y = f(x) =
1

1 + e(ax+b)

wherea, b are constants.

(a) Show that0 < y < 1.

(b) Forb = 0 anda = 1 sketch the shape of this function.

(c) How does the shape of the graph change asa increases?

8.14. Sketch the graph of the functiony = e−t sinπt.

8.15. The Mexican Hat: Find the critical points of the function

y = f(x) = 2e−x2 − e−x2/3

and determine the value off at those critical points. Use these results and the fact
that for very largex, f → 0 to draw a rough sketch of the graph of this function.
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Comment on why this function might be called “a Mexican Hat”.(Note: The sec-
ond derivative is not very informative here, and we will not ask you to use it for
determining concavity in this example. However, you may wish to calculate it just
for practice with the chain rule.)

8.16. The Ricker Equation: In studying salmon populations, a model often used is the
Ricker equation which relates the size of a fish population this year,x to the expected
size next yeary. (Note that these populations do not change continuously, since all
the parents die before the eggs are hatched.) The Ricker equation is

y = αxe−βx

whereα, β > 0. Find the value of the current population which maximizes the
salmon population next year according to this model.

8.17. Spacing in a fish school:Life in a social group has advantages and disadvantages:
protection from predators is one advantage. Disadvantagesinclude competition with
others for food or resources. Spacing of individuals in a school of fish or a flock of
birds is determined by the mutual attraction and repulsion of neighbors from one
another: each individual does not want to stray too far from others, nor get too
close.
Suppose that when two fish are at distancex > 0 from one another, they are attracted
with “force” Fa and repelled with “force”Fr given by:

Fa = Ae−x/a

Fr = Re−x/r

whereA,R, a, r are positive constants.A,R are related to the magnitudes of the
forces, anda, r to the spatial range of these effects.

(a) Show that at the distancex = a the first function has fallen to(1/e) times its
value at the origin. (Recalle ≈ 2.7.) For what value ofx does the second
function fall to(1/e) times its value at the origin? Note that this is the reason
why a, r are called spatial ranges of the forces.

(b) It is generally assumed thatR > A and r < a. Interpret what this mean
about the comparative effects of the forces and sketch a graph showing the two
functions on the same set of axes.

(c) Find the distance at which the forces exactly balance. This is called the com-
fortable distance for the two individuals.

(d) If eitherA orR changes so that the ratioR/A decreases, does the comfortable
distance increase or decrease? (Give reason.)

(e) Similarly comment on what happens to the comfortable distance ifa increases
or r decreases.

8.18. Seed distribution: The density of seeds at a distancex from a parent tree is ob-
served to be

D(x) = D0e
−x2/a2

,
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wherea > 0, D0 > 0 are positive constants. Insects that eat these seeds tend to
congregate near the tree so that the fraction of seeds that get eaten is

F (x) = e−x2/b2

whereb > 0. (Remark: These functions are called Gaussian or Normal distributions.
The parametersa, b are related to the “width” of these bell-shaped curves.) The
number of seeds that survive (i.e. are produced and not eatenby insects) is

S(x) = D(x)(1 − F (x))

Determine the distancex from the tree at which the greatest number of seeds survive.

8.19. Euler’s “ e”: In 1748, Euler wrote a classic book on calculus (“Introductio in
Analysin Infinitorum”) in which he showed that the functionex could be written
in an expanded form similar to an (infinitely long) polynomial:

ex = 1 + x+
x2

1 · 2 +
x3

1 · 2 · 3 + ...

Use as many terms as necessary to find an approximate value forthe numbere and
for 1/e to 5 decimal places. Remark: we will see later that such expansions, called
power series, are central to approximations of many functions.



Chapter 9

Exponential Growth and
Decay: Differential
Equations

9.1 Observations about the exponential function
In a previous chapter we made an observation about a special property of the exponential
function

y = f(x) = ex

namely, that
dy

dx
= ex = y

so that this function satisfies the relationship

dy

dx
= y.

We call this adifferential equation because it connects one (or more) derivatives of
a function with the function itself.

In this chapter we will study the implications of the above observation. Since most
of the applications that we examine will be time-dependent processes, we will here uset
(for time) as the independent variable.

Then we can make the following observations:

1. Lety be the function of time:
y = f(t) = et

Then
dy

dt
= et = y

With this slight change of notation, we see that the functiony = et satisfies the
differential equation

dy

dt
= y.

161
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2. Now consider
y = ekt.

Then, using the chain rule, and settingu = kt, andy = eu we find that

dy

dt
=

dy

du

du

dt
= eu · k = kekt = ky.

So we see that the functiony = ekt satisfies the differential equation

dy

dt
= ky.

3. If instead we had the function
y = e−kt

we could similarly show that the differential equation it satisfies is

dy

dt
= −ky.

4. Now suppose we had a constant in front, e.g. we were interested in the function

y = 5ekt.

Then, by simple differentiation and rearrangement we have

dy

dt
= 5

d

dt
ekt = 5(kekt) = k(5ekt) = ky.

So we see that this function with the constant in frontalso satisfies the differential
equation

dy

dt
= ky.

5. The conclusion we reached in the previous step did not depend at all on the constant
out front. Indeed, if we had started with a function of the form

y = Cekt

whereC is any constant, we would still have a function that satisfiesthe same differ-
ential equation.

6. While we will not prove this here, it turns out that these are theonly functions that
satisfy this equation.

The differential equation
dy

dt
= ky (9.1)

has as its solution, the function

y = Cekt (9.2)
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(a) (b)

Figure 9.1. Functions of the formy = Cekt (a) for k > 0 these represent expo-
nentially growing solutions, whereas (b) fork < 0 they represent exponentially decaying
solutions.

A few comments are worth making: First, unlikealgebraicequations, (whose solu-
tions are numbers),differential equations have solutions that arefunctions. We have seen
above that depending on the constantk, we get either functions with a positive or with a
negative exponent (assuming that timet > 0). This leads to the two distinct types of be-
haviour,exponential growthor exponential decayshown in Figures 9.1(a) and (b). In each
of these figures we see afamilyof curves, each of which represents a function that satisfies
one of the differential equations we have discussed.

9.2 The solution to a differential equation

Definition 9.1 (Solution to a differential equation). By asolution to a differential equa-
tion, we mean a function that satisfies that equation.

In the previous section we have seen a collection of solutions to each of the differen-
tial equations we discussed. For example, each of the curvesshown in Figure 9.1(a) share
the property that they satisfy the equation

dy

dt
= ky.

We now ask: what distinguishes one from the other? More specifically, how could we
specify one particular member of this family as the one of interest to us? As we saw above,
the differential equation does not distinguish these: we need some additional information.
For example, if we had some coordinates, say(a, b) that the function of interest should go
through, this would select one function out of the collection. It is common practice (though
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not essential) to specify the starting value orinitial value of the function i.e. its value at
time t = 0.

Definition 9.2 (Initial value). An initial value is the value at timet = 0 of the desired
solution of a differential equation.

Example 9.3 Suppose we are given the differential equation (9.1) and theinitial value

y(0) = y0

wherey0 is some (known) fixed value. Find the value of the constantC in the solution
(9.2).

Solution: We proceed as follows:

y(t) = Cekt, so y(0) = Cek·0 = Ce0 = C · 1 = C

but, by the initial condition,y(0) = y0. So then,

C = y0

and we have established that
y(t) = y0e

kt,

wherey0 is the initial value.

9.3 Where do differential equations come from?
Figure 9.2 shows how differential equations arise in scientific investigations. The process of
going from initial vague observations about a system of interest (such as planetary motion)
to a mathematical model, often involves a great deal of speculation, at first, about what is
happening, what causes the motion or the changes that take place, and what assumptions
might be fruitful in trying to analyze and understand the system.

Once the cloud of doubt and vague ideas settles somewhat, andonce the right sim-
plifying assumptions are made, we often find that the mathematical model leads to a differ-
ential equation. In most scientific applications, it may then be a huge struggle to figure out
which functions would be the appropriate class of solutionsto that differential equation,
but if we can find those functions, we are in position to make quantitative predictions about
the system of interest.

In our case, we have stumbled on a simple differential equation by noticing a property
of functions that we were already familiar with. This is a lucky accident, and we will exploit
it in an application shortly.

In many cases, the process of modelling hardly stops when we have found the link
between the differential equation and solutions. Usually,we would then compare the pre-
dictions to observations that may help us to refine the model,reject incorrect or inaccurate
assumptions, or determine to what extent the model has limitations.

A simple example of population growth modelling is given as motivation for some of
the ideas seen in this discussion.
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Scientific
problem 
    or
system

Facts,
observations,
assumptions,
hypotheses

"Laws of Nature"
         or
statements about
rates of change

Mathematical

system
describing the
equation(s)
Differential 

equations
differential
to the
Solutions

Predictions
about the
system 
behaviour

      Model

Figure 9.2. A “flow chart” showing how differential equations originatefrom
scientific problems.

9.4 Population growth
In this section we will examine the way that a simple differential equation arises when we
study the phenomenon of population growth.

We will let N(t) be the number of individuals in a population at timet. The pop-
ulation will change with time. Indeed the rate of change ofN will be due to births (that
increaseN ) and deaths (that decrease it).

Rate of change of N= Rate of births− Rate of deaths

We will assume that all individuals are identical in the population, and that the av-
erageper capita birth rate , r, and averageper capita mortality rate , m are some fixed
positive constants. That is

r = per capita birth rate=
number births per year

population size
,

m = per capita mortality rate=
number deaths per year

population size
.

We will refer to such constants asparameters. In general, for a given population, these
would have certain numerical values that one could obtain byexperiment, by observation,
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or by simple assumptions. In the next section, we will show how a set of assumptions
would lead to such values.

Then the total number of births into the population in yeart is rN , and the total num-
ber of deaths out of the population in yeart is mN . The rate of change of the population
as a whole is given by the derivativedN/dt. Thus we have arrived at:

dN

dt
= rN −mN.

This is a differential equation: it links the derivative ofN(t) to the functionN(t).
By solving the equation (i.e. identifying its solution), wewill be able to make a projection
about how fast the world population is growing.

We can first simplify the above by noting that

dN

dt
= rN −mN = (r −m)N = kN.

where
k = (r −m).

This means that we have shown that the population satisfies a differential equation of the
form

dN

dt
= kN,

providedk is the so-called “net growth rate”, i.e birth rate minus mortality rate. This leads
us to the following conclusions:

• The function that describes population over time is (by previous results) simply

N(t) = N0e
kt.

(The result is identical to what we saw previously, but withN rather thany as the
time-dependent function.)

• We are no longer interested in negative values ofN since it now represents a quantity
that has to be positive to have biological relevance, i.e. population size.

• The population will grow providedk > 0 which happens whenr−m > 0 i.e. when
the per capita birth rate,r exceeds the per capita mortality ratem.

• If k < 0, or equivalently,r < m then more people die on average than are born, so
that the population will shrink and (eventually) go extinct.

9.5 Human population growth: a simple model
We have seen how a statement about changes that take place over time can lead to the
formulation of a differential equation. In this section, wewill estimate the values of the
parameters for the birth rate,r and the mortality rate,m.

To do so, we must make some simplifying assumptions:



9.5. Human population growth: a simple model 167

Assumptions:

• The age distribution of the population is “flat”, i.e. there are as many 10 year-olds
as 70 year olds. (This is quite inaccurate, but will be a good place to start, as it
will be easy to estimate some of the quantities we need.) Figure 9.3 shows such a
distribution.

age
0 80

number 
of people

Figure 9.3. We assume a “flat” age distribution to make it easy to determine the
fraction of people who give birth or die.

• The sex ratio is roughly 50%. This means that half of the population is female and
half male.

• Women are fertile and can have babies only during part of their lives: We will assume
that the fertile years are between age 15 and age 55, as shown in Figure 9.4.

age
0 80

number 
of people

15       55

fertile

Figure 9.4. Only fertile women (between the ages of 15 and 55 years old) give
birth. This sketch shows that half of all women are between these ages.

• A lifetime lasts 80 years. This means that for half of that time a given woman can
contribute to the birth rate, or that (55-15)/80=50% of women alive at any time are
able to give birth.

• During a woman’s fertile years, we’ll assume that on average, she has one baby every
10 years. (This is also a suspect assumption, since in the Western world, a woman
has on average 2-2.3 children over her lifetime, while in theDeveloping nations, the
number of children per woman is much higher. )

Based on the above assumptions, we can estimate the parameter r as follows:
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r =
number women

population
· years fertile

years of life
· number babies per woman

number of years
Thus we compute that

r =
1

2
· 1
2
· 1

10
= 0.025 babies per person per year.

Thus, we have arrived at an approximate value for human per capita birth rate.
We can now estimate the mortality.

• We also assume that deaths occur only from old age (i.e. we ignore disease, war,
famine, and child mortality.)

• We assume that everyone lives precisely to age 80, and then dies instantly. (Not an
assumption our grandparents would happily live with!)

age
0 80

number 
of people mortality

occurs here

Figure 9.5. We assume that the people in the age bracket 79-80 years old all die
each year, and that those are the only deaths.

But, with the flat age distribution shown in Figure 9.3, therewould be a fraction of
1/80 of the population who are precisely removed by mortality every year (i.e. only those
of age 80.) In this case, we can estimate that the per capita mortality is:

m =
1

80
= 0.0125

Putting our results together, we have the net growth ratek = r − m = 0.025 −
0.0125 = 0.0125 per person per year. In the context of such growth problems, we will
often refer to the constantk as therate constant, or thegrowth rate of the population.

Example 9.4 Using the results of this section, find a prediction for the population size
N(t) as a function of timet.

Solution: We have found that our population satisfies the equation

dN

dt
= 0.0125N

so that
N(t) = N0e

0.0125t

whereN0 is the starting population size. Figure 9.6 illustrates howthis function behaves,
using a starting value ofN(0) = N0 = 6 billion.



9.6. Growth and doubling 169

6

8

10

12

14

16

18

20

20 40 60 80 100

t

Figure 9.6.Projected world population over the next 100 years or so.

9.6 Growth and doubling
We ask how long it would take for a population to double given that it is growing exponen-
tially, with growth ratek, as described above. That is, we ask at what timet it would be
true thatn reaches twice its starting value, i.e.N(t) = 2N0. We determine this time as
follows:

N(t) = 2N0

but
N(t) = N0e

kt

so the population has doubled whent satisfies

2N0 = N0e
kt, ⇒ 2 = ekt

Taking the natural log of both sides leads to

ln(2) = ln(ekt) = kt.

Thus, thedoubling time, which we’ll call τ is:

τ =
ln(2)

k
.

Example 9.5 (Human population doubling time) Determine the doubling time for the
human population based on the results of our approximate growth model.

Solution: We have found a growth rate of roughlyk = 0.0125 for the human population.
Based on this, it would take

τ =
ln(2)

0.0125
= 55.45 years

for the population to double.
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In general, an equation of the form

dy

dt
= ky

that represents an exponential growth will have a doubling time of

τ =
ln(2)

k
.

t

y

y

2y

o

o

τ

Figure 9.7.Doubling time for exponential growth.

This is shown in Figure 9.7. The interesting thing that we discovered is that the
population doublesevery 55 years! So that, for example, after 110 years there have been
two doublings, or a quadrupling of the population.

Example 9.6 (Human population in 100 years)Determine what the population growth
model predicts will be the human population level in 100 years?

Solution: Suppose that currentlyN(0) = 6 billion. Then in billions,

N(t) = 6e0.0125t

so that whent = 100 we would have

N(100) = 6e0.0125·100 = 6e1.25 = 6 · 3.49 = 20.94

Thus, with population around the 6 billion now, we should seeabout 21 billion people on
Earth in 100 years.

Example 9.7 (A ten year doubling time) Suppose we are told that some animal popula-
tion doubles every 10 years. What growth rate would lead to such a trend?

Solution: Rearranging

t2 =
ln(2)

k
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we obtain

k =
ln(2)

t2
=

0.6931

10
≈ 0.07.

Thus, we may say that a growth rate of 7% leads to doubling roughly every 10 years.

9.6.1 A critique

Before leaving our population model, we should remember that our projections hold only so
long as some rather restrictive assumptions are made. We have made many simplifications,
and ignored many features that would seriously affect theseresults.

These include variations in the birth and mortality rates that stem from competition
for the Earth’s resources, epidemics that take hold when crowding occurs, uneven distri-
butions of resources or space, and other factors. We have also assumed that the age dis-
tribution is uniform (flat), but that is clearly wrong: the population grows only by adding
new infants, and this would skew the distribution even if it starts out uniform. All these
factors would lead us to be skeptical, and to eventually think about more advanced ways of
describing the population growth.

9.7 Exponential decay and radioactivity
A radioactive material consists of atoms that undergo a spontaneous change. Every so
often, an atom will emit a particle, and change to another form. We call this a process of
radioactive decay.

For any one atom, it is impossible to predict when this event would occur. However,
if we have very many atoms, on average some fraction,k, will undergo this decay during
any given unit time. (This fraction will depend on the material.) This means thatky of the
amount will be lost per unit time.

We will definey(t) to be the amount of radioactivity remaining at timet. This quan-
tity can be measured with Geiger counters, and will depend ontime. In the decay process,
radioactivity will be continually lost. Thus

[rate of change of y] = −[amount lost per unit time] ⇒ dy

dt
= −ky.

We see again, a (by now) familiar differential equation.
Suppose that initially, there was an amounty0. Then the initial condition that comes

with this differential equation is
y(0) = y0.

From familiarity with the differential equation, we know that the function that satisfies it
will be

y(t) = Ce−kt

and using the initial condition will specify that

y(t) = y0e
−kt.

For k > 0 a constant, this is a decreasing function of time that we refer to as exponential
decay.
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9.7.1 The half life

Given a process of exponential decay, we can ask how long it would take for half of the
original amount to remain. That is, we look fort such that

y(t) =
y0
2
.

We will refer to the value oft that satisfies this as thehalf life .

Example 9.8 (Half life) Determine the half life in the exponential decay described above

Solution: We compute:
y0
2

= y0e
−kt ⇒ 1

2
= e−kt

Now taking reciprocals:

2 =
1

e−kt
= ekt.

Thus we find the same result as in our calculation for doublingtimes, namely,

ln(2) = ln(ekt) = kt

so that the half life is

τ =
ln(2)

k
.

This is shown in Figure 9.8.

t

y

τ

y

y /2ο

ο

Figure 9.8.Half-life in an exponentially decreasing process.

Example 9.9 (Chernobyl: April 1986) In 1986 the Chernobyl nuclear power plant ex-
ploded, and scattered radioactive material over Europe. Ofparticular note were the two
radioactive elements iodine-131 (I131) whose half-life is 8 days and cesium-137 (Cs137)
whose half life is 30 years. Use the model for radioactive decay to predict how much of
this material would remain over time.
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Solution: We first determine the decay constants for each of these two elements, by noting
that

k =
ln(2)

τ

and recalling thatln(2) ≈ 0.693. Then for I131 we have

k =
ln(2)

τ
=

ln(2)

8
= 0.0866 per day.

This means that fort measured in days, the amount of I131 left at timet would be

yI(t) = y0e
−0.0866t.

For Cs137

k =
ln(2)

30
= 0.023 per year.

so that forT in years,
yC(t) = y0e

−0.023T .

(We have usedT rather thant to emphasize that units are different in the two calculations
done in this example.

Example 9.10 (Decay to0.1% of the initial level) How long it would take for I131 to de-
cay to 0.1 % of its initial level, just after the explosion at Chernobyl?

Solution: We must calculate the timet such thatyI = 0.001y0:

0.001y0 = y0e
−0.0866t ⇒ 0.001 = e−0.0866t ⇒ ln(0.001) = −0.0866t.

Therefore,

t =
ln(0.001)

−0.0866
=

−6.9

−0.0866
= 79.7days

Thus it would take about 80 days for the level of Iodine-131 todecay to 0.1 % of its initial
level.

9.8 Checking (analytic) solutions to a differential
equation

By analytic solution, we mean a “formula” in the formy = f(x). We have seen a number
of examples of simple differential equations in this chapter, and our main purpose was to
show how these arise in the context of a physical or biological process of growth or decay.
Most of these examples led to the differential equation

dy

dt
= ky

and therefore, by our observations, to its analytic solution, the exponential function

y = f(t) = Cekt.
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However, as we will see, there can be many distinct types of differential equations,
and it may not always be clear which function is a solution. Finding the correct solution
can be quite challenging, even to professional mathematicians. We mention two ideas that
are sometimes helpful.

In some cases, we encounter a new differential equation, andwe are given a function
that is believed to satisfy that equation. We can always check and verify that this claim is
correct (or find it incorrect) by simple differentiation.

Newtons Law of Cooling

Newton’s Law of Cooling states that the rate of change of the temperature of an objectT ,
is proportional to the difference between the ambient (environment) temperature,E, and
the temperature of the object,T . If the temperature of the environment is constant, and
the objects starts out at temperatureT0 initially, then the differential equation and initial
condition describing this process is

dT

dt
= k(E − T ), T (0) = T0. (9.3)

The parameterk is a constant that represents the properties of the material. (Some objects
conduct heat better than others, and thus cool off or heat up more quickly. The reader
should be able to figure out that these types of objects have higher values ofk, as this
implies larger rates of change per unit time.) We study properties of this equation later, but
here we show how to check which of two possible functions are its solutions.

Example 9.11 (Candidate 1:)Consider the functionT (t) = T0e
−kt. Show that this sim-

ple exponential functionis NOT usually a solution to the differential equation (9.3) for
Newton’s Law of Cooling.

Solution: We observe, first that this function does satisfy the initialcondition,T (0) = T0

by pluggingt = 0 into the function:

T (0) = T0e
−k·0 = T0.

Next, by simply differentiating the above “candidate function”, we find that its derivative
is

dT

dt
= −T0ke

−kt.

To satisfy the differential equation, we must have

dT

dt
= k(E − T ).

The term on the right hand side would lead to the expression

k(E − T0e
−kt)

once the candidate functionT (t) is substituted forT . However, in general,

dT

dt
= −T0ke

−kt 6= k(E − T0e
−kt).



9.9. Finding (numerical) solutions to a differential equation 175

(Only in the case thatE = 0 do the two sides match, but for arbitrary ambient temperature,
this is not the case.) Thus the simple exponential functionT (t) = T0e

−kt is NOT a
solution to this differential equation whenE 6= 0.

Example 9.12 (Candidate 2:)Show that the modified exponential function

T (t) = E + (T0 − E)e−kt

is a solution to the differential equation and initial value.

Solution: Note, first, that by plugging in the initial time,t = 0, we have

T (0) = E + (T0 − E)e−k·0 = E + (T0 − E) · 1 = E + (T0 − E) = T0.

Thus the initial condition is satisfied.
Second, note that the derivative of this function is

dT

dt
=

d

dt

(

E + (T0 − E)e−kt
)

= −k(T0 − E)e−kt.

(This follows from the fact thatE is a constant,(T0−E) is constant, and from the chain rule
applied to the exponent−kt.) The term on the right hand side of the differential equation
leads to

k(E − T ) = k(E − [E + (T0 − E)e−kt]) = −k(T0 − E)e−kt.

We now observe agreement between the terms obtained from each of the right and left
hand sides of the differential equation, applied to the above function. We conclude that
the differential equation is satisfied, so that indeed this candidate function is a solution, as
claimed.

As shown in Example 9.12, if we are told that a function is a solution to a differential
equation, we can check the assertion and verify that it is correct or incorrect. A much
more difficult task is to find the solution of a new differential equation from first principles.
In some cases, the technique of integration, learned in second semester calculus, can be
used. In other cases, some transformation that changes the problem to a more familiar
one is helpful. (An example of this type is presented in Chapter 13). In many cases,
particularly those of so-called non-linear differential equations, it requires great expertise
and familiarity with advanced mathematical methods to find the solution to such problems
in an analytic form, i.e. as an explicit formula. In such cases, approximation and numerical
methods are helpful.

9.9 Finding (numerical) solutions to a differential
equation

In cases where it is difficult or impossible to find the desiredsolution with guesses, inte-
gration methods, or from previous experience, we can use approximation methods and nu-
merical computations to do the job. Most of these methods rely on the fact that derivatives
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can be approximated by finite differences. For example, suppose we are given a differential
equation of the form

dy

dt
= f(y)

with initial valuey(0) = y0, can be approximated by selecting a set of time pointst1, t2, . . . ,
which are spaced apart by time steps of size∆t, and replacing the differential equation by
the approximatefinite differenceequation

y1 − y0
∆t

= f(y0).

This relies on the approximation
dy

dt
≈ ∆y

∆t
,

which is a relatively good approximation for small step size∆t. Then by rearranging this
approximation, we find that

y1 = y0 + f(y0)∆t.

Knowing the quantities on the right allows us to compute the value ofy1, i.e. the value of
the approximate “solution” at the time pointt1. We can then continue to generate the value
at the next time point in the same way, by approximating the derivative again as a secant
slope. This leads to

y2 = y1 + f(y1)∆t.

The approximation so generated, leading to valuesy1, y2, . . . is calledEuler’s method.
We explore an application of this method to Newton’s law of cooling in chapter 13. In lab
5, the reader is invited to try out this method on the simple differential equation for expo-
nential growth that was discussed in this chapter.
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Exercises
9.1. A differential equation is an equation in which some function is related to its own

derivative(s). For each of the following functions, calculate the appropriate deriva-
tive, and show that the function satisfies the indicateddifferential equation

(a) f(x) = 2e−3x, f ′(x) = −3f(x)

(b) f(t) = Cekt, f ′(t) = kf(t)

(c) f(t) = 1− e−t, f ′(t) = 1− f(t)

9.2. Consider the functiony = f(t) = Cekt whereC andk are constants. For what
value(s) of these constants does this function satisfy the equation

(a) dy
dt = −5y,

(b) dy
dt = 3y.

[Remark: an equation which involves a function and its derivative is called a differ-
ential equation.]

9.3. Find a function that satisfies each of the followingdifferential equations. [Remark:
all your answers will be exponential functions, but they mayhave different depen-
dent and independent variables.]

(a)
dy

dt
= −y,

(b)
dc

dx
= −0.1c andc(0) = 20,

(c)
dz

dt
= 3z andz(0) = 5.

9.4. If 70% of a radioactive substance remains after one year, find its half-life.

9.5. Carbon 14: Carbon 14 has a half-life of 5730 years. This means that after5730
years, a sample of Carbon 14, which is a radioactive isotope of carbon will have lost
one half of its original radioactivity.

(a) Estimate how long it takes for the sample to fall to roughly 0.001 of its original
level of radioactivity.

(b) Each gram of14C has an activity given here in units of 12 decays per minute.
After some time, the amount of radioactivity decreases. Forexample, a sample
5730 years old has only one half the original activity level,i.e. 6 decays per
minute. If a 1 gm sample of material is found to have 45 decays per hour,
approximately how old is it? (Note:14C is used in radiocarbon dating, a
process by which the age of materials containing carbon can be estimated.
W. Libby received the Nobel prize in chemistry in 1960 for developing this
technique.)

9.6. Strontium-90: Strontium-90 is a radioactive isotope with a half-life of 29years.
If you begin with a sample of 800 units, how long will it take for the amount of
radioactivity of the strontium sample to be reduced to
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(a) 400 units

(b) 200 units

(c) 1 unit

9.7. More radioactivity: The half-life of a radioactive material is 1620 years.

(a) What percentage of the radioactivity will remain after 500 years?

(b) Cobalt 60 is a radioactive substance with half life 5.3 years. It is used in
medical application (radiology). How long does it take for 80% of a sample of
this substance to decay?

9.8. Assume the atmospheric pressurey at a heightx meters above the sea level satisfies

the relation
dy

dx
= kx. If one day at a certain location the atmospheric pressures

are760 and675 torr (unit for pressure) at sea level and at1000 meters above sea
level, respectively, find the value of the atmospheric pressure at600 meters above
sea level.

9.9. Population growth and doubling: A population of animals has a per-capita birth
rate ofb = 0.08 per year and a per-capita death rate ofm = 0.01 per year. The
population density,P (t) is found to satisfy the differential equation

dP (t)

dt
= bP (t)−mP (t)

(a) If the population is initiallyP (0) = 1000, find how big the population will be
in 5 years.

(b) When will the population double?

9.10. Rodent population: The per capita birthrate of one species of rodent is 0.05 new-
borns per day. (This means that, on average, each member of the population will
result in 5 newborn rodents every 100 days.) Suppose that over the period of 1000
days there are no deaths, and that the initial population of rodents is 250. Write a
differential equation for the population sizeN(t) at timet (in days). Write down the
initial condition thatN satisfies. Find the solution, i.e. expressN as some function
of time t that satisfies your differential equation and initial condition. How many
rodents will there be after 1 year ?

9.11. Growth and extinction of microorganisms:

(a) The populationy(t) of a certain microorganism grows continuously and fol-
lows an exponential behaviour over time. Its doubling time is found to be
0.27 hours. What differential equation would you use to describe its growth
? (Note: you will have to find the value of the rate constant,k, using the
doubling time.)

(b) With exposure to ultra-violet radiation, the population ceases to grow, and the
microorganisms continuously die off. It is found that the half-life is then 0.1
hours. What differential equation would now describe the population?

9.12. A bacterial population: A bacterial population grows at a rate proportional to the
population size at timet. Let y(t) be the population size at timet. By experiment it
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is determined that the population att = 10 min is 15, 000 and att = 30 min it is
20, 000.

(a) What was the initial population?

(b) What will the population be at timet = 60min?

9.13. Antibiotic treatment: A colony of bacteria is treated with a mild antibiotic agent so
that the bacteria start to die. It is observed that the density of bacteria as a function of
time follows the approximate relationshipb(t) = 85e−0.5t wheret is time in hours.
Determine the time it takes for half of the bacteria to disappear (This is called the
half life.) Find how long it takes for 99% of the bacteria to die.

9.14. Chemical breakdown: In a chemical reaction, a substance S is broken down. The
concentration of the substance is observed to change at a rate proportional to the cur-
rent concentration. It was observed that 1 Mole/liter of S decreased to 0.5 Moles/liter
in 10 minutes. How long will it take until only 0.25 Moles per liter remain? Until
only 1% of the original concentration remains?

9.15. Two populations: Two populations are studied. Population1 is found to obey the
differential equation

dy1/dt = 0.2y1

and population2 obeys
dy2/dt = −0.3y2

wheret is time in years.

(a) Which population is growing and which is declining?

(b) Find the doubling time (respectively half-life) associated with the given popu-
lation.

(c) If the initial levels of the two populations werey1(0) = 100 andy2(0) =
10, 000, how big would each population be at timet ?

(d) At what time would the two populations be exactly equal?

9.16. The human population: The human population on Earth doubles roughly every 50
years. In October 2000 there were 6.1 billion humans on earth. Determine what the
human population would be 500 years later under the uncontrolled growth scenario.
How many people would have to inhabit each square kilometer of the planet for this
population to fit on earth? (Take the circumference of the earth to be 40,000 km for
the purpose of computing its surface area.)

9.17. First order chemical kinetics: When chemists say that a chemical reaction follows
“first order kinetics”, they mean that the concentration of the reactant at timet, i.e.
c(t), satisfies an equation of the formdcdt = −rc wherer is a rate constant, here
assumed to be positive. Suppose the reaction mixture initially has concentration 1M
(“1 molar”) and that after 1 hour there is half this amount.

(a) Find the “half life” of the reactant.

(b) Find the value of the rate constantr.

(c) Determine how much will be left after 2 hours.

(d) When will only 10% of the initial amount be left?
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9.18. Fish in two lakes: Two lakes have populations of fish, but the conditions are quite
different in these lakes. In the first lake, the fish population is growing and satisfies
the differential equation

dy

dt
= 0.2y

wheret is time in years. At timet = 0 there were 500 fish in this lake. In the second
lake, the population is dying due to pollution. Its population satisfies the differential
equation

dy

dt
= −0.1y,

and initially there were 4000 fish in this lake. At what time will the fish populations
in the two lakes be identical?

9.19. A barrel initially contains2 kg of salt dissolved in20 L of water. If water flows in
the rate of0.4 L per minute and the well-mixed salt water solution flows out atthe
same rate. How much salt is present after8 minutes?

9.20. A savings account: You deposit a sumP (“the Principal”) in a savings account
with an annualinterest rate, r and make no withdrawals over the first year. If the
interest iscompounded annually, after one year the amount in this account will be

A(1) = P + rP = P (1 + r).

If the interest is compounded semi-annually (once every 1/2year), then every 6
months half of the interest is added to your account, i.e.

A

(

1

2

)

= P +
r

2
P = P

(

1 +
r

2

)

A(1) = A

(

1

2

)

(

1 +
r

2

)

= P
(

1 +
r

2

)(

1 +
r

2

)

= P
(

1 +
r

2

)2

(a) Suppose that you invest $500 in an account with interest rate 4% compounded
semi-annually. How much money would you have after 6 months?After 1
year ? After 10 years ? Roughly how long does it take to double your money
in this way? How would it differ if the interest was 8% ?

(b) Interest can also be compounded more frequently, for example monthly (i.e.
12 times per year, each time with an increment ofr/12). Answer the questions
posed in part (a) in this case

(c) Is it better to save your money in a bank with 4% interest compoundedmonthly,
or 5% interest compounded annually?



Chapter 10

Trigonometric functions

In this chapter we will explore periodic and oscillatory phenomena. The trigonometric
functions will be the basis for much of what we construct, andhence, we first introduce
these and familiarize ourselves with their properties.

10.1 Introduction: angles and circles
Angles can be measured in a number of ways. One way is to assigna value in degrees, with
the convention that one complete revolution is representedby 360◦. Why 360? And what is
a degree exactly? Is this some universal measure that any intelligent being (say on Mars or
elsewhere) would find appealing? Actually, 360 is a rather arbitrary convention that arose
historically, and has no particular meaning. We could as easily have had mathematical
ancestors that decided to divide circles into 1000 “equal pieces” or 240 or some other
subdivision. It turns out that this measure is not particularly convenient, and we will replace
it by a more universal quantity.

The universal quantity stems from the fact that circles of all sizes have one common
geometric feature: they have the same ratio of circumference to diameter, no matter what
their size (or where in the universe they occur). We call thatratioπ, that is

π =
Circumference of circle

Diameter of circle

The diameterD of a circle is just
D = 2r

so this naturally leads to the familiar relationship of circumference,C, to radius,r,

C = 2πr

(But we should not forget that this is merely adefinitionof the constantπ. The more
interesting conclusion that develops from this definition is that the area of the circle is
A = πr2, but we shall see the reason for this later, in the context of areas and integration.)

181
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θ

s

Figure 10.1.The angleθ in radians is related in a simple way to the radiusR of
the circle, and the length of the arcS shown.

From Figure 10.1 we see that there is a correspondence between the angle (θ) sub-
tended in a circle of given radius and the length of arc along the edge of the circle. For a
circle of radius R and angleθ we will define the arclength,S by the relation

S = Rθ

whereθ is measured in a convenient unit that we will now select. We now consider a circle
of radiusR = 1 (called aunit circle) and denote bys a length of arc around the perimeter
of this unit circle. In this case, the arc length is

S = Rθ = θ

We note that whenS = 2π, the arc consists of the entire perimeter of the circle. This
leads us to define the unit called aradian: we will identify an angle of2π radians with one
complete revolution around the circle. In other words, we use the length of the arc in the
unit circle to assign a numerical value to the angle that it subtends.

We can now use this choice of unit for angles to assign values to any fraction of a
revolution, and thus, to any angle. For example, an angle of90◦ corresponds to one quarter
of a revolution around the perimeter of a unit circle, so we identify the angleπ/2 radians
with it. One degree is1/360 of a revolution, corresponding to2π/360 radians, and so on.

To summarize our choice of units we have the following two points:

1. The length of an arc along the perimeter of a circle of radiusR subtended by an
angleθ is S = Rθ whereθ is measured in radians.

2. One complete revolution, or one full cycle corresponds to anangle of2π radians.

It is easy to convert between degrees and radians if we remember that360◦ corre-
sponds to2π radians. For example,180◦ then corresponds toπ radians,90◦ toπ/2 radians,
etc.
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10.2 Defining the basic trigonometric functions

t
t

y

x

(x,y)

1

Figure 10.2. Shown above is the circle of radius 1,x2 + y2 = 1. The radius
vector that ends at the point(x, y) subtends an anglet (radians) with thex axis. The
triangle is also shown enlarged to the right, where the lengths of all three sides is labeled.
The trigonometric functions are just ratios of two sides of this triangle.

adjacent

hypotenuse

θ op
po

si
te sin    = opp/hyp

cos    =adj/hyp

tan    =opp/adj

θ

θ

θ

Figure 10.3. Review of the relation between ratios of side lengths (in a right
triangle) and trigonometric functions of the associated angle.

Consider a point(x, y) on a circle of radius 1, and lett be some angle (measured
in radians) formed by thex axis and the radius vector to the point(x, y) as shown in
Figure 10.2.

We will define two new functions, sine and cosine (abbreviated sin andcos) as fol-
lows:

sin(t) =
y

1
= y, cos(t) =

x

1
= x

That is, the function sine tracks they coordinate of the point as it moves around the unit
circle, and the function cosine tracks itsx coordinate. (Remark: this agrees with previous
definitions of these trigonometric quantities as shown in Figure 10.3 as the opposite over
hypotenuse and adjacent over hypotenuse in a right angle triangle that you may have en-
countered in high school. The hypotenuse in our diagram is simply the radius of the circle,
which is 1 by assumption.)
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degrees radians sin(t) cos(t) tan(t)
0 0 0 1 0

30 π
6

1
2

√
3
2

1√
3

45 π
4

√
2
2

√
2
2 1

60 π
3

√
3
2

1
2

√
3

90 π
2 1 0 ∞

Table 10.1.Values of the sines, cosines, and tangent for the standard angles.

10.3 Properties of the trigonometric functions
We now explore the consequences of these definitions:

Values of sine and cosine

• The radius of the circle is 1. This means that thex coordinate cannot be larger
than 1 or smaller than -1. Same holds for they coordinate. Thus the functions
sin(t) andcos(t) are always swinging between -1 and 1. (−1 ≤ sin(t) ≤ 1 and
−1 ≤ cos(t) ≤ 1 for all t). The peak (maximum) value of each function is 1, the
minimum is -1, and the average value is 0.

• When the radius vector points along thex axis, the angle ist = 0 and we have
y = 0, x = 1. This means thatcos(0) = 1, sin(0) = 0.

• When the radius vector points up they axis, the angle isπ/2 (corresponding to
one quarter of a complete revolution), and herex = 0, y = 1 so thatcos(π/2) =
0, sin(π/2) = 1.

• Using simple geometry, we can also determine the lengths of all sides, and hence the
ratios of the sides in a few particularly simple triangles, namely triangles (in which
all angles are60◦), and right triangles with two equal angles of45◦. These types of
calculations (omitted here) lead to some easily determinedvalues for the sine and
cosine of such special angles. These values are shown in the Table 10.1.

Connection between sine and cosine

• The two functions, sine and cosine depict the same underlying motion, viewed from
two perspectives:cos(t) represents the projection of the circularly moving point onto
thex axis, whilesin(t) is the projection of that point onto they axis. In this sense, the
functions are a pair of twins, and we can expect many relationships to hold between
them.

• The cosine has its largest value at the beginning of the cycle, whent = 0 (since
cos(0) = 1), while the other the sine its peak value a little later, (sin(π/2) = 1).



10.3. Properties of the trigonometric functions 185

–1
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1
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t

Figure 10.4. The functionssin(t) and cos(t) are periodic, that is, they have a
basic pattern that repeats. The two functions are also related, since one is just a copy of
the other, shifted along thex axis.

Throughout their circular race, the sine function isπ/2 radians ahead of the cosine
i.e.

cos(t) = sin(t+
π

2
).

• The point(x, y) is on a circle of radius 1, and, thus, its coordinates satisfy

x2 + y2 = 1

This implies that
sin2(t) + cos2(t) = 1

for any anglet. This is an important relation, (also called anidentitybetween the two
trigonometric functions, and one that we will use quite often.

Periodicity: the pattern repeats

• A function is said to beperiodic if its graph is repeated over and over again. For
example, if the basic shape of the graph occurs in an intervalof lengthT on thet
axis, and this shape is repeated, then it would be true that

f(t) = f(t+ T ).

In this case we callT theperiod of the function. All the trigonometric functions are
periodic.

• The point(x, y) in Figure 10.2 will repeat its trajectory every time a revolution
around the circle is complete. This happens when the anglet completes one full
cycle of2π radians. Thus, as expected, the trigonometric functions are periodic, that
is

sin(t) = sin(t+ 2π),
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cos(t) = cos(t+ 2π).

We say that the period isT = 2π radians.

We can make other observations about the same two functions.For example, by
noting the symmetry of the functions relative to the origin,we can see thatsin(t) is an odd
function and thecos(t) is an even function. This follows from the fact that for a negative
angle (i.e. an angle clockwise from the x axis) the sine flips sign while the cosine does not.

3π2πππ/2 3π/2 5π/2

1

−1

0

y=sin (t)

t

period, T

3π2πππ/2 3π/2 5π/2

1

−1

0 t

period, T

y=cos (t)

Figure 10.5.Periodicity of the sine and cosine. Note that the two curves are just
shifted versions of one another.

10.4 Phase, amplitude, and frequency
We have already learned how the appearance of functions changes when we shift their
graph in one direction or another, scale one of the axes, and so on. Thus it will be easy to
follow the basic changes in shape of a typical trigonometricfunction.

A function of the form
y = f(t) = A sin(ωt)

has both itst andy axes scaled. The constantA, referred to as theamplitudeof the graph,
scales they axis so that the oscillation swings between a low value of−A and a high value
of A. The constantω, called thefrequency, scales thet axis. This results in crowding
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y=sin(t)

0.0 6.3

-2.0

2.0

y=Asin(t)

0.0 6.3

-2.0

2.0

(a) (b)

y=A sin(w t)

0.0 6.3

-2.0

2.0

y=A sin(w (t-a))

0.0 6.3

-2.0

2.0

(c) (d)

Figure 10.6.Graphs of the functions (a)y = sin(t), (b) y = A sin(t) for A > 1,
(c) y = A sin(ωt) for ω > 1, (d) y = A sin(ω(t− a)).

together of the peaks and valleys (ifω > 1) or stretching them out (ifω < 1). One full
cycle is completed when

ωt = 2π

and this occurs at time

t =
2π

ω
.

We will use the symbolT , to denote this special time, and we refer toT as theperiod. We
note the connection between frequency and period:

ω =
2π

T
,

T =
2π

ω
.
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If we examine a graph of function

y = f(t) = A sin(ω(t− a))

we find that the graph has been shifted in the positivet direction bya. We note that at time
t = a, the value of the function is

y = f(t) = A sin(ω(a− a)) = A sin(0) = 0.

This tells us that the cycle “starts” with a delay, i.e. the value ofy goes through zero when
whent = a.

Another common variant of the same function can be written inthe form

y = f(t) = A sin(ωt− φ).

Hereφ is called thephase shiftof the oscillation. Comparing the above two related forms,
we see that they are the same if we identifyφ with ωa. The phase shift,φ is considered
to be a quantity without units, whereas the quantitya has units of time, same ast. When
φ = 2π, (which is the same as the case thata = 2π/ω, the graph has been moved over to
the right by one full period. (Naturally, when the graph is somoved, it looks the same as it
did originally, since each cycle is the same as the one before, and same as the one after.)

Some of the scaled, shifted, sine functions described here are shown in Figure 10.6.

10.5 Rhythmic processes
Many natural phenomena are cyclic. It is often convenient torepresent such phenomena
with one or another simple periodic functions, and sine and cosine can be adapted for
the purpose. The idea is to pick the right function , the rightfrequency (or period), the
amplitude, and possibly the phase shift, so as to represent the desired behaviour.

To select one or another of these functions, it helps to remember that cosine starts a
cycle (att = 0) at its peak value, while sine starts the cycle at0, i.e., at its average value. A
function that starts at the lowest point of the cycle is− cos(t). In most cases, the choice of
function to use is somewhat arbitrary, since a phase shift can correct for the phase at which
the oscillation starts.

Next, we pick a constantω such that the trigonometric functionsin(ωt) (or cos(ωt))
has the correct period. Given a period for the oscillation,T , recall that the corresponding
frequency is simplyω = 2π

T . We then select the amplitude, and horizontal and vertical
shifts to complete the mission. The examples below illustrate this process.

Example 10.1 (Daylight hours:) In Vancouver, the shortest day (8 hours of light) occurs
around December 22, and the longest day (16 hours of light) isaround June 21. Approxi-
mate the cyclic changes of daylight through the season usingthe sine function.

Solution: On Sept 21 and March 21 the lengths of day and night are equal, and then there
are 12 hours of daylight. (Each of these days is called anequinox). Suppose we call
identify March 21 as the beginning of a yearly day-night length cycle. Lett be time in
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days beginning on March 21. One full cycle takes a year, i.e. 365 days. The period of the
function we want is thus

T = 365

and its frequency is
ω = 2π/365.

Daylight shifts between the two extremes of 8 and 16 hours: i.e. 12± 4 hours. This means
that the amplitude of the cycle is 4 hours. The oscillation take place about the average value
of 12 hours. We have decided to start a cycle on a day for which the number of daylight
hours is the average value (12). This means that the sine would be most appropriate, so the
function that best describes the number of hours of daylightat different times of the year
is:

D(t) = 12 + 4 sin

(

2π

365
t

)

wheret is time in days andD the number of hours of light.

Example 10.2 (Hormone levels:)The level of a certain hormone in the bloodstream fluc-
tuates between undetectable concentration at 7:00 and 100 ng/ml at 19:00 hours. Approxi-
mate the cyclic variations in this hormone level with the appropriate periodic trigonometric
function. Lett represent time in hours from 0:00 hrs through the day.

Solution: We first note that it takes one day (24 hours) to complete a cycle. This means
that the period of oscillation is 24 hours, so that the frequency is

ω =
2π

T
=

2π

24
=

π

12
.

The variation in the level of hormone is between 0 and 100 ng/ml, which can be expressed
as 50± 50 ng/ml. (The trigonometric functions are symmetric cycles, and we are here
finding both the average value about which cycles occur and the amplitude of the cycles.)
We could consider the time midway between the low and high points, namely 13:00 hours
as the point corresponding to the upswing at the start of a cycle of the sine function. (See
Figure 10.7 for the sketch.) Thus, if we use a sine to represent the oscillation, we should
shift it by 13 hrs to the left.

Assembling these observations, we obtain the level of hormone,H at timet in hours:

H(t) = 50 + 50 sin
( π

12
(t− 13)

)

.

In the expression above, the number 13 represents a shift along the time axis, and carries
units of time. We can express this same function in the form

H(t) = 50 + 50 sin

(

πt

12
− 13π

12

)

.

In this version, the quantity

φ =
13π

12
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0 7 191 13

50

100

t

12 hrs

6 hrs

H(t)

24

period: T= 24 hrs

Figure 10.7. Hormonal cycles. The full cycle is 24 hrs. The levelH(t) swings
between 0 and 100 ng. From the given information, we see that the average level is 50 ng,
and that the origin of a representative sine curve should be at t = 13 (i.e. 1/4 of the cycle
which is 6 hrs past the time pointt = 7) to depict this cycle.

is what we have referred to as a phase shift. (This representsthe point on the2π cycle at
which the function begins when we plug int = 0.)

In selecting the periodic function to use for this example, we could have made other
choices. For example, the same periodic can be represented by any of the functions listed
below:

H(t) = 50− 50 sin
( π

12
(t− 1)

)

,

H(t) = 50 + 50 cos
( π

12
(t− 19)

)

,

H(t) = 50− 50 cos
( π

12
(t− 7)

)

.

All these functions have the same values, the same amplitudes, and the same periods.

Example 10.3 (Phases of the moon:)A cycle of waxing and waning moon takes 29.5
days approximately. Construct a periodic function to describe the changing phases, starting
with a “new moon” (totally dark) and ending one cycle later.

Solution: The period of the cycle isT = 29.5 days, so

ω =
2π

T
=

2π

29.5
.

For this example, we will use the cosine function, for practice. LetP (t) be the fraction
of the moon showing on dayt in the cycle. Then we should construct the function so that
0 < P < 1, with P = 1 in mid cycle (see Figure 10.8). The cosine function swings
between the values -1 and 1. To obtain a positive function in the desired range forP (t), we
will add a constant and scale the cosine as follows:

1

2
[1 + cos(ωt)].
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0 29.5

Figure 10.8.Periodic moon phases

This is not quite right, though because att = 0 this function takes the value 1, rather than
0, as shown in Figure 10.8. To correct this we can either introduce a phase shift, i.e. set

P (t) =
1

2
[1 + cos(ωt+ π)].

(Then whent = 0, we getP (t) = 0.5[1 + cosπ] = 0.5[1− 1] = 0.) or we can write

P (t) =
1

2
[1− cos(ωt+ π)],

which achieves the same result.

10.6 Other trigonometric functions
Although we shall mostly be concerned with the two basic functions described above, sev-
eral others are historically important and are encounteredfrequently in integral calculus.
These include the following:

tan(t) =
sin(t)

cos(t)
, cot(t) =

1

tan(t)
,

sec(t) =
1

cos(t)
, csc(t) =

1

sin(t)
.

The identity
sin2(t) + cos2(t) = 1

then leads to two others of similar form. Dividing each side of the above relation bycos2(t)
yields

tan2(t) + 1 = sec2(t)

whereas division bysin2(t) gives us

1 + cot2(t) = csc2(t).

These will be important for simplifying expressions involving the trigonometric functions,
as we shall see.
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Law of cosines

This law relates the cosine of an angle to the lengths of sidesformed in a triangle. (See
figure 10.9.)

c2 = a2 + b2 − 2ab cos(θ)

where the side of lengthc is opposite the angleθ.

a

b
c

θ

Figure 10.9.Law of cosines states thatc2 = a2 + b2 − 2ab cos(θ).

Here are other important relations between the trigonometric functions that should
be remembered. These are called trigonometric identities:

Angle sum identities

The trigonometric functions are nonlinear. This means that, for example, the sine of the
sum of two angles isnot just the sum of the two sines. One can use the law of cosines and
other geometric ideas to establish the following two relationships:

sin(A+B) = sin(A) cos(B) + sin(B) cos(A)

cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

These two identities appear in many calculations, and will be important for comput-
ing derivatives of the basic trigonometric formulae.

Related identities

The identities for the sum of angles can be used to derive a number of related formulae.
For example, by replacingB by−B we get the angle difference identities:

sin(A−B) = sin(A) cos(B)− sin(B) cos(A)

cos(A−B) = cos(A) cos(B) + sin(A) sin(B)

By settingθ = A = B in these we find the subsidiary double angle formulae:
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sin(2θ) = 2 sin(θ) cos(θ)

cos(2θ) = cos2(θ)− sin2(θ)

and these can also be written in the form

2 cos2(θ) = 1 + cos(2θ)

2 sin2(θ) = 1− cos(2θ).

(The latter four are quite useful in integration methods.)

10.7 Limits involving the trigonometric functions
Before we compute derivatives of the sine and cosine functions using the definition of the
derivative, we will need to specify two limits that will be needed in those calculations.

If we zoom in on the graph of the sine function close to the origin, we will see a curve
resembling a straight line with slope 1, i.e. the functiony = sin(t) will look quite similar
to the graph ofy = t close tot = 0. This is shown in the sequence of graphs in Figure 3.2.
This means that, for smallt

sin(t) ≈ t.

We can restate this as
sin(h) ≈ h

or as
sin(h)

h
≈ 1.

It turns out that this approximation becomes finer ash decreases, i.e

lim
h→0

sin(h)

h
= 1.

This is a very important limit, and will be used in many applications.
A similar analysis of the graph of the cosine function, shownin Figure 10.10, will

lead us to conclude that the related limit is

lim
h→0

cos(h)− 1

h
= 0.

We can now apply these to computing derivatives.

10.7.1 Derivatives of the trigonometric functions

Let y = f(x) = sin(x) be the function to differentiate, wherex is now the independent
variable (previously calledt). Below, we use the definition of the derivative to compute the
derivative of this function.

Example 10.4 (Derivative ofsin(x):) Compute the derivative ofy = sin(x) using the
definition of the derivative.
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Figure 10.10.Zooming in on the graph ofy = cos(x) at x = 0.

Solution:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
d sin(x)

dx
= lim

h→0

sin(x+ h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + sin(h) cos(x)− sin(x)

h

= lim
h→0

(

sin(x)
cos(h)− 1

h
+ cos(x)

sin(h)

h

)

= sin(x)

(

lim
h→0

cos(h)− 1

h

)

+ cos(x)

(

lim
h→0

sin(h)

h

)

= cos(x)

Observe that the limits described in the preceding section were used in getting to our
final result.

A similar calculation using the functioncos(x) leads to the result

d cos(x)

dx
= − sin(x).

(The same two limits appear in this calculation as well.)
We can now calculate the derivative of the any of the other trigonometric functions

using the quotient rule.

Example 10.5 (Derivative of the functiontan(x):) Compute the derivative ofy = tan(x).
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y = f(x) f ′(x)
sin(x) cos(x)
cos(x) − sin(x)
tan(x) sec2(x)
csc(x) − csc(x) cot(x)
sec(x) sec(x) tan(x)
cot(x) − csc2(x)

Table 10.2.Derivatives of the trigonometric functions

Solution:
d tan(x)

dx
=

[sin(x)]′ cos(x) − [cos(x)]′ sin(x)

cos2(x)

Using the recently found derivatives for the sine and cosine, we have

d tan(x)

dx
=

sin2(x) + cos2(x)

cos2(x)
.

But the numerator of the above can be simplified using the trigonometric identity, leading
to

d tan(x)

dx
=

1

cos2(x)
= sec2(x).

The derivatives of the six trigonometric functions are given in the table below. The
reader may wish to practice the use of the quotient rule by verifying one or more of the
derivatives of the relativescsc(x) or sec(x). In practice, the most important functions are
the first three, and their derivatives should be remembered,as they are frequently encoun-
tered in practical applications.

10.8 Trigonometric related rates
The examples in this section will allow us to practice chain rule applications using the
trigonometric functions. We will discuss a number of problems, and show how the basic
facts described in this chapter appear in various combinations to arrive at desired results.

Example 10.6 (A point on a circle:) A point moves around the rim of a circle of radius 1
so that the angleθ subtended by the radius vector to that point changes at a constant rate,

θ = ωt,

wheret is time. Determine the rate of change of thex andy coordinates of that point.

Solution: We haveθ(t), x(t), andy(t) all functions oft. The fact thatθ is proportional to
t means that

dθ

dt
= ω.
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Thex andy coordinates of the point are related to the angle by

x(t) = cos(θ(t)) = cos(ωt),

y(t) = sin(θ(t)) = sin(ωt).

This implies (by the chain rule) that

dx

dt
=

d cos(θ)

dθ

dθ

dt
,

dy

dt
=

d sin(θ)

dθ

dθ

dt
.

Performing the required calculations, we have

dx

dt
= − sin(θ)ω,

dy

dt
= cos(θ)ω.

We will see some interesting consequences of this in a later section.

Example 10.7 (Runners on a circular track:) Two runners start at the same position (call
it x = 0) on a circular race track of length 400 meters. Joe Runner takes 50 sec, while
Michael Johnson takes 43.18 sec to complete the 400 meter race. Determine the rate of
change of the angle formed between the two runners and the center of the track, assuming
that the runners are running at a constant rate.

Solution: The track is 400 meters in length (total). Joe completes one cycle around the
track (2π radians) in 50 sec, while Michael completes a cycle in 43.18 sec. (This means
that Joe has period ofT = 50 sec, and a frequency ofω1 = 2π/T = 2π/50 radians per sec.
Similarly, Michael’s period isT = 43.18 sec and his frequency isω2 = 2π/T = 2π/43.18
radians per sec. From this, we find that

dθJ
dt

=
2π

50
= 0.125 radians per sec

dθM
dt

=
2π

43.18
= 0.145 radians per sec

Thus the angle between the runners,θM − θJ changes at the rate

d(θM − θJ)

dt
= 0.145− 0.125 = 0.02 radians per sec

Example 10.8 (Simple law of cosines:)Consider the triangle as shown in Figure 10.9.
Suppose that the angleθ increases at a constant rate, i.e.dθ/dt = k. If the sidesa = 3,
b = 4, are of constant length, determine the rate of change of the lengthc opposite this
angle at the instant thatc = 5.
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Solution: Let a, b, c be the lengths of the three sides, withc the length of the side opposite
angleθ. The law of cosines states that

c2 = a2 + b2 − 2ab cos(θ).

We identify the changing quantities by writing this relation in the form

c2(t) = a2 + b2 − 2ab cos(θ(t))

so it is evident that onlyc andθ will vary with time, while a, b remain constant. We are
also told that

dθ

dt
= k.

Differentiating and using the chain rule leads to:

2c
dc

dt
= −2ab

d cos(θ)

dθ

dθ

dt

But d cos(θ)/dθ = − sin(θ) so that

dc

dt
= −ab

c
(− sin(θ))

dθ

dt
=

ab

c
k sin(θ).

We now note that at the instant in question,a = 3, b = 4, c = 5, forming a Pythagorean
triangle in which the angle oppositec is θ = π/2. We can see this fact using the law of
cosines, and noting that

c2 = a2 + b2 − 2ab cos(θ), 25 = 9 + 16− 24 cos(θ).

This implies that0 = −24 cos(θ), cos(θ) = 0 so thatθ = π/2. Substituting these into our
result for the rate of change of the lengthc leads to

dc

dt
=

ab

c
k =

3 · 4
5

k.

Example 10.9 (Clocks:)Find the rate of change of the angle between the minute hand and
hour hand on a clock.

Solution: We will call θ1 the angle that the minute hand subtends with thex axis (horizon-
tal direction) andθ2 the angle that the hour hand makes with the same axis.

If our clock is working properly, each hand will move around at a constant rate.
The hour hand will trace out one complete revolution (2π radians) every 12 hours, while
the minute hand will complete a revolution every hour. Both hands move in a clockwise
direction, which (by convention) is towards negative angles. This means that

dθ1
dt

= −2π radians per hour,

dθ2
dt

= −2π

12
radians per hour.
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θ
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−θ2

(a) (b)

Figure 10.11.Figure for Examples 10.9 and 10.10.

The angle between the two hands is the difference of the two angles, i.e.

θ = θ1 − θ2

Thus,
dθ

dt
=

d

dt
(θ1 − θ2) =

dθ1
dt

− dθ2
dt

= −2π +
2π

12

Thus, we find that the rate of change of the angle between the hands is

dθ

dt
= −2π

11

12
= −π

11

6
.

Example 10.10 (Clocks, continued:)Suppose that the length of the minute hand is 4 cm
and the length of the hour hand is 3 cm. At what rate is thedistancebetween the hands
changing when it is 3:00 o’clock?

Solution: We use the law of cosines to give us the rate of change of the desired distance.
We have the triangle shown in figure 10.11 in which side lengths area = 3, b = 4, andc(t)
opposite the angleθ(t). From the previous example, we have

dc

dt
=

ab

c
sin(θ)

dθ

dt
.

At precisely 3:00 o’clock, the angle in question isθ = π/2 and it can also be seen that the
Pythagorean triangleabc leads to

c2 = a2 + b2 = 32 + 42 = 9 + 16 = 25

so thatc = 5. We found from our previous analysis thatdθ/dt = 11
6 π. Using this informa-

tion leads to:
dc

dt
=

3 · 4
5

sin(π/2)(−11

6
π) = −22

5
π cm per hr

The negative sign indicates that at this time, the distance between the two hands is decreas-
ing.
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Example 10.11 (Visual angles:)In the triangle shown in Figure 10.12, an object of height
s is moving towards an observer. Its distance from the observer at some instant is labeled
x(t) and it approaches at some constant speed,v. Determine the rate of change of the angle
θ(t)and how it depends on speed, size, and distance of the object.Oftenθ is called a visual
angle, since it represents the angle that an image subtends on the retina of the observer. A
more detailed example of this type is discussed in the next chapter.

x

Sθ

Figure 10.12.A visual angle.

Solution: We are given the information that the object approaches at some constant speed,
v. This means that

dx

dt
= −v.

(The minus sign means that the distancex is decreasing.) Using the trigonometric relations,
we see that

tan(θ) =
s

x
.

If the size,s, of the object is constant, then the changes with time imply that

tan(θ(t)) =
s

x(t)
.

We differentiate both sides of this equation with respect tot, and obtain

d tan(θ)

dθ

dθ

dt
=

d

dt

(

s

x(t)

)

sec2(θ)
dθ

dt
= −s

1

x2

dx

dt

so that
dθ

dt
= −s

1

sec2(θ)

1

x2

dx

dt

We can use the trigonometric identity

sec2(θ) = 1 + tan2(θ)

to express our answer in terms only of the size,s, the distance of the object,x and the
speed:

sec2(θ) = 1 +
( s

x

)2

=
x2 + s2

x2
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so
dθ

dt
= −s

x2

x2 + s2
1

x2

dx

dt
=

S

x2 + s2
v.

(Two minus signs cancelled above.) Thus, the rate of change of the visual angle issv/(x2+
s2). This calculation has some interesting implications for reactions to visual stimuli. We
will explore some of these implications later on.

10.9 Trigonometric functions and differential
equations

In this section, we will show the following relationship between trigonometric functions
and differential equations:

The functions
x(t) = cos(ωt), y(t) = sin(ωt)

satisfy a pair of differential equations,

dx

dt
= −ωy,

dy

dt
= ωx.

The functions
x(t) = cos(ωt), y(t) = sin(ωt)

also satisfy a related differential equation with a second derivative

d2x

dt2
= −ω2x.

To show that these statements are true, we return to an example explored in the previous
section: we considered a point moving around a unit circle ata constant angular rate,ω, so
that

dθ

dt
= ω.

We then considered thex andy coordinates of the point,

x(t) = cos(θ(t)) = cos(ωt), y(t) = sin(θ(t)) = sin(ωt),

and showed (using the chain rule) that these satisfy

dx

dt
= − sin(θ)ω,

dy

dt
= cos(θ)ω.
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These relationships can also be written in the form

dx

dt
= −ωy,

dy

dt
= ωx,

where we have used the definitions of sine and cosine in terms of x andy.
The above pair of equations describe the fact that the derivative of each of these trig

functions,x(t) andy(t), is related to the other function. These two equations fall into a
class we have already explored, namely differential equations.

We have just shown that the functionsx(t) = cos(ωt) andy(t) = sin(ωt) also have
a special connection to differential equations. In fact they are linked by the pair of inter-
connected equations displayed here as our result. Each equation involves the derivative of
one or the other of the trig functions, and says that this derivative is just a constant multiple
of the other function. (In a way, we already knew this relationship holds, since our table of
derivatives illustrates the connection betweensin andcos. However, we here see the idea in
a setting that reminds us of similar observations made for exponential functions. (Such in-
terdependent differential equations are also referred to as a set of coupled equations, since
each one contains variables that appear in the other.)

By differentiating both sides of the first equation, we find that

d2x

dt2
= −ω

dy

dt
,

and now using the second equation, we simplify to

d2x

dt2
= −ω(ωx),

finally obtaining
d2x

dt2
= −ω2x.

The reader can show thaty satisfies the same type of equation, namely that

d2y

dt2
= −ω2y.

This means that each of the above trigonometric functions satisfy a new type of dif-
ferential equation containing a second derivative.

Students of physics will here recognize the equation that governs the behaviour of a
harmonic oscillator, and will see the connection between the circular motion of our point
on the circle, and the differential equation for periodic motion.

10.10 Additional examples
This section is dedicated to practicing implicit differentiation in the context of trigonomet-
ric functions.
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A surface that looks like an “egg carton” can be described by the function

z = sin(x) cos(y)

See Figure 10.13(a) for the shape of this surface.
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Figure 10.13. (a) The surfacesin(x) cos(y) = 1
2 (b) One level curve for this

surface. Note that the scales are not the same for parts (a) and (b).

Suppose we slice though the surface at various levels. We would then see a collection
of circular contours, as found on a topographical map of a mountain range. Such contours
are called “level curves”, and some of these can be seen in Figure 10.13. We will here be
interested in the contours formed at some specific height, e.g. at heightz = 1/2. Thisset
of curves can be described by the equation:

sin(x) cos(y) =
1

2
.

Let us look at one of these, e.g. the curve shown in Figure 10.13(b). This is just
one of the contours, namely the one located in the portion of the graph for−1 < y < 1,
0 < x < 3. We practice implicit differentiation for this curve, i.e.we find the slope of
tangent lines to this curve.

Example 10.12 (Implicit differentiation:) Find the slope of the tangent line to a point on
the curve shown in Figure 10.13(b).

Solution: Differentiating, we obtain:

d

dx
(sin(x) cos(y)) =

d

dx

(

1

2

)

d sin(x)

dx
cos(y) + sin(x)

d cos(y)

dx
= 0
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cos(x) cos(y) + sin(x)(− sin(y))
dy

dx
= 0

dy

dx
=

cos(x) cos(y)

sin(x) sin(y)
⇒ dy

dx
=

1

tan(x) tan(y)
.

We can now determine the slope of the tangent lines to the curve at points of interest.

Example 10.13Find the slope of the tangent line to the same level curve at the point
x = π

2 .

Solution: At this point, sin(x) = sin(π/2) = 1 which means that the correspondingy
coordinate of a point on the graph satisfiescos(y) = 1/2 so one value ofy is y = π/3.
(There are other values, for example at−π/3 and at2πn ± π/3, but we will not consider
these here.) Then we find that

dy

dx
=

1

tan(π/2) tan(π/3)
.

But tan(π/2) = ∞ so that the ratio above leads todydx = 0. The tangent line is horizontal
as it goes though the point(π/2, π/3) on the graph.

Example 10.14Find the slope of the tangent line to the same level curve at the point
x = π

4 .

Solution: Here we havesin(x) = sin(π/4) =
√
2/2, and we find that the y coordinate

satisfies √
2

2
cos(y) =

1

2

This means thatcos(y) = 1√
2
=

√
2
2 so thaty = π/4. Thus

dy

dx
=

1

tan(π/4) tan(π/4)
=

1

1
= 1

so that the tangent line at the point(π/4, π/4) has slope 1.
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Exercises
10.1. Calculate the first derivative for the following functions.

(a) y = sinx2

(b) y = sin2 x

(c) y = cot2 3
√
x

(d) y = sec(x− 3x2)

(e) y = 2x3 tanx

(f) y = x
cosx

(g) y = x cosx

(h) y = e− sin2 1
x

(i) y = (2 tan 3x+ 3 cosx)2

(j) y = cos(sinx) + cosx sinx

10.2. Take the derivative of the following functions.

(a) f(x) = cos(ln(x4 + 5x2 + 3))

(b) f(x) = sin(
√

cos2(x) + x3)

(c) f(x) = 2x3 + log3(x)

(d) f(x) = (x2ex + tan(3x))4

(e) f(x) = x2
√

sin3(x) + cos3(x)

10.3. Convert the following expressions in radians to degrees:
(a)π (b) 5π/3 (c) 21π/23 (d) 24π
Convert the following expressions in degrees to radians:
(e)100o (f) 8o (g) 450o (h) 90o

Using a Pythagorean triangle, evaluate each of the following:
(i) cos(π/3) (j) sin(π/4) (k) tan(π/6)

10.4. Graph the following functions over the indicated ranges:

(a) y = x sin(x) for −2π < x < 2π

(b) y = ex cos(x) for 0 < x < 4π.

10.5. Sketch the graph for each of the following functions:

(a) y =
1

2
sin 3(x− π

4
)

(b) y = 2− sinx

(c) y = 3 cos 2x

(d) y = 2 cos(
1

2
x+

π

4
)

10.6. The Radian is an important unit associated with angles. One revolution about a circle
is equivalent to360 degrees or2π radians. Convert the following angles (in degrees)
to angles in radians. (Express these as multiples ofπ, not as decimal expansions):
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(a) 45 degrees

(b) 30 degrees

(c) 60 degrees

(d) 270 degrees.

Find the sine and the cosine of each of these angles.

10.7. A point is moving on the perimeter of a circle of radius 1at the rate of 0.1 radians
per second. How fast is itsx coordinate changing whenx = 0.5? How fast is itsy
coordinate changing at that time?

10.8. The derivatives of the two important trig functions are [sin(x)]′ = cos(x) and
[cos(x)]′ = − sin(x). Use these derivatives to answer the following questions.
Let f(x) = sin(x) + cos(x), 0 ≤ x ≤ 2π

(a) Find all intervals wheref(x) is increasing.

(b) Find all intervals wheref(x) is concave up.

(c) Locate all inflection points.

(d) Graphf(x).

10.9. Find the appropriate trigonometric function to describe the following rhythmic pro-
cesses:

(a) Daily variations in the body temperatureT (t) of an individual over a single
day, with the maximum of37.5oC at 8:00 am and a minimum of36.7o C 12
hours later.

(b) Sleep-wake cycles with peak wakefulness (W = 1) at 8:00 am and 8:00pm
and peak sleepiness (W = 0) at 2:00pm and 2:00 am.

(For parts (a) and (b) expresst as time in hours witht = 0 taken at 0:00 am.)

10.10. Find the appropriate trigonometric function to describe the following rhythmic pro-
cesses:

(a) The displacementS cm of a block on a spring from its equilibrium position,
with a maximum displacement3 cm and minimum displacement−3 cm, a
period of 2π√

g

l

and att = 0, S = 3.

(b) The vertical displacementy of a boat that is rocking up and down on a lake.y
was measured relative to the bottom of the lake. It has a maximum displace-
ment of12 meters and a minimum of8 meters, a period of3 seconds, and
an initial displacement of11 meters when measurement was first started (i.e.,
t = 0).

10.11. Find all points on the graph ofy = tan(2x), − π

4
< x <

π

4
, where the slope of the

tangent line is4.

10.12. A “V” shaped formation of birds forms a symmetric structure in which the distance
from the leader to the last birds in the V isr = 10m, the distance between those trail-
ing birds isD = 6m and the angle formed by the V isθ, as shown in Figure 10.14
below. Suppose that the shape is gradually changing: the trailing birds start to get
closer so that their distance apart shrinks at a constant rate dD/dt = −0.2m/min
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while maintaining the same distance from the leader. (Assume that the structure is
always in the shape of a V as the other birds adjust their positions to stay aligned in
the flock.) What is the rate of change of the angleθ?

θ

Flying bird
formation

D

r

Figure 10.14.Figure for Problem 12

10.13. A hot air balloon on the ground is200 meters away from an observer. It starts rising
vertically at a rate of50 meters per minute. Find the rate of change of the angle of
elevation of the observer when the balloon is200 meters above the ground.

10.14. Match the differential equations given in parts (i-iv) with the functions in (a-f) which
are solutions for them. (Note: each differential equation may have more than one
solution)
Differential equations:

(i) d2y/dt2 = 4y

(ii) d2y/dt2 = −4y

(iii) dy/dt = 4y

(iv) dy/dt = −4y

Solutions:

(a) y(t) = 4 cos(t)

(b) y(t) = 2 cos(2t)

(c) y(t) = 4e−2t

(d) y(t) = 5e2t

(e) y(t) = sin(2t)− cos(2t),

(f) y(t) = 2e−4t.

10.15. Jack and Jill have an on-again off-again love affair.The sum of their love for one
another is given by the functiony(t) = sin(2t) + cos(2t).

(a) Find the times when their total love is at a maximum.

(b) Find the times when they dislike each other the most.
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10.16. A ladder of lengthL is leaning against a wall so that its point of contact with the
ground is a distancex from the wall, and its point of contact with the wall is at
heighty. The ladder slips away from the wall at a constant rateC.

(a) Find an expression for the rate of change of the heighty.

(b) Find an expression for the rate of change of the angleθ formed between the
ladder and the wall.

10.17. A cannon-ball fired by a cannon at ground level at angleθ to the horizon (0 ≤ θ ≤
π/2) will travel a horizontal distance (called therange, R) given by the formula
below:

R =
1

16
v20 sin θ cos θ.

Here v0 > 0, the initial velocity of the cannon-ball, is a fixed constantand air
resistance is neglected. (See Figure 10.15.) What is the maximum possible range?

R

θ

Figure 10.15.Figure for problem 17

10.18. A wheel of radius1 meter rolls on a flat surface without slipping. The wheel moves
from left to right, rotating clockwise at a constant rate of2 revolutions per second.
Stuck to the rim of the wheel is a piece of gum, (labeledG); as the wheel rolls
along, the gum follows a path shown by the wide arc (called a “cycloid curve”) in
Figure 10.16. The(x, y) coordinates of the gum (G) are related to the wheel’s angle
of rotationθ by the formulae

x = θ − sin θ,

y = 1− cos θ,

where0 ≤ θ ≤ 2π. How fast is the gum moving horizontally at the instant that it
reaches its highest point? How fast is it moving vertically at that same instant?

10.19. In Figure 10.17, the point P is connected to the point Oby a rod 3 cm long. The
wheel rotates around O in the clockwise direction at a constant speed, making 5
revolutions per second. The point Q, which is connected to the point P by a rod 5
cm long, moves along the horizontal line through O. How fast and in what direction
is Q moving when P lies directly above O? (Remember the law of cosines:c2 =
a2 + b2 − 2ab cos θ.)

10.20. A ship sails away from a harbor at a constant speedv. The total height of the ship
including its mast ish. See Figure 10.18.
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Θ

y

x

(x,y)

Figure 10.16.Figure for Problem 18

0

P

Q
3 5

Figure 10.17.Figure for Problem 19

(a) At what distance away will the ship disappear below the horizon?

(b) At what rate does the top of the mast appear to drop toward the horizon just
before this? (Note: In ancient times this effect lead peopleto conjecture that
the earth is round (radiusR), a fact which you need to take into account in
solving the problem.)

R

h d

θ

Figure 10.18.Figure for Problem 20

10.21. Finddy
dx using implicit differentiation.
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(a) y = 2 tan(2x+ y)

(b) sin y = −2 cosx

(c) x sin y + y sinx = 1

10.22. Use implicit differentiation to find the equation of the tangent line to the following
curve at the point(1, 1):

x sin(xy − y2) = x2 − 1
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Chapter 11

Inverse Trigonometric
functions

In this chapter, we investigate inverse trigonometric functions. As in other examples, the
inverse of a given function leads to exchange of the roles of the dependent and independent
variables, as well as the the roles of the domain and range. Geometrically, an inverse
function is obtained by reflecting the original function about the liney = x. However,
we must take care that the resulting graph represents a true function, i.e. satisfies all the
properties required of a function.

The domains ofsin(x) andcos(x) are both−∞ < x < ∞ while their ranges are
−1 ≤ y ≤ 1. In the case of the functiontan(x), the domain excludes values±π/2 as
well as angles2nπ ± π/2 at which the function is undefined. The range oftan(x) is
−∞ < y < ∞.

There is one difficulty in defining inverses for trigonometric functions: the fact that
these functions repeat their values in a cyclic pattern means that a giveny value is obtained
from many possible values ofx. For example, all of the valuesx = π/2, 5π/2, 7π/2, etc
all have identical sine valuessin(x) = 1. We say that these functions are notone-to-one.
Geometrically, this is just saying that the graphs of the trig functions intersect a horizontal
line in numerous places. When these graphs are reflected about the liney = x, they would
intersect avertical line in many places, and would fail to be functions: the function would
have multipley values corresponding to the same value ofx, which is not allowed. The
reader may recall that a similar difficulty was encountered in an earlier chapter with the
inverse function fory = x2.

We can avoid this difficulty by restricting the domains of thetrigonometric functions
to a portion of their graphs that does not repeat. To do so, we select an interval over
which the given trigonometric function is one-to -one, i.e.over which there is a unique
correspondence between values ofx and values ofy. (This just mean that we keep a
portion of the graph of the function in which the y values are not repeated.) We then define
the corresponding inverse function, as described below.

211
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y=sin(x)

y=Sin(x)

-6.3 6.3

-1.5

1.5

y=x

y=Sin(x)

y=arcsin(x)

-1.5 1.5

-1.5

1.5

(a) (b)

Figure 11.1. (a) The original trigonometric function,sin(x), in black, as well as
the portion restricted to a smaller domain,Sin(x), in red. The red curve is shown again
in part b. (b) Relationship between the functionsSin(x), defined on−π/2 < x < π/2 (in
red) andarcsin(x) defined on−1 < x < 1 (in blue). Note that one is the reflection of the
other about the liney = x. The graphs in parts (a) and (b) are not on the same scale.

Arcsine is the inverse of sine

The functiony = sin(x) is one-to-one on the interval−π/2 < x < π/2. We will define
the associated functiony = Sin(x) (shown in red on Figures 11.1(a) and (b) by restricting
the domain of the sine function to−π/2 < x < π/2. On the given interval, we have
−1 < Sin(x) < 1. We define the inverse function, called arcsine

y = arcsin(x) − 1 < x < 1

in the usual way, by reflection ofSin(x) through the liney = x as shown in Figure 11.6(a).
To interpret this function, we note thatarcsin(x) is “the angle whose sine isx”. In

Figure 11.2, we show a triangle in whichθ = arcsin(x). This follows from the observation
that the sine of theta, opposite over hypotenuse, isx/1 which is simplyx. The length of
the other side of the triangle is then

√
1− x2 by the Pythagorean theorem.

For examplearcsin(
√
2/2) is the angle whose sine is

√
2/2, namelyπ/4. (We see

this by checking the values of trig functions of standard angles shown in Table 1.) A few
other inter-conversions are given by the examples below.

The functionssin(x) andarcsin(x), reverse (or “invert”) each other’s effect, that is:

arcsin(sin(x)) = x for − π/2 < x < π/2,

sin(arcsin(x)) = x for − 1 < x < 1.

There is a subtle point that the allowable values ofx that can be “plugged in” are not exactly
the same for the two cases. In the first case,x is an angle whose sine we compute first, and
then reverse the procedure. In the second case,x is a number whose arc-sine is an angle.
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θ

1

1−x
2

x

Figure 11.2.This triangle has been constructed so thatθ is an angle whose sine
is x/1 = x. This means thatθ = arcsin(x)

We can evaluatearcsin(sin(x)) for any value ofx, but the result may not agree with
the original value ofx unless we restrict attention to the interval−π/2 < x < π/2. For
example, ifx = π, thensin(x) = 0 andarcsin(sin(x)) = arcsin(0) = 0, which is not the
same asx = π. For the other case, i.e. forsin(arcsin(x)), we cannot plug in any value of
x outside of−1 < x < 1, sincearcsin(x) is simply not define at all, outside this interval.
This demonstrates that care must be taken in handling the inverse trigonometric functions.

Inverse cosine

y=cos(x)

y=Cos(x)

-6.3 6.3

-1.5

1.5

y=x

y=Cos(x)

y=arccos(x)

-1.0 3.1

-1.0

3.1

(a) (b)

Figure 11.3.(a) The original functioncos(x), is shown in black; the restricted do-
main version,Cos(x) is shown in red. The same red curve appears in part (b) on a slightly
different scale. (b) Relationship between the functionsCos(x) (in red) andarccos(x) (in
blue). Note that one is the reflection of the other about the liney = x.

We cannot use the same interval to restrict the cosine function, because it has the
same y values to the right and left of the origin. If we pick theinterval0 < x < π, this
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difficulty is avoided, since we arrive at a one-to-one function. We will call the restricted-
domain version of cosine by the namey = Cos(x) = cos(x) for0 < x < π. (See red
curve in Figure 11.3(a). On the interval0 < x < π, we have1 > Cos(x) > −1 and we
define the corresponding inverse function

y = arccos(x) − 1 < x < 1

as shown in blue in Figure 11.3(b).
We understand the meaning of the expressiony = arccos(x) as ” the angle (in

radians) whose cosine isx. For example,arccos(0.5) = π/3 becauseπ/3 is an angle
whose cosine is 1/2. In Figure 11.4, we show a triangle constructed specifically so that
θ = arccos(x). Again, this follows from the fact thatcos(θ) is adjacent over hypotenuse.
The length of the third side of the triangle is obtained usingthe Pythagorian theorem.

θ

x

1
1−x

2

Figure 11.4.This triangle has been constructed so thatθ is an angle whose cosine
is x/1 = x. This means thatθ = arccos(x)

The inverse relationship between the functions mean that

arccos(cos(x)) = x for 0 < x < π,

cos(arccos(x)) = x for − 1 < x < 1.

The same subtleties apply as in the previous case discussed for arc-sine.

Inverse tangent

The functiony = tan(x) is one-to -one on an intervalπ/2 < x < π/2, which is similar
to the case forSin(x). We therefore restrict the domain toπ/2 < x < π/2, that is, we
define,

y = Tan(x) = tan(x) π/2 < x < π/2.

Unlike sine, asx approaches either endpoint of this interval, the value ofTan(x) ap-
proaches±∞, i.e. −∞ < Tan(x) < ∞. This means that the domain of the inverse
function will be from−∞ to ∞, i.e. will be defined for all values ofx . We define the
inverse tan function:

y = arctan(x) −∞ < x < ∞.

as before, we can understand the meaning of the inverse tan function, by constructing a
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y=tan(x)
y=Tan(x)

-6.5 6.5

-10.0

10.0

y=x

y=Tan(x)

y=arctan(x)

-6.3 6.3

-6.3

6.3

(a) (b)

Figure 11.5. (a) The functiontan(x), is shown in black, andTan(x) in red. The
same red curve is repeated in part b (b) Relationship betweenthe functionsTan(x) (in red)
andarctan(x) (in blue). Note that one is the reflection of the other about the liney = x.

x arcsin(x) arccos(x)
−1 −π/2 π

−
√
3/2 −π/3 5π/6

−
√
2/2 −π/4 3π/4

−1/2 −π/6 2π/3
0 0 π/2

1/2 π/6 π/3√
2/2 π/4 π/4√
3/2 π/3 π/6
1 π/2 0

Table 11.1.Standard values of the inverse trigonometric functions.

triangle in whichθ = arctan(x), shown in Figure 11.7.
The inverse tangent “inverts” the effect of the tangent on the relevant interval:

arctan(tan(x)) = x for − π/2 < x < π/2

tan(arctan(x)) = x for −∞ < x < ∞

The same comments hold in this case.
Some of the standard angles allow us to define precise values for the inverse trig

functions. For other values ofx, one has to calculate the decimal approximation of the
function using a scientific calculator.
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y=sin(x)

y=Sin(x)

-6.3 6.3

-1.5

1.5

y=x

y=Sin(x)

y=arcsin(x)

-1.5 1.5
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(a) (b)

y=cos(x)

y=Cos(x)

-6.3 6.3

-1.5

1.5

y=x

y=Cos(x)

y=arccos(x)

-1.0 3.1

-1.0

3.1

(c) (d)

y=tan(x)
y=Tan(x)

-6.5 6.5

-10.0

10.0

y=x

y=Tan(x)

y=arctan(x)

-6.3 6.3

-6.3

6.3

(e) (f)

Figure 11.6. A summary of the trigonometric functions and their inverses. (a)
Sin(x) (b) arcsin(x), (b)Cos(x) (d) arccos(x), (e)Tan(x) (f) arctan(x). The red curves
are the restricted domain portions of the original trig functions. The blue curves are the
inverse functions.
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θ

x

2

1

1+x

Figure 11.7.This triangle has been constructed so thatθ is an angle whose tan is
x/1 = x. This means thatθ = arctan(x)

Example 11.1 Simplify the following expressions: (a)arcsin(sin(π/4), (b)arccos(sin(−π/6))

Solution: (a)arcsin(sin(π/4) = π/4 since the functions are simple inverses of one another
on the domain−π/2 < x < π/2.

(b) We evaluate this expression piece by piece: First, note thatsin(−π/6) = −1/2.
Thenarccos(sin(−π/6)) = arccos(−1/2) = 2π/3. The last equality is obtained from the
table of values prepared above.

Example 11.2 Simplify the expressions: (a)tan(arcsin(x), (b)cos(arctan(x)).

Solution: (a) Consider first the expressionarcsin(x), and note that this represents an angle
(call it θ) whose sine isx, i.e. sin(θ) = x. Refer to Figure 11.2 for a sketch of a triangle in
which this relationship holds. Now note thattan(θ) in this same triangle is the ratio of the
opposite side to the adjacent side, i.e.

tan(arcsin(x)) =
x√

1− x2

(b) Figure 11.7 shows a triangle that captures the relationship tan(θ) = x or θ =
arctan(x). The cosine of this angle is the ratio of the adjacent side to the hypotenuse, so
that

cos(arctan(x)) =
1√

x2 + 1

11.1 Derivatives of the inverse trigonometric
functions

Implicit differentiation can be used to determine all derivatives of the new functions we
have just defined. As an example, we demonstrate how to compute the derivative of
arctan(x). To do so, we will need to recall that the derivative of the function tan(x) is
sec2(x). We will also use the identitytan2(x) + 1 = sec2(x).
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y = f(x) f ′(x)
arcsin(x) 1√

1−x2

arccos(x) − 1√
1−x2

arctan(x) 1
x2+1 .

Table 11.2.Derivatives of the inverse trigonometric functions.

Let
y = arctan(x).

Then on the appropriate interval, we can replace this relationship with the equivalent one:

tan(y) = x.

Differentiating implicitly with respect tox on both sides, we obtain

sec2(y)
dy

dx
= 1

dy

dx
=

1

sec2(y)
=

1

tan2(y) + 1

Now using again the relationshiptan(y) = x, we obtain

d arctan(x)

dx
=

1

x2 + 1
.

This will form an important expression used frequently in integral calculus.
The derivatives of the important inverse trigonometric functions are shown in the

table below.

11.2 The zebra danio and its escape response
In this section, we investigate an application of the trigonometric, and inverse trigonometric
functions. This example is motivated by a problem in biology, studied by Larry Dill, a
biologist at Simon Fraser University in Burnaby, BC.

The Zebra danio is a small tropical fish, which has many predators (larger fish) eager
to have it for dinner. Surviving through the day means being able to sense danger quickly
enough to escape from a hungry pair of jaws. However, the danio cannot spend all its time
escaping. It too, must find food, mates, and carry on activities that sustain it. Thus, a
finely tuned mechanism which allows it to react to danger but avoid over-reacting would
be advantageous.

We investigate the visual basis of an escape response, basedon a hypothesis formu-
lated by Dill.
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α x S

prey
predator

S

α
x

Figure 11.8. A cartoon showing the visual angle,α(t) and how it changes as a
predator approaches its prey, the zebra danio.

α x
S

x

Sθ

Figure 11.9.The geometry of the escape response problem.

Figure 11.9 shows the relation between the angle subtended at the Danio’s eye and
the sizeS of an approaching predator, currently located at distancex away. We will assume
that the predator has a profile of sizeS and that it is approaching the prey at a constant speed
v. This means that the distancex satisfies

dx

dt
= −v.

If we consider the top half of the triangle shown in Figure 11.9 we find a Pythagorean
triangle similar to the one we have seen before in our discussion of visual angles in Chapter
10. The connection between our previous calculation isθ = α/2, s = S/2 andx identical
in both pictures. Thus, the trigonometric relation that holds is:

tan
(α

2

)

=
(S/2)

x
.

We can restate this relationship using the inverse trigonometric functionarctan as follows:

α

2
= arctan(

S

2x
).

Our experience with the derivative of this function will be useful below. Since both the
angleα and the distance from the predatorx change with time, we indicate so by writing

α(t) = 2 arctan

(

S

2x(t)

)

.
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We apply the chain rule to this expression to calculate the rate of change of the angleα with
respect to time. Lettingu = S/2x and using the derivative of the inverse trigonometric
function,

d arctan(u)

du
=

1

u2 + 1

and the chain rule, we would find, similarly that

dα(t)

dt
=

d arctan(u)

du

du

dx

dx

dt
=

1

u2 + 1
(− S

2x2(t)
(−v).

By simplifying, we arrive at the same result, namely that

dα

dt
=

Sv

x2 + (S2/4)
.

This result should not be too surprising. Indeed, we have already derived it using
implicit differentiation in a previous section. Recall a similar result derived for the rate of
change of a visual angle,θ in Chapter 10.

dθ

dt
=

sv

x2 + s2
.

In order to show this relation, we had to use the fact thatd tan(θ)/dθ = sec2(θ) and the
trigonometric identitytan2(θ) + 1 = sec2(θ). By substituting the relationsθ = α/2,
s = S/2 into the equation for the rate of change ofθ we find that

dα

dt
=

Sv

x2 + (S2/4)
.

This is the rate of change of the visual angle. Now we considerthe implications of this
result.

We first observe thatdα/dt depends on the size of the predator,S, its speed,v, and
its distance away at the given instant. In fact, we can plot the way that this expression
depends on the distancex by noting the following:

• Whenx = 0, i.e., when the predator has reached its prey,

dα

dt
=

Sv

0 + (S2/4)
=

4v

S
.

• For x → ∞, when the predator is very far away, we have a large valuex2 in the
denominator, so

dα

dt
→ 0.

A rough sketch of the way that the rate of change of the visual angle depends on the
current distance to the predator is shown in the curve on Figure 11.10.
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11.2.1 Linking the visual angle to the escape response

What sort of visual input should the danio respond to, if it isto be efficient at avoiding the
predator? In principle, we would like to consider a responsethat has the following features

• If the predator is too far away, if it is moving slowly, or if itis moving in the opposite
direction, it should appear harmless and should not cause undue panic and inappro-
priate escape response, since this uses up the prey’s energyto no good purpose.

• If the predator is coming quickly towards the danio, and approaching directly, it
should be perceived as a threat and should trigger the escaperesponse.

In keeping with these reasonable expectations, the hypothesis proposed by Dill is
that:

The escape response is triggered when the predator approaches so quickly, that
the rate of change of the visual angle is greater than some critical value.

We will call that critical valueKcrit. This constant would depend on how “skittish”
the Danio is given factors such as perceived risks of its environment. This means that the
escape response is triggered in the Danio when

dα

dt
= Kcrit

i.e. when

Kcrit =
Sv

x2 + (S2/4)
.

Figure 11.10(a) illustrates geometrically a solution to this equation. We show the line
y = Kcrit and the curvey = Sv/(x2 + (S2/4)) superimposed on the same coordinate
system. The value ofx, labeledxreactwill be the distance of the predator at the instant that
the Danio realizes that it is under threat and should escape.We can determine the value of
this distance, referred to as thereaction distance, by solving forx.

However, before doing so, we notice that another possibility, shown in Figure 11.10(b)
has no intersection and will result in no distance for whichKcrit = Sv/(x2+(S2/4)). This
may happen if either the Danio has a very high threshold of alert, so that it fails to react to
threats, or if the curve depictingdα/dt is too low. That happens either ifS is very large
(big predator) or ifv is small (slow moving predator “sneaking up” on its prey). From this
scenario, we find that in some situations, the fate of the Danio would be sealed in the jaws
of its pursuer.

To determine how far away the predator is detected in the happier scenario of Fig-
ure 11.10(a), we solve for the reaction distance,xreact:

x2 + (S2/4) =
Sv

Kcrit
⇒ x =

√

Sv

Kcrit
− S2

4
,

xreact=

√

S

(

v

Kcrit
− S

4

)

.
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 d    /dt α
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(a) (b)

Figure 11.10. The rate of change of the visual angledα/dt in two cases, when
the quantity4v/S is above (a) and below (b) some critical value.

It is clear that the reaction distance of the Danio with reaction thresholdKcrit would
be greatest for certain sizes of predators. In Figure 11.11,we plot the reaction distancexreact

(on the vertical axis) versus the predator sizeS (horizontal axis). We see that very small
predatorsS ≈ 0 or large predatorsS ≈ 4v/Kcrit the distance at which escape response
is triggered is very small. This means that the Danio may missnoticing such predators
until they are too close for a comfortable escape, resultingin calamity. Some predators will
be detected when they are very far away (largexreact). (We can find the most detectable
size by finding the value ofS corresponding to a maximalxreact. The reader may show as
an exercise that this occurs for sizeS = 2v/Kcrit.) At sizesS > 4v/Kcrit, the reaction
distance is not defined at all: we have already seen this fact from Figure 11.10(b): when
Kcrit > 4v/S, the straight line and the curve fail to intersect, and thereis no solution.

Figure 11.11(b) illustrates the dependence of the reactiondistancexreacton the speed
v of the predator. We find that for small values ofv, i.e. v < KcritS/4, xreact is not defined:
the Danio would not notice the threat posed by predators thatswim very slowly.
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Figure 11.11. (a) The reaction distancexreact (on the vertical axis) is shown for
various predator sizesS (on the horizontal axis). (b) The reaction distance is shownas a
function of the velocity of the predator.
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Exercises
11.1. The functiony = arcsin(ax) is a so-calledinverse trigonometric function. It ex-

presses the same relationship as does the equationax = sin(y). (However, this
function is defined only for values ofx between1/a and−1/a.) Use implicit dif-
ferentiation to findy′.

11.2. The inverse trigonometric functionarctan(x) (also writtenarctan(x)) means the
angleθ where−π/2 < θ < π/2whose tan isx. Thuscos(arctan(x) (orcos(arctan(x))
is the cosine of that same angle. By using a right triangle whose sides have length
1, x and

√
1 + x2 we can verify that

cos(arctan(x)) = 1/
√

1 + x2.

Use a similar geometric argument to arrive at a simplification of the following func-
tions:

(a) sin(arcsin(x)),

(b) tan(arcsin(x),

(c) sin(arccos(x).

11.3. Find the first derivative of the following functions.

(a) y = arcsinx
1
3

(b) y = (arcsinx)
1
3

(c) θ = arctan(2r + 1)

(d) y = x arcsec1x

(e) y = x
a

√
a2 − x2 − arcsin x

a , a > 0.

(f) y = arccos 2t
1+t2

11.4. Your room has a window whose height is 1.5 meters. The bottom edge of the win-
dow is 10 cm above your eye level. (See Figure 11.12.) How far away from the
window should you stand to get the best view? (“Best view” means the largest vi-
sual angle, i.e. angle between the lines of sight to the bottom and to the top of the
window.)

11.5. You are directly below English Bay during a summer fireworks event and looking
straight up. A single fireworks explosion occurs directly overhead at a height of
500 meters. (See Figure 11.13.) The rate of change of the radius of the flare is 100
meters/sec. Assuming that the flare is a circular disk parallel to the ground, (with its
center right overhead) what is the rate of change of the visual angle at the eye of an
observer on the ground at the instant that the radius of the disk isr = 100 meters?
(Note: the visual angle will be the angle between the vertical direction and the line
between the edge of the disk and the observer).
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Chapter 12

Approximation methods

12.1 Introduction
In this chapter we explore a few techniques for finding approximate solutions to problems
of great practical significance. The techniques here described are linked by a number of
common features; most notably, all are based on exploiting the fact that a tangent line is
a good (local) approximation to the behaviour of a function (at least close to the point of
tangency).

The first method, that of linear approximation has been discussed before, and is a
direct application of the tangent line as such an approximation. We will illustrate how this
approximation can lead to simple one-step computation of rough values that a function of
interest takes.

A second technique described here,Newton’s method, is used to find precise deci-
mal approximations to zeros of a function: recall these are places where a function crosses
the x-axis, i.e. wheref(x) = 0. The method gives an important example of anitera-
tion scheme: that is, a recipe that is repeated (several times) to generate successively finer
approximations.

A third technique is applied to calculating numerical solutions of a differential equa-
tion. This method, calledEuler’s method, uses the initial condition and the differential
equation to compute approximate values of the solution stepby step, starting with the ini-
tial time and incrementally computing the solution value for each of many small time steps.

While some of these techniques have been superseded by improved (graphics) cal-
culators, or mathematical software, the concepts behind the methods are still fundamental.
Also important is understanding the limitations of such methods, since each relies on cer-
tain assumptions and underlying concepts.

12.2 Linear approximation
We have already encountered the idea that the tangent line approximates the behaviour of a
function. In this technique, the approximation is used to generate rough values of a function
close to some point at which the value of the function and of its derivative are known, or
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easy to calculate.
Below we illustrate the idea oflinear approximation to the function

y = f(x) =
√
x.

The exact value of this function is well known at a number of judiciously chosen values
of x, e.g.

√
1 = 1,

√
4 = 2,

√
9 = 3, etc. Suppose we want to approximate the value of

the square root of 6. This is easily done with a scientific calculator, of course, but we can
also use a rough approximation which uses only simple “known” values of the square root
function and some elementary manipulations.

We use the following facts:

1. We know the value of the function at an adjoining point, i.e. atx = 4, sincef(4) =√
4 = 2.

2. We also know that the tangent line can approximate the behaviour of a function close
to the point of tangency

3. The derivative ofy = f(x) =
√
x = x1/2 is dy/dx = (1/2)x−1/2, i.e. the slope of

the tangent line to the curvey = f(x) =
√
x is

f ′(x) =
1

2
√

(x)
.

In particular, atx = 4, the derivative isf ′(4) = 1/(2
√
4) = 1/4 = 0.25

4. The equation of the tangent line to a curve at a point(x0, f(x0)) is

y − f(x0)

x− x0
= f ′(x0)

or simply
y = f(x0) + f ′(x0)(x− x0),

as we have seen earlier, when we first introduced the idea of a tangent line to a curve.

5. According to thislinear approximation,

f(x) ≈ f(x0) + f ′(x0)(x− x0).

The approximation is exact atx = x0, and holds well providedx is close tox0. (The
expression on the right hand side is precisely the value ofy on the tangent line at
x = x0

Putting these facts together, we find that the equation of a tangent line to the curve
y = f(x) =

√
x at the pointx = 4 is

y = f(4) + f ′(4)(x − 4)

i.e. that
y = 2 + 0.25(x− 4).
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In Figure 12.1(a), we show the original curve with tangent line superimposed. In
Figure 12.1(b) we show a zoomed portion of the same graph, on which the true value of√
6 (black dot) is compared to the value on the tangent line, which approximates it (red

dot) i.e. to

yapprox= 2 + 0.25(6− 4) = 2.5

It is evident from this picture that there is some error in theapproximation, since the values
are clearly different. However, if we do not stray too far from the point of tangency (x = 4),
the error will not be too large.

y=sqrt(x)

linear approx at x=4

0.0 9.0

0.0

3.0

sqrt(6)

actual value

approx value

3.0 7.0

1.0

3.0

(a) (b)

Figure 12.1.Linear approximation based atx = 4 to the functiony = f(x) =
√

(x).

In Table 12.1, we collect true exact values of the functionf(x) =
√
x (computed by

the spreadsheet), values of its derivative,f ′(x), (note in particular the value atx = 4 which
forms the slope of the tangent line of interest) and values onthe tangent line through the
point (4, 2). (The third column corresponds to the linear approximationvalues that we are
focusing on in this section.) Atx = 4, the values of the function and of its approximation
are identical (naturally - since we “rigged it” so). Close the x = 4, the values of the
approximation are fairly close to the values of the function. Further away, however, the
difference between these gets bigger, and the approximation is no longer very good at all.

These remarks illustrate two features: (1) the method is easy to use, and involves only
determination of a derivative, and elementary arithmetic.(2) The method has limitations,
and work well only close to the point at which the tangent lineis based.
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x f(x) =
√

(x) f ′(x) = 1/(2
√

(x)) y = f(x0) + f ′(x0)(x− x0)
(exact value) (approx value)

0.0000 0.0000 ∞ 1.0000
2.0000 1.4142 0.3536 1.5000
4.0000 2.0000 0.2500 2.0000
6.0000 2.4495 0.2041 2.5000
8.0000 2.8284 0.1768 3.0000
10.0000 3.1623 0.1581 3.5000
12.0000 3.4641 0.1443 4.0000
14.0000 3.7417 0.1336 4.5000
16.0000 4.0000 0.1250 5.0000

Table 12.1.Linear approximation to
√
x.

12.3 Newton’s method
Newton’s method is a technique for finding approximate values for roots of an algebraic
equation of the form

f(x) = 0.

(These values are also calledzerosof the functionf(x).) While this seems like a fairly
restricted type of problem, actually, there are numerous applications in which this technique
is useful, and many problems in applied and basic science that lead to such equations.
We have seen that finding critical points of some functionG(x), is equivalent to solving
G′(x) = 0. (i.e. if define the function of interest to bef(x) = G′(x), then we are solving
precisely an equation of the form shown above.

We first distinguish between cases that do and do not require Newton’s method, and
then show how Newton’s method is derived and how it is used.

12.3.1 When Newton’s method is not needed

Example 12.1 Find the value ofx that satisfies

f(x) = 0

wheref(x) = x2 + 4x+ 3.

Solution: We are asked to solve the equation

x2 + 4x+ 3 = 0.

This is a simple quadratic equation, and we have an exact formula(the quadratic formula)
for the roots, i.e.

x =
−4±

√

42 − 4(3)

2
=

−4±
√
4

2
= 3, 1.

In this case, we do not need Newton’s formula.
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Example 12.2 Find values ofx for which sin(x) = 1.

Solution: If we setf(x) = sin(x) − 1, then the problem of solving our equation reduces
to the problem of solvingf(x) = 0. (Many example of this sort occur.) However, we need
no fancy techniques to solve this equation, since we know about that the functionsin(x)
takes on the value 1 whenx = π/2, and all other values that correspond to this angle, to
which multiples of2π have been added (i.e.π/2± 2nπ wheren is an integer).

Example 12.3 Find critical points of the function

y = g(x) = 2x3 − 9x2 + 12x+ 1

Solution: We would first compute the derivativeg′(x) = 6x2 − 18x + 12, and then set
it equal zero. The problem reduces to solving an equation of the formf(x) = 0 where
f(x) = 6x2 − 18x + 12 is just the derivative ofg(x). Since this, too, is a quadratic, the
solution can be found easily using the quadratic formula, i.e.

x =
3±

√
9− 8

2
=

3± 1

2
= 1, 3

So far, most problems encountered in this course could be solved by such elementary
algebraic simplification and rearrangement. However, for polynomials of degree higher
than 3, this technique can lead to equations that are not easyto solve with elementary
methods. In such cases, Newton’s method can be indispensable.

12.3.2 Derivation of the recipe for Newton’s method

x

y

x

f(x  )

x x* 01

0

tangent line

Figure 12.2.Sketch showing the idea behing Newton’s method.
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Consider the functiony = f(x) shown in Figure 12.2. We want to find the valuex
such that

f(x) = 0.

In Figure 12.2, the desired point is indicated with the notation x∗. Usually, the decimal
expansion for the coordinatex∗ is not known in advance: that is what we are trying to
find. We will see that by applying Newton’s method several times, we can generate such a
decimal expansion to any desired level of accuracy.

Suppose we have some very rough idea of some initial guess forthe value of this
root. (how to find this initial guess will be discussed later.) Newton’s method is a recipe
for getting better and better approximations of the true value,x∗.

In the diagram shown in Figure 12.2,x0 represents an initial starting guess. We
observe that a tangent line to the graph off(x) at the pointx0 gives a rough indication of the
behaviour of the function near that point. We will use the tangent line as an approximation
of the actual function. We look for the point at which the tangent line intersects thex
axis. Letx1 denote that point of intersection. Then as shown in Figure 12.2,x1 is a better
approximation of the root we want to find, i.e.x1 is closer tox∗ than our initial guess. If
we can findx1 and repeat the same idea over and over again, we hope to find values that
get closer and closer to the rootx∗.

Our task is now to figure out a formula for the pointx1. We will use the following
facts:

• The point on the graph of the function corresponding to the initial guess is(x0, y0)
wherey0 = f(x0).

• The slope of the tangent line at the pointx0 is m = f ′(x0).

• The equation of a line through the point(x0, y0) with slopem is

y − y0
x− x0

= m

• Using the above facts, and substitutingm = f ′(x0) andy0 = f(x0) leads to the
following equation for the tangent line shown in Figure 12.2:

y − f(x0)

x− x0
= f ′(x0).

• We are interested in the place where the tangent line intersects thex axis, i.e. in the
point(x1, 0). We want to findx1, since this will be the more accurate approximation
for the root atx∗. so we have

0− f(x0)

x1 − x0
= f ′(x0).

• Solving forx1 we have
x1 − x0

0− f(x0)
=

1

f ′(x0)
.
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x1 − x0 = − f(x0)

f ′(x0)
⇒ x1 = x0 −

f(x0)

f ′(x0)
.

This gives a recipe for obtaining an improved value,x1 from the initial guess.

We have found that the initial guess,x0, and Newton’s method lead to the recipe for
the improved guess

x1 = x0 −
f(x0)

f ′(x0)
.

We can repeat this procedure to get a better value

x2 = x1 −
f(x1)

f ′(x1)
.

x3 = x2 −
f(x2)

f ′(x2)
.

...

In general, we can refine the approximation using as many steps as it takes to get the ac-
curacy we want. (We will see in upcoming examples how to recognize when this accuracy
is attained.) In the stepk + 1 we find a value that improves on the approximation made in
stepk as follows:

xk+1 = xk − f(xk)

f ′(xk)
.

Example 12.4 Apply Newton’s method to the same problem tackled earlier, namely deter-
mine the square root of 6.

Solution: It is first necessary to restate the problem in the form “Find avalue ofx such
that a certain functionf(x) = 0.” Clearly, a function that would accomplish this is

f(x) = x2 − 6

since the value ofx for whichf(x) = 0 is indeedx2 − 6 = 0, i.e.x =
√
6. (We could also

find other functions that have the same property, e.g.f(x) = x4 − 36, but the above is one
of the simplest such functions.

We compute the derivative for this function:

f ′(x) = 2x

Thus the iteration for Newton’s method is

x1 = x0 −
f(x0)

f ′(x0)

that is

x1 = x0 −
x2
0 − 6

2x0
.
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x0 x1

Newton’s method f(x)=x^2-6

0.0 4.0

-7.0

7.0

x0 x1

Newton’s method f(x)=x^2-6

x2x3

0.0 4.0

-7.0

7.0

(a) (b)

Figure 12.3.Newton’s method applied to solvingy = f(x) = x2 − 6 = 0.

xk f(xk) f ′(xk) xk+1

1.00 -5.00 2.00 3.5
3.5 6.250 7.00 2.6071

2.6071 0.7972 5.2143 2.4543
2.4543 0.0234 4.9085 2.4495
2.4495 0.000 4.8990 2.4495

Table 12.2.Newton’s method applied to Example 12.4.

Suppose we start with the initial guessx1 = 1 (which is actually not very close to the value
of the root) and see how well Newton’s method perform: This isshown in Figure 12.3. In
Figure 12.3(a) we see the graph of the function, the positionof our initial guessx0, and
the result of the improved Newton’s method approximationx1. In 12.3(b), we see how
the value ofx1 is then used to obtainx2 by applying a second iteration (i.e repeating the
calculation with the new value used as initial guess.)

A spreadsheet is ideal for setting up the rather repetitive calculations involved, as
shown in the table. For example, we compute the following setof values using our spread-
sheet. Observe that the fourth column contains the computed(Newton’s method) values,
x1, x2, etc. These values are then copied onto the first column to be used as new “initial
guesses”. We also observe that after several repetitions, the numbers calculatedconverge
(i.e. get closer and closer) to 2.4495, and no longer change to that level of accuracy. This
is a signal that we need no longer repeat the iteration, if we are satisfied with 5 significant
figures of accuracy.
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In the next example, we show how Newton’s method can be helpful in identifying
critical points of a certain function.

Example 12.5 Find the intersection point of the graph ofy = x2 with the graph ofy =
sin(x).

Solution: The problem consists of finding a positive value ofx such that

x2 = sin(x).

Rewriting this in the form
x2 − sin(x) = 0,

we recognize a problem of the sort that Newton’s method can solve. We letf(x) = x2 −
sin(x), and look for roots off(x) = 0.

To start, we observe that forx0 = 1 it is true thatx2 = 1, andsin(x) ≈ x ≈ 1. This
suggests that we could use the initial guessx0 = 1.

We have
f(x) = x2 − sin(x),

so
f ′(x) = 2x− cos(x).

and thus

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

x2
0 − sin(x0)

2x0 − cos(x0)
.

So

x1 = 1− 1− sin(1)

2− cos(1)
= 1− 1− 0.8414

2− 0.54
= 0.8914

we then evaluate

x2 = x1 −
f(x1)

f ′(x1)
= x1 −

x2
1 − sin(x1)

2x1 − cos(x1)
.

Plugging in the value ofx1 we had found, and calculating the value leads to

x2 = 0.8770,

We similarly find that
x3 = 0.8767,

x4 = 0.8767.

Thus, the sequence of values converges easily to the value ofthe root after only three
repetitions.

Example 12.6 Find a critical point of the function

y = x3 + e−x.
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Solution: The function is shown in Figure 12.4. We must turn this into the appropriate
problem to which Newton’s method will apply. The critical points of this function are
values ofx such that

dy

dx
= 3x2 − e−x = 0.

It is not possible to devise a simple algebraic way to solve this equation forx. We must
apply some approximation method. We will define the function

f(x) = 3x2 − e−x.

Clearly, the zeros of this function are the critical points we are looking for. We will find
one of these points using Newton’s method.

To do so, we must find the derivative off (which happens to be the second derivative
of the original function)

f ′(x) = 6x+ e−x.

–0.5

0

0.5

1

1.5

–2 –1.5 –1 –0.5 0.5 1

x

Figure 12.4.We are asked to find the critical points of the functiony = x3 + e−x.

As an initial guess we note thate ≈ 3 so that

f(1) ≈ 3− (1/3) ≈ 2.6

We will usex0 = 1 as the initial guess even though this is not a very accurate value. For
this problem

xk+1 = xk − f(xk)

f ′(xk)
= xk − 3x2

k − e−xk

6xk + e−xk

We show some calculations in Table 12.3.
Thus, we see that the values converge to the critical pointx = 0.4590. Again, the

iteration leads to convergence to a desired level of accuracy shown above. From the graph
of the function shown above, it is apparent that we can expecta second critical point at
aroundx ≈ −1. It is left to the reader to find the exact decimal expansion ofthat second
critical point, using similar steps withx0 = −1.
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xk f(xk) = f ′(xk) = xk+1 =
3x2

k − e−xk 6xk + exk

1.0000 2.6321 6.3679 0.5867
0.5867 0.4763 4.0761 0.4698
0.4698 0.0370 3.4439 0.4591
0.4591 0.0003 3.3862 0.4590
0.4590 0.0000 3.3857 0.4590

Table 12.3.Table for calculations in Example 12.6.

Example 12.7 (Effect of the initial guess:)How does the initial guess we use in New-
ton’s method affect the value of the root to which the method will converge?

Solution: We illustrate below the effect of starting out with several distinct guesses and
note that the result will depend on the root closest to the guess. For this example we will
solve the problem of finding roots of the equation

f(x) = sin(x) = 0.

(In actual fact, we do not need Newton’s method, since we knowthat the functionsin(x)
has zeros for integer multiples ofπ (i.e., atx = nπ wheren = 0, 1, 2 . . . is any integer).
However, we will use this example to check Newton’s method, to see how well the method
works for various starting guesses.)

Sincef ′(x) = cos(x), Newton’s method will be based on the recipe

x1 = x0 −
sin(x0)

cos(x0)
.

In the graph below we show the sequence of iterates that Newton’s method generates
for two different starting values. In the first experiment, we usex0 = 0.5. We’ll then get
the sequence of values

x0 = 0.5, x1 = −0.0463, x2 = 0.0000

and so on. This experiment leads us to find the root atx = 0. (We say that the sequence of
iteratesconvergesto x = 0.)

In the second experiment we start withx0 = 4. We then find that

x0 = 4, x1 = 2.8422, x2 = 3.1509, x3 = 3.1416

Thus, this sequence converges to the root atx = π.
In a third experiment, we tryx0 = 4.4. This guess is unfortunately rather close to a

critical point on the functiony = sin(x). The result is that the tangent line atx0 = 4.4 has
a very shallow slope (close to slope =0) and intersects thex axis quite far away. We see
that the value ofx1 andx2 bounce around as follows:

x0 = 4.4, x1 = 1.3037, x2 = −2.3505, x3 = −3.3620, x4 = −3.1380, x5 = −3.1416
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The result is shown in Figure 12.5(b). This illustrates the fact that an initial guess that is
too close to a critical point of the function in question may misdirect us. In some cases, the
result will be convergence to a root far away, while in other cases, the sequence may fail to
converge altogether.

x0=0.5
converges to
root at x=0

x0=4

converges to
root at x=pi

Effect of initial guess

-0.1 6.3

-1.0

1.0

x0x1x2x3

initial guessroot found

-6.3 6.3

-1.0

1.0

(a) (b)

Figure 12.5.Figure for Example 12.7

12.4 Euler’s method
Euler’s method is a technique used to find approximate numerical values for solutions to
a differential equations. In general, we might have a problem in whichy = g(t) is some
(unknown) function to be determined, where we are given information about the rate of
change ofy such as

dy

dt
= f(y)

and some initial condition
y(0) = y0.

This type of problem is aninitial value problem(i.e differential equation together with
initial condition.)

Euler’s method consists of replacing the differential equation by the approximation

yk+1 − yk
∆t

= f(yk).

Clearly, this approximation is only good if the step size∆t is quite small. (In that case,
the derivative is well approximated by the term on the left which is actually the slope of a
secant line)
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This approximation leads to the recipe

y1 = y0 + f(y0)∆t

y2 = y1 + f(y1)∆t

...

yk+1 = yk + f(yk)∆t.

We get from this iterated technique the approximate values of the function for as many time
steps as desired starting fromt = 0 in increments of∆t.

To set up the recipe for generating successive values of the desired solution, we first
have to pick a “step size”,∆t, and subdivide thet axis into discrete steps of that size. This
is shown in Figure 12.6. Our procedure will be to start with a known initial value ofy,
specified by the initial condition, and use it to generate thevalue at the next time point,
then the next and so on.

time

∆ t

    

t t t t t0 1 2 3 4 5

Figure 12.6.The time axis is subdivided into steps of size∆t.

It is customary to use the following notation to refer to the true ideal solution and the
one that is actually produced by this approximation method:

• t0 = the initial time point, usually att = 0.

• h = ∆t = common notations for the step size, i.e. the distance between the points
along thet axis.

• tk = the k’th time point. Since the points are just at multiples ofthe step size that
we have picked, it follows thattk = k∆t = h∆t.

• y(t) = the actual value of the solution to the differential equation at timet. This is
usually not known, but in the examples discussed here, we cansolve the differential
equation exactly, so we have a formula for the functiony(t). In most hard scientific
problems, no such formula is known in advance.

• y(tk) = the actual value of the solution to the differential equation at one of the
discrete time points,tk. (Again, not usually known.)
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• yk = the approximate value of the solution obtained by Euler’s method. We hope
that this approximate value is fairly close to the true value, i.e. thatyk ≈ y(tk),
but there is always some error in the approximation. More advanced methods that
are specifically designed to reduce such errors are discussed in courses on numerical
analysis.

Example 12.8 Apply Euler’s method to approximating solutions for the simple exponen-
tial growth model that was studied in Chapter 9,

dy

dt
= ay,

(wherea is a constant) with initial condition

y(0) = y0.

(See Eqn 9.1.)

Solution: Let us subdivide thet axis into steps of size∆t, starting witht0 = 0, and
t1 = ∆t, t2 = 2∆t, . . . From the above discussion, we note that the first value ofy is
known to us exactly, namely,

y0 = y(0) = y0.

We replace the differential equation by the approximation

yk+1 − yk
∆t

= ayk.

Then
yk+1 = yk + a∆tyk, k = 1, 2, . . .

In particular,
y1 = y0 + a∆ty0 = y0(1 + a∆t),

y2 = y1(1 + a∆t),

y3 = y2(1 + a∆t),

and so on. At every stage, the quantity on the right hand side depends only on values ofyk
that are already known, so that this generates a recipe for moving from the initial value to
successive values of the approximation fory.

Example 12.9 Consider the specific problem in which

dy

dt
= −0.5y, y(0) = 100.

Use step size∆t = 0.1 and Euler’s method to approximate the solution for two time steps.
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Solution: Euler’s method applied to this example would lead to

y0 =100.

y1 =y0(1 + a∆t) = 100(1 + (−0.5)(0.1)) = 95,

y2 =y1(1 + a∆t) = 95(1 + (−0.5)(0.1)) = 90.25,

and so on.
Clearly, these kinds of repeated calculations are best handled on a spreadsheet or

similar computer software. Later in this chapter we will compare the results of Euler’s
method applied to a differential equation with the actual solution known to us from studying
exponential behaviour.

The next example is somewhat more complex, but deals also with a differential equa-
tion whose solution is available exactly. We use it to illustrate the comparison between the
exact solution and the approximate solution generated by Euler’s method.

12.4.1 Applying Euler’s method to Newton’s law of cooling

We apply Euler’s method to the differential equation that describes the cooling of an object.
(This differential equation is called Newton’s Law of Cooling, though it is unrelated to the
Newton’s method we investigated above.) According to Newton,

The rate of change of temperatureT of an object is proportional to the differ-
ence between its temperature and the ambient temperature,E.

This hypothesis about the way that temperatureT (t) changes leads to the differential
equation

dT

dt
= k(E − T ).

Suppose we are given an initial condition that prescribes the temperature at the beginning
of the observation

T (0) = T0.

This initial value problem has a solution that can be writtenin a simple formula, i.e.

T (t) = E + (T0 − E)e−kt.

(See chapter 13 for a derivation of this result.) We will refer to this formula, which holds
exactly for all values of timet as thetrue solution. Observe that it is some function of
time that gives a full record of the behaviour of the temperature of the object as it cools
off or heats up in its environment. However, the numerical values of temperature at a
given time still need to be plotted or computed for this formula to be useful quantitatively.
This motivates us to look for some approximate technique that would use the differential
equation and the initial condition directly to plot quantitative behaviour, without the need
for a formula for the solution,T (t).

Example 12.10 (Newton’s law of cooling:)For simplicity, consider the case that the am-
bient temperature isE = 10 degrees. Suppose that the constantk is k = 0.2. Find the
exact solution, that is, determine the (formula for) the temperature as a function of time
T (t).
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Solution: In this case, the differential equation has the form

dT

dt
= 0.2(10− T ),

and its solution (which is known exactly) is

T (t) = 10 + (T0 − 10)e−0.2t.

We will investigate the solutions from several initial conditions,T = 0, 5, 15, 20 degrees.

Example 12.11 (Euler’s method applied to Newton’s law of cooling:) Write down the Eu-
ler’s method formula that can be used to find an approximationto the solution of Exam-
ple 12.10

Solution: The derivativedT/dt is approximated by the secant line slope, that is

dT

dt
≈ T (t+∆t)− T (t)

∆t
.

This means that an approximation to the differential equation

dT

dt
= 0.2(10− T ),

is
T (t+∆t)− T (t)

∆t
= 0.2(10− T (t)).

or, in simplified form,

T (t+∆t) ≈ T (t) + 0.2(10− T (t))∆t.

This is only an approximation, but for small∆t, the approximation should be relatively
good.

Suppose we are given the initial temperature, e.g.T (0) = T0. The important ob-
servation is that the above recipe gives us a way to compute the temperature at a slightly
later time. Indeed, as we have already seen, we can use this recipe over and over again to
generate a succession of values of the temperatureT each at the next time point. We will
not get a smooth curve: just a collection of point values, butthese can be connected to form
a solution curve, i.e. a record of the temperature through time.

Example 12.12Use the formula from Example 12.11 and time steps of size∆t = 1.0 to
find the first few values of temperature versus time.

Solution: Note that while∆t = 1.0 is not a “small step”, we use it here only to illustrate
the idea. Subdivide the horizontal (t) axis into steps of size∆t, and label the successive
time values ast0, t1, t2, . . . tn where

t0 = 0, tk = k∆t.
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1              2
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Figure 12.7.Using Euler’s method to approximate the temperature over time.

This is shown in Figure 12.6. We will refer to the true solution (obtained with the exact
formula) at a given time asT (tk). We will refer to the Euler’s method value of the approx-
imate solution at the time pointtk asTk. Then the initial condition will give us the value
of T0 = T (0). We will find the temperatures at the successive times by

T1 =T0 + 0.2(10− T0)∆t

T2 =T1 + 0.2(10− T1)∆t

T3 =T2 + 0.2(10− T2)∆t.

...

By the time we get to thek’th step, we have:

Tk+1 = Tk + 0.2(10− Tk)∆t.

Again we note that at each step, the right hand side involves acalculation that depends only
on known quantities.

In Table 12.4, we show a typical example of the method with initial valueT (0) =
T0 = 0 and with a (large) step size∆t = 1.0. The true (red) and approximate (black) solu-
tions are then shown in Figure 12.8. In this figure we illustrate four distinct solutions, each
one representing an experiment with a different initial temperature. (For the approximate
solution point values at are shown at each time step.)

The approximate solution is close to, but not identical to the true solution.
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time approx solution exact soln
tk Tk T (t)

0.0000 0.0000 0.0000
1.0000 2.0000 1.8127
2.0000 3.6000 3.2968
3.0000 4.8800 4.5119
4.0000 5.9040 5.5067
5.0000 6.7232 6.3212
6.0000 7.3786 6.9881
7.0000 7.9028 7.5340
8.0000 8.3223 7.9810

Table 12.4. Euler’s method applied to newton’s law of cooling generatesthe
values shown here.

delta t = 1.0

Euler’s method

True solution

0.0 10.0

0.0

20.0

Figure 12.8. A comparison of the true solution and the approximate solution
provided by Euler’s method.
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Exercises
12.1. An approximation for the square root: Use a linear approximation to find a rough

estimate of the following functions at the indicated points.

(a) y =
√
x atx = 10. (Use the fact that

√
9 = 3.)

(b) y = 5x− 2 atx = 1.

(c) y = sin(x) atx = 0.1 and atx = π + 0.1

12.2. Use the method of linear approximation to find the cube root of

(a) 0.065 (Hint: 3
√
0.064 = 0.4)

(b) 215 (Hint: 3
√
216 = 6)

12.3. Use the data in the graph in Figure 12.9 to make the best approximation you can to
f(2.01).

(2, 1)

(3, 0)

y = f(x)

Figure 12.9.Figure for Problem 3

12.4. Using linear approximation, find the value of

(a) tan 44 ◦, giventan 45 ◦ = 1, sec 45 ◦ =
√
2, and1 ◦ ≈ 0.01745 radians.

(b) sin 61 ◦, givensin 60 ◦ =
√
3
2 , cos 60 ◦ = 1

2 and1 ◦ ≈ 0.01745 radians.

12.5. Approximate the value off(x) = x3−2x2+3x−5 atx = 1.001 using the method
of linear approximation.

12.6. Use linear approximation to show that the each function below can be approximated
by the given expression when|x| is small (i.e. whenx is close to 0).

(a) sinx ≈ x

(b) ex ≈ 1 + x
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(c) ln(1 + x) ≈ x

12.7. Approximate the volume of a cube whose length of each side is10.1 cm.

12.8. Finding critical points: Use Newton’s method to find critical points of the function
y = ex − 2x2

12.9. Estimating a square root: Use Newton’s method to find an approximate value for√
8. (Hint: First think of a function,f(x), such thatf(x) = 0 has the solution

x =
√
8).

12.10. Finding points of intersection: Find the point(s) of intersection of:

(a) y1 = 8x3 − 10x2 + x+ 2 andy2 = x3 + 15x2 − x− 4 (Hint: an intersection
point exists betweenx = 3 andx = 4).

(b) y1 = e−x andy2 = lnx

12.11. Roots of cubic equations:Find the roots for each of the following cubic equations
using Newton’s method:

(a) x3 + 3x− 1 = 0

(b) x3 + x2 + x− 2 = 0

(c) x3+5x2−2 = 0 (Hint: Find an approximation to a first roota using Newton’s
method, then divide the left hand side of the equation by(x − a) to obtain a
quadratic equation, which can be solved by the quadratic formula.)

(d) f(x) = x lnx andg(x) = 2 (find the larger root only)

12.12. Use Newton’s method to find an approximation (correctto ±0.01 ) for any roots of
the equation

sin(x) =
1

2
x

How many roots does this equation actually have ? Draw a diagram showing the
functionsy = sin(x) andy = x/2 on the same set of axes to help answer this
question.

12.13. More critical points: Let f(x) = (x2 + x− 1)e−x2

.

(a) Find all critical points off(x) and indicate whether each one is a local maxi-
mum, local minimum, or neither.

(b) Graphf(x). Indicate the regions wheref ′′(x) is positive.

12.14. Use Newton’s method to find a value ofx that satisfies

ex − x2/2 = 0 .

Use the starting valuex0 = 0. Display your answer to4 significant figures.

12.15. We will use Newton’s method to investigate zeros of the function

y = f(x) = sin(x) − e−x

(i.e. roots of the equationf(x) = 0.)
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(a) Use the spreadsheet to graph the function

f(x) = sin(x) − exp(−x)

for values ofx from 0 up to 6.

(b) Find the equation of the tangent line to the curve at the point x0 = 1 and plot
it on the same graph.

(c) Use the valuex0 = 1 as an initial guess, and apply Newton’s method. Plot
the values(x1, 0), (x2, 0), and(x3, 0) on the same graph produced by your
spreadsheet to show how the points approach the zero of the function. Use this
method to find the value of the root to four significant figures.

(d) Use a separate computation with the spreadsheet to determine the value of the
root you find with the starting guessx0 = 4. (You need not show this on the
graph). Do you get to the same value as you did in part (c)? Why or why not?

(e) This function has lots of zeros. From your familiarity with the functionssin(x)
ande−x, where do you expect to find the roots for largerx values?

Hand in a graph produced by the spreadsheet, and an additional page showing
any calculations you made to get the answers. You can print the spreadsheet
contents as part of your hand-in work.

12.16. Comparing approximate and true solutions:

(a) Use Euler’s method to find an approximate solution to the differential equation

dy

dx
= y

with y(0) = 1. Use a step sizeh = 0.1 and find the values ofy up tox =
0.5. Compare the value you have calculated fory(0.5) using Euler’s method
with the true solution of this differential equation. What is theerror i.e. the
difference between the true solution and the approximation?

(b) Now use Euler’s method on the differential equation

dy

dx
= −y

with y(0) = 1. Use a step sizeh = 0.1 again and find the values ofy up
to x = 0.5. Compare the value you have calculated fory(0.5) using Euler’s
method with the true solution of this differential equation. What is the error
this time?

12.17. Euler’s method applied to logistic growth: Consider the logistic differential equa-
tion

dy

dt
= ry(1− y)

Let r = 1. Use Euler’s method to find a solution to this differential equation starting
with y(0) = 0.5, and step sizeh = 0.2. Find the values ofy up to timet = 1.0.
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12.18. Use the spreadsheet and Euler’s method to solve the differential equation shown
below:

dy/dt = 0.5y(2− y)

Use a step size ofh = 0.1 and show (on the same graph) solutions for the following
four initial values:

y(0) = 0.5, y(0) = 1, y(0) = 1.5, y(0) = 2.25

For full credit, you must include a short explanation of whatyou did (e.g. 1-2
sentences and whatever equations you implemented on the spreadsheet.)

12.19. Other differential equations: For each of the following differential equations, find
the approximate solution by Euler’s method in the specified interval using the given
initial condition and step size (display three decimal places for your answer).

(a)
dy

dx
= y, y(0) = 1

2 . Find the five successive values ofy(x) using a step size

of step size∆x = h = 0.1. (your values will correspond to points along the
interval0 < x < 0.5).

(b)
dy

dx
= x+ y, y(0) = 1, step size0.1 on the interval[−0.5, 0]. (Note: starting

atx = 0, you are going in the negativex direction.)

(c)
dy

dx
=

√
x+ y, y(1) = 2, find y on [1, 2] in 5 steps.

12.20. For each of the following differential equations, find value ofy at the specific point
by Euler’s method using the given initial condition and stepsize (display three dec-
imal places for your answer).

(a)
dy

dx
= x+ y2, y(0) = 1, step sizeh = 0.02, find y(0.1).

(b)
dy

dx
=
√

x2 + y2, y(0.2) = 0.5, find y(0.4) in 4 steps.



Chapter 13

More Differential
Equations

13.1 Introduction
In our discussion of exponential functions, we briefly encountered the idea of a differential
equation. We saw that verbal descriptions of the rate of change of a process (for example,
the growth of a population) can sometimes be expressed in theformat of a differential
equation, and that the functions associated with such equations allow us to predict the
behaviour of the process over time.

In this chapter, we will develop some of these ideas further,and collect a variety of
methods for understanding what differential equations mean, how they can be understood,
and how they predict interesting behaviour of a variety of physical and biological systems.

First, a brief review of what we have seen about differentialequations so far:

1. A differential equation is a statement linking the rate ofchange of some state variable
with current values of that variable. An example is the simplest population growth
model: IfN(t) is population size at timet:

dN

dt
= kN.

2. A solution to a differential equation is a function that satisfies the equation. For
instance, the functionN(t) = Cekt (for any constantC) is a solution to the above
unlimited growth model. (We checked this by the appropriatedifferentiation in a
previous chapter.) Graphs of such solutions (e.g. N versus t) are called solution
curves.

3. To select a specific solution, more information is needed:Namely, some starting
value (initial condition) is needed. Given this information, e.g.N(0) = N0, we can
fully characterize the desired solution.

4. So far, we have seen simple differential equations with simple functions for their
solutions. In general, it may be quite challenging to make the connection between the
differential equation (stemming from some application or model) with the solution
(which we want in order to understand and predict the behaviour of the system.)

249
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In this chapter we will expand our familiarity with differential equations and assem-
ble a variety of techniques for understanding these. We willencounter both qualitative and
quantitative methods. Geometric as well as algebraic techniques will form the core of the
concepts here discussed.

13.2 Review and simple examples

13.2.1 Simple exponential growth and decay

We first review the simplest differential equation representing an exponential growth model.

Example 13.1 (Exponential growth, revisited)Characterize the solutions to the exponen-
tial growth model

dy

dt
= y

with initial condition
y(0) = y0.

Solution: We know that solutions are

y(t) = y0e
t.

These are functions that grow with time, as shown on the left panel in Figure 13.1.

Example 13.2 (Exponential decay:)What are solutions to the differential equation

dy

dt
= −y

with initial condition
y(0) = y0

Solution: This differential equation has solutions of the form

y(t) = y0e
t,

which are functions that decrease with time. We show some of these on the right panel of
Figure 13.1. (Both graphs were produced with Euler’s methodand a spreadsheet.)

Example 13.3 Suppose we are given a differential equation in a related, but slightly dif-
ferent form

dy

dt
= 1− y,

with initial conditiony(0) = y0. Determine the solutions to this differential equation.



13.2. Review and simple examples 251

dy/dt = y

Solutions to the differential equation

y

time, t
0.0 2.0

0.0

20.0

dy/dt = - y

Solutions to the differential equation

y

time, t

0.0 2.0

0.0

10.0

(a) (b)

Figure 13.1.Simple exponential growth and decay

Solution: In this section we display the solutions to this equation, and study its properties.
We show how a simple transformation of the variable can lead us to a solution to this
equation.

Let v = 1− y. Then
dv

dt
= −dy

dt

But dy/dt = 1− y, so that
dv

dt
= −(1− y) = −v.

The differential equation has been simplified (when writtenin terms of the variablev): It
is just

dv

dt
= −v.

This means that we can write down its solution by inspection,since it has the same form as
the exponential decay equation studied previously:

v(t) = v0e
−t

Observe, also, that the initial condition fory implies that at timet = 0 v(0) = 1− y(0) =
1− y0. We now have:

v(t) = (1− y0)e
−t

1− y(t) = (1− y0)e
−t.

Finally, we can arrive at an expression fory which is what we were looking for originally:

y(t) = 1− (1− y0)e
−t.
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dy/dt = 1 - y

Solutions to the differential equation

time, t

y

0.0 2.0

0.0

3.0

Figure 13.2.Solutions are functions that approach the valuey = 1

This is an exact formula that predicts the values ofy through time, starting from any initial
value.

13.3 Newton’s law of cooling
Consider an object at temperatureT (t) in an environment whose ambient temperature isE.
Depending on whether the object is cooler or warmer than the environment, the object will
heat up or cool down. From common experience we know that after a long time, we should
find that the temperature of the object will be essentially equal to that of its environment.

Newton formulated a hypothesis to describe the rate of change of temperature. He
assumed that

The rate of change of temperatureT of an object is proportional
to the difference between its temperature and the ambient tempera-
ture, E.

dT

dt
is proportional to (T (t)− E)

so that
dT

dt
= k(E − T (t)), where k > 0.

Here we have used the proportionality constantk > 0 to arrive at the appropriate sign
of the Right Hand Side (RHS). (Otherwise, if the expression on the right werek(T (t) −
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E), then the direction of the change would be incorrect (a hotter object would get hotter
in a cold room, etc). This is an example of a differential equation linking the current
temperatureT (t) to its rate of change.

In order to predict what happens, we need to know the startingvalue ofT . This is
supplied in separate information, called the initial condition. For example, we would be
given the value of some constantT0 such that at timet = 0 the temperature isT (0) = T0.
The differential equation together with an initial condition is called aninitial value problem.
Below, we will show how a solution to this problem can be foundin several ways. One
technique involves seeking a formula for the function that has the property so described.
This is called an analytic solution. Numerical solutions, obtained by an approximation
method such as Euler’s method, shortcut the need for such functional descriptions. Finally
qualitative techniques use the differential equation directly to analyze and understand the
overall behaviour.

An analytic solution to Newton’s law of cooling

Considering the temperatureT (t) as a function of time, we would like to solve the differ-
ential equation

dT

dt
= k(E − T ),

together with the initial condition
T (0) = T0.

We will assume that the ambient temperature,E is constant, as is the thermal con-
ductivity, k > 0. We are hoping to identify a functionT (t) that satisfies this equation, i.e.
such that when we differentiate this function we find that

dT (t)

dt
= k(E − T (t)).

The same “trick” as before can be used to convert this to an equation that we know how to
solve. If we define a new variable,v(t) = E − T (t), we can show that

dv(t)

dt
= −kv

(This is left as an exercise for the reader.) We can also see thatv(0) = E−T (0) = E−T0.
Just as in the previous example, when the dust clears, we can find the formula for the
solution, which turns out to be

T (t) = E + (T0 − E)e−kt.

In Figure 13.3 we show a number of the curves that describe this behaviour for five
different starting values of the temperature. (We have setE = 10 andk = 0.2 in this case.)
This set of curves is often called thesolution curvesto the differential equation.

It is evident that finding the full analytic solution to a differential equation can in-
volve a bit of trickery. Indeed, many differential equations will pose great challenges, and
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temperature
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Figure 13.3.Temperature versus time for a cooling object

some will have no analytic solutions at all. Techniques for solving some of the simpler
differential equations forms an important part of mathematics.

Now that we have a detailed solution to the differential equation representing New-
ton’s Law of Cooling, we can apply it to making exact determinations of temperatures over
time, or of time at which a certain temperature was attained.An example in which this is
done is presented in the following section.

Application of Newton’s law of cooling

Example 13.4 (Murder mystery:) It is a dark clear night. The air temperature is10◦ C.
A body is discovered at midnight. Its temperature is then27◦ C. One hour later, the body
has cooled to24◦ C. Use Newton’s law of cooling to determine the time of death.

Solution: We will assume that the temperature of the person just beforedeath is37◦ C, i.e.
normal body temperature in humans. Letting the time of deathbet = 0, this would mean
thatT (0) = T0 = 37. We want to find how much time elapsed until the body was found,
i.e. the value oft at which the temperature of the body was27◦ C. We are told that the
ambient temperature isE = 10, and we will assume that this was constant over the time
span being considered. Newton’s law of cooling states that

dT

dt
= k(10− T ).

The solution to this equation is

T (t) = 10 + (37− 10)e−kt = 27,

or
27 = 10 + 27e−kt, i.e. 17 = 27e−kt.
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We do not know the value of the constantk, but we have enough information to find it,
since we know that att+ 1 (one hour after discovery) the temperature was24◦ C, i.e.

T (t+ 1) = 10 + (37− 10)e−k(t+1) = 24, ⇒ 24 = 10 + 27e−k(t+1).

Thus
14 = 27e−k(t+1).

We have two separate equations for the two unknownst andk. We can find both
unknowns from these. Taking the ratio of the two equations weobtained we get

14

17
=

27e−k(t+1)

27e−kt
= e−k. ⇒ −k = ln

(

14

17

)

= −0.194

Thus we have found the constant that describes the rate of cooling of the body. Now to find
the time we can use

17 = 27e−kt ⇒ −kt = ln

(

17

27

)

= −0.4626

so

t =
0.4626

k
=

0.4626

0.194
= 2.384.

Thus the time of discovery of the body was 2.384 hours (i.e. 2 hours and 23 minutes) after
death, i.e. at 9:37 pm.

13.4 Related examples
The differential equation that we have studied in Newton’s Law of Cooling is one repre-
sentative member of a class of differential equations that share similar behaviour. In this
section we describe a more general form, comment on the general aspects of the solutions
and list a few other examples. Consider the differential equation

dy

dt
= a− by

wherea, b are constants together with the initial value

y(0) = y0.

While this appears to be an example unrelated to our previouswork, by a slight reinterpre-
tation, we will see the connection.

Rewrite the differential equation in the form

dy

dt
= b

(a

b
− y
)

Now note that our previous differential equation for cooling can be translated into the new
equation by the following correspondence:

T (t) → y(t), E → a

b
, k → b.
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Rewriting Newton’s Law of Cooling in this notation producesthe equation given above.
But we are already familiar with all aspects of the solution to the previous problem of
cooling, so, just be reinterpreting it in terms of new quantities, we get the corresponding
solution to the more general differential equation:

y(t) =
(

y0 −
a

b

)

e−bt +
a

b

Remarks made in our discussion of cooling should carry over directly to this function
and to the behaviour it describes. For example, we find thatdy/dt = 0 for y = a/b. We
also note that after a long time the value ofy(t) should approacha/b.

Friction and terminal velocity

The velocity of a falling object changes due to the acceleration of gravity, but friction has an
effect of slowing down this acceleration. The differentialequation satisfied by the velocity
v(t) of the falling object is

dv

dt
= g − kv

whereg is acceleration due to gravity andk is a constant that represents the effect of
friction.

Production and removal of a substance

An infusion containing a fixed concentration of substance isintroduced into a fixed vol-
ume. Inside the volume, a chemical reaction results in decayof the substance at a rate
proportional to its concentration. Lettingc(t) denote the time-dependent concentration of
the substance, we would obtain a differential equation of the form

dc

dt
= Kin − γc

whereKin represents the rate of input of substance andγ the decay rate.
We can understand the behaviour of these systems by translating our notation from

the general to the specific forms given above. For example,

c(t) → y(t), Kin → a, γ → b.

Thus the behaviour found in the general case, can be interpreted in each of the specific
situations of interest.

13.5 Qualitative methods
Finding the formula that described temperature over time involved some convenient re-
casting of the problem into familiar form. However, not all differential equations are as
easily solved analytically. Furthermore, even when we find the analytic solution, it is not
always easy to interpret, graph, or understand. This motivates a number of simpler qual-
itative methods that lead us to an overall understanding of the behaviour directly from
information contained in the differential equation, without the challenges of finding a full
functional form of the solution. We describe some of these methods below.
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13.5.1 Rates of change

A differential equation
dy

dt
= f(y)

encodes information about the rate of changedy/dt of the variabley, and how this rate of
change is linked to the current value ofy. It can be helpful to sketch the way that the rate of
change depends ony, because certain interesting conclusions emerge from suchdiagrams.

Example 13.5 Consider the differential equation

dy

dt
= y − y3. (13.1)

Then the rate of change isf(y) = y − y3 . (This is the function on the right hand side
of the differential equation.) Use this observation to determine values ofy for which y is
static (does not change).

y

Rate of change

dy/dt

Figure 13.4.The functiony − y3 as a rate of change ofy

Solution: Plotting the rate of changef(y) versusy leads to the sketch shown in Figure 13.4.
We see from this sketch that the rate of change is zero fory = −1, 0, 1. This means thaty
does not change at these values, i.e. if we start a system off with y(0) = 0, or y(0) = ±1,
the value ofy will be static. The three places at which this happens are marked by heavy
dots in Figure 13.5(a).

Example 13.6 Now continue the ideas of Example 13.5 to find the range of values ofy for
whichy decreases, and for whichy increases.

Solution: We also see thatf(y) < 0 for −1 < y < 0 and fory > 1. This means that
the rate of change ofy is negative whenever−1 < y < 0 or y > 1, which, in turn,
implies that if the value ofy(t) falls in either of these intervals at any timet, theny(t)
must be a decreasing function of time. On the other hand, for0 < y < 1 or for y < −1,



258 Chapter 13. More Differential Equations

we havef(y) > 0, i.e., the rate of change ofy with respect tot is positive. This says
thaty(t) must be increasing. We can indicate these observations witharrows marking the
direction of change ofy. Along they axis (which is now on the horizontal axis of the
sketch) increasingy means motion to the right, decreasingy means motion to the left. This
has been done in Figure 13.5(b). We see from the directions marked that there is a tendency
for y to move away from the valuey = 0 and to approach either of the values1 or −1 as
time goes by. (What actually happens depends on the initial value ofy.)

y

Rate of change

dy/dt

y

Rate of change

dy/dt

(a) (b)

Figure 13.5.Static points and intervals for whichy increases or decreases for the
differential equation(13.1). See Examples 13.5 and 13.6.

Example 13.7 (A cooling object:)Sketch the same typeof diagrams for the problem of a
cooling object and interpret its meaning.

Solution: Here, the differential equation is

dT

dt
= 0.2(10− T ).

Here, the functionf(T ) = 0.2(10 − T ) is the rate of change associated with a given
temperatureT . A sketch of the rate of change,F (T ) versus the temperatureT is shown in
Figure 13.6(a).

Example 13.8 Create a similar qualitative sketch for the more general form of linear dif-
ferential equation

dy

dt
= a− by. (13.2)
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Rate of change

T

dT/dt

E

f(y)

y

Rate of change

a/b

(a) (b)

Figure 13.6. (a) Figure for Example 13.7, (b) Qualitative sketch for Eqn.(13.2)
in Example 13.8.

Solution: The rate of change ofy is given by the functionf(y) = a − by. This is shown
in the sketch in Figure 13.6(b). We see that there is one pointat whichf(y) = 0, namely
at y = a/b. We also see from this figure that the value ofy will be approaching this value
over time. We can say that, just from the form of the differential equation, even without
knowing the formula of the solution, we find that after a long time, the value ofy will be
approximatelya/b.

13.6 Slope fields
In this section we discuss yet another geometric way of understanding the behaviour pre-
dicted by a differential equation. This time, our plots willhave a time axis, and we will try
to figure out something about the actual solution curves, without resorting to the formulae
for their analytic solutions.

We have already seen that solutions to a differential equation of the form

dy

dt
= f(y)

are curves in they, t plane that describe howy(t) changes over time. (Thus, these curves
are graphs of functions of time.) Each initial conditiony(0) = y0 is associated with one
of these curves, so that together, these curves form afamily of solutions. What do these
curves have in common geometrically?

Simply stated, the slope of the tangent line (which is justdy/dt) at any point on any
of the curves has to be related to the value of they coordinate of that point. That is exactly
what the differential equation is saying: if the value ofy is such and such, then the slope
at that point must bef(y). Below we see this related but new way of understanding the
differential equations already discussed in this chapter.
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y dy/dt slope of tangent line behaviour ofy
-2 -4 -ve decreasing
-1 -2 -ve decreasing
0 0 0 no change in y
1 2 +ve increasing
2 4 +ve increasing

Table 13.1.Table of derivatives and slopes for the differential equation (13.3)of
Example 13.9.

Example 13.9 Consider the differential equation

dy

dt
= 2y. (13.3)

Compute some of the slopes for variousy values and use this to sketch aslope field.

Solution: We create a table of derivative values
Figure 13.7 illustrates the direction field and the corresponding solution curves.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1 2 3 4 5

(a) (b)

Figure 13.7.Direction field and solution curves for Example 13.9.

Example 13.10For example, consider the differential equation

dy

dt
= y − y3.

Create a slope field diagram for this differential equation.

Solution: Any curve that satisfies this equation and that goes throughy = 1, for example,
must have a tangent line of slopedy/dt = 1 − 13 = 0. This is true regardless of the time
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y dy/dt
0.0000 0.0000
0.2500 0.2344
0.5000 0.3750
0.7500 0.3281
1.0000 0.0000
1.2500 -0.7031
1.5000 -1.8750
1.7500 -3.6094
2.0000 -6.0000
2.2500 -9.1406
2.5000 -13.1250

Table 13.2.Table for Example 13.10

t, (since the functionf(y) = y − y3 does not depend explicitly ont directly - only on
y). For example, a curve that goes through the pointy = 2 would have tangent line of
slopedy/dt = 2 − 23 = −6 at that point. In principle, we could find the correspondence
betweeny values and slopes for many possibley values and use the sketch generated with
this information (theslope field) to understand what solution curves look like.

In Table 13.2 we show the slopes associated with various points in they, t plane given
by the differential equation in this example.

-1

-0.5

0

0.5

1

y

0 5 10 15 20
time

-1

-0.5

0

0.5

1

y

0 5 10 15 20
time

(a) (b)

Figure 13.8.Figure for Example 13.10.

We see above that ify = 1 or y = 0, the slope of the tangent line is zero (indicating
a horizontal tangent line), whereas if0 < y < 1, the slopes are positive, indicating that
y is increasing. We also see that ify > 1, the slopes are negative (y is decreasing), and
steeper for larger values ofy. This agrees with what we have seen earlier with our plot of
the rate of change. The picture looks different now, becausewe are explicitly including the
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temp slopedT/dt
T = 0.2(10− T )

0.0000 2.0000
2.0000 1.6000
4.0000 1.2000
6.0000 0.8000
8.0000 0.4000
10.0000 0.0000
12.0000 -0.4000
14.0000 -0.8000
16.0000 -1.2000
18.0000 -1.6000
20.0000 -2.0000

Table 13.3.Slopes for Example 13.11.

time axis and showing the curvesy(t), whereas in our previous sketch, arrows were used
to indicate whethery was increasing or decreasing, without showing a time axis.

Example 13.11Sketch a slope field and solution curves for the problem of a cooling ob-
ject, and specifically for

dT

dt
= 0.2(10− T ), (13.4)

Solution: The collection of curves shown in Figure 13.3 are solution curves for theT (t),

0

5
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15

20

0 5 10 15 20
0

5

10

15

20

temperature

0 5 10 15 20
time

(a) (b)

Figure 13.9.Slope field for a cooling object of Example 13.11.

the functionf(T ) = 0.2(10− T ) also corresponds to the slope of the tangent lines to the
curves in Figure 13.3.
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In Table 13.3, we calculate values of the slopef(T ) = 0.2(10− T ) for a number of
value ofT , and these are shown plotted as a slope field in Figure 13.9.

13.7 Steady states and stability
We notice from Figure 13.9 that for a certain initial temperature, namelyT0 = 10 there will
be no change with time. Indeed, we find that at this temperature the differential equation
specifies thatdT/dt = 0. Such a value is called asteady state.

Definition 13.12 (Steady state:).A Steady state is a state in which a system is not chang-
ing.

Example 13.13Find the steady states of the equation

dy

dt
= y − y3, (13.5)

Solution: To find steady states we look fory such thatdy/dt = 0 so that

dy

dt
= y − y3 = 0,

i.e. we would havey = 0 andy = ±1 as three steady states.
From Figure 13.5, we see that solutions startingclose toy = 1 tend to get closer and

closer to this value. We refer to this behaviour asstability of the steady state..

Definition 13.14 (Stability:). We say that a steady state isstable if states that are initially
close enough to that steady state will get closer to it with time. We say that a steady state is
unstable, if states that are initially very close to it eventually move away from that steady
state.

Example 13.15Find a stable and an unstable steady state of Eqn. (13.5) in Example 13.13
are stable.

Solution: From any starting value ofy > 0 in this example, we see thatafter a long time,
the solution curves tend to approach the valuey = 1. States close toy = 1 get closer to
it, so this is a stable steady state. For the steady statey = 0, we see that initial conditions
close toy = 0 do not get closer, but rather move away over time. Thus, this steady state is
unstable. It turns out that there is also a stable steady state aty = −1.

As seen in Example 13.13, even though we do not have any formula that connects
y values with specific times, we can say qualitatively what happens to any positive initial
values after a long time: they all approach the valuey = 1.
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13.8 The logistic equation for population growth
The ideas developed in this chapter, and particularly the qualitative and geometric ideas,
can help us to understand a variety of differential equations that stem from biological,
physical, or chemical applications. When these equations are nonlinear, i.e. when the
functionf(y) in

dy

dt
= f(y)

is not a simple linear function ofy, then it can be quite challenging to discover analytic
solutions. However, the qualitative methods described above can help to understand what
the equations predict.

In Chapter 9, we have seen that the assumption of a constant growth rate leads to a
differential equation for population levelN(t) of the form

dN

dt
= rN,

which has exponential solutions. This means that only two possible behaviours are ob-
tained: explosive growth ifr > 0 or extinction ifr < 0.

Most natural populations are found to attain some level thatdoes not expand continu-
ally. This is due to limitations in finding resources or in competing for a fixed territory size.
Such populations, under ideal conditions in a fixed environment, would generally stabilize
at some typical density, rather than going extinct or continuing an exponential growth. This
motivates revising our previous model.

In the modification studied here, we will letN(t) represent the size of a population
at timet. Consider the differential equation

dN

dt
= rN

(K −N)

K
. (13.6)

We call this the differential equation thelogistic equation. Here the parameterr > 0
is called theintrinsic growth rate andK > 0 is the carrying capacity. Both these
parameters are assumed to be positive constants.

The logistic equation can be justified in one of several ways as a convenient simple
model for population growth that has a greater relevance than exponential growth. In the
form written above, we could interpret it at

dN

dt
= R(N)N.

whereR(N) = r(K −N)/K is a so-calleddensity dependent growth rate. (It replaces
the previously assumed constant growth raterN , that leads to unlimited growth.) Rewritten
in the form

dN

dt
= rN − bN2

(whereb = r/K is a positive quantity), it can be interpreted as the usual linear growth
termrN , with a superimposed quadratic (nonlinear) rate of death due to overcrowding or
competitionbN2. We already know that this quadratic term will dominate for larger values
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of N , and this means that when the population is crowded, the lossof individuals is greater
than the rate of reproduction.

In this section we will familiarize ourselves with the behaviour predicted by the lo-
gistic equation.

Example 13.16Find the steady states of the Logistic Equation (13.6).

Solution: To determine the steady states of the equation (13.6), i.e. the level of population
that would not change over time, we look for values ofN such that

dN

dt
= 0

This leads to

rN
(K −N)

K
= 0

which has solutionsN = 0 (no population at all) orN = K (the population is at its
carrying capacity).

The logistic equation has a long history in modelling population growth of microor-
ganisms, animals, and human populations. It is justified either by considering it to be a
special case of thedensity dependentgrowth equation

dN

dt
= R(N)N

(In that case the reproductive rate has the formR(N) = r(K −N)/K), or, equivalently, it
can be considered to fall into a class of equations that have the form

dN

dt
= rN − bN2

(where the constant isb = r/K), which means that a constant rate of reproductionrN is
modified by a quadratic mortality ratebN2. The mortality would tend to dominate only
for larger values of the population, i.e. if conditions are crowded so that animals have
to compete for resources or habitat. (This stems from the fact that the quadratic term is
smaller than the linear term nearN = 0, but dominates for largeN , as we have already
discussed in Chapter 1.)

It is often desirable to formulate the problem in the simplest possible terms. We can
do this by a process called rescaling:

Example 13.17 (Rescaling:)Define a new variable

y(t) =
N(t)

K
.

Interpret what this variable represents and show that the Logistic equation can be written
in a simpler form in terms of this variable.
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Solution: The rescaled variable,y(t), is a population density expressed in units of the
carrying capacity. (For example, if the environment can sustain 1000 individuals, and the
current population size isN = 950 then the value ofy is y = 0.950.) SinceK is assumed
constant,

dy

dt
=

1

K

dN

dt
and we can simplify the equation:

dy

dt
= ry(1 − y). (13.7)

We observe that indeed, this equation “looks simpler” and also has only one constant pa-
rameter left in it. It is generally the case that rescaling reduces the number of parameters in
a differential equation such as seen here.

Example 13.18Draw a plot of the rate of changedy/dt versus the value ofy for the
rescaled logistic equation (13.7).

Solution: This plot is shown in Figure 13.10. The steady states are located aty = 0, 1
(which correspond toN = 0 andN = K in the original variable.) We also find that in the
interval0 < y < 1, the rate of change is positive, so thaty increases, whereas fory > 1,
the rate of change is negative, soy decreases. Sincey refers to population size, we need
not concern ourselves with behaviour fory < 0.

Rate of change

dy/dt

y

Figure 13.10.Plot ofdy/dt versus y for the rescaled logistic equation(13.7).

From Figure 13.10 we expect to see solutions to the differential equation that ap-
proach the valuey = 1 after a long time. (The only exception to this would be the case
where there is no population present at all, i.e.y = 0, in which case, there would be no
change.) Restated in terms of the original quantities in themodel, the populationN(t)
should approachK after a long time. We now look at the same equation from the perspec-
tive of the slope field.

Example 13.19Draw a slope field for the rescaled logistic equation withr = 0.5, that is
for

dy

dt
= 0.5y(1− y). (13.8)
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population slopedy/dt
y = 0.5y(1− y)

0.0000 0.0000
0.1000 0.0450
0.2000 0.0800
0.3000 0.1050
0.4000 0.1200
0.5000 0.1250
0.6000 0.1200
0.7000 0.1050
0.8000 0.0800
0.9000 0.0450
1.0000 0.0000
1.1000 -0.0550
1.2000 -0.1200

Table 13.4.Slopes for the logistic equation(13.8).

Solution: We generate slopes in Table 13.4 for different values ofy and plot the slope field
in Figure 13.11(a).

Finally, we can use the numerical technique of Euler’s method to graph out the full
solution to this differential equation from some set of initial conditions.

Example 13.20 (Numerical solutions to the logistic equation:) Use Euler’s method to ap-
proximate the solutions to the logistic equation (13.8).

Solution: In Figure 13.11(b) we show a set of solution curves, obtainedby solving the
equation numerically using Euler’s method and the spreadsheet. To obtain these solutions,
a value ofh = ∆t = 0.1 was used, the time axis was discretized (subdivided) into steps of
size 0.1. A starting value ofy(0) = y0 at timet = 0 were picked. The successive values of
y were calculated as follows:

y1 = y0 + 0.5y0(1 − y0)h

y2 = y1 + 0.5y1(1 − y1)h

...

yk+1 = yk + 0.5yk(1− yk)h

(The attractive feature of using a spreadsheet is that this repetition can be handled automat-
ically by dragging the cell entry containing the results forone iteration down to generate
other iterations. Another attractive feature is that once the method is implemented, it is
possible to change the initial condition very easily, just by changing a single cell entry.
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Figure 13.11.(a) Slope field and (b) solution curves for the logistic equation 13.8.

From these results, we see that solution curves approachy = 1. This means (in terms
of the original variable,N ) that the population will approach the carrying capacityK for
all nonzero starting values, i.e. there will be a stable steady state with a fixed level of the
population.

Example 13.21Some of the curves shown in Figure 13.11(b) have an inflectionpoint, but
others do not. Use the differential equation to determine which of the solution curves will
have an inflection point.

Solution: From Figure 13.11(b) we might observe that the curves that emanate from initial
values in the range0 < y0 < 1 are all increasing. Indeed, this follows from the fact ify is
in this range, the rate of changery(1− y) is a positive quantity.
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The logistic equation has the form

dy

dt
= ry(1 − y) = ry − ry2

This means that (by differentiating both sides and remembering the chain rule)

d2y

dt2
= r

dy

dt
− 2ry

dy

dt
= r

dy

dt
(1− 2y).

An inflection point would occur at places where the second derivative changes sign, and in
addition

d2y

dt2
= 0.

From the above we see that this is possible fordy/dt = 0 or for (1 − 2y) = 0. We have
already dismissed the first possibility because we have argued that the rate of change in
nonzero in the interval of interest. Thus we conclude that aninflection point would occur
whenevery = 1/2. Any initial condition satisfying0 < y0 < 1/2 would eventually pass
throughy = 1/2 on its way up to the steady state level aty = 1, and in so doing, would
have an inflection point.
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Exercises
13.1. Consider the differential equation

dy

dt
= a− by

wherea, b are constants.

(a) Show that the function

y(t) =
a

b
− Ce−bt

satisfies the above differential equation for any constantC.

(b) Show that by setting

C =
a

b
− y0

we also satisfy the initial condition

y(0) = y0.

Remark: You have now shown that the function

y(t) =
(

y0 −
a

b

)

e−bt +
a

b

is a solution to theinitial value problem(i.e differential equation plus initial
condition)

dy

dt
= a− by, y(0) = y0.

13.2. For each of the following, show the given functiony is a solution to the given dif-
ferential equation.

(a) t · dy
dt

= 3y, y = 2t3.

(b)
d2y

dt2
+ y = 0, y = −2 sin t+ 3 cos t.

(c)
d2y

dt2
− 2

dy

dt
+ y = 6et, y = 3t2et.

13.3. Show the function determined by the equation2x2 + xy − y2 = C, whereC is a

constant and2y 6= x, is a solution to the differential equation(x−2y)
dy

dx
= −4x−y.

13.4. Find the constantC that satisfies the given initial conditions.

(a) 2x2 − 3y2 = C, y|x=0 = 2.

(b) y = C1e
5t + C2te

5t, y|t=0 = 1 and dy
dt |t=0 = 0.

(c) y = C1 cos(t− C2), y|t=π
2
= 0 and dy

dt |t= π
2
= 1.
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13.5. Friction and terminal velocity: The velocity of a falling object changes due to the
acceleration of gravity, but friction has an effect of slowing down this acceleration.
The differential equation satisfied by the velocityv(t) of the falling object is

dv

dt
= g − kv

whereg is acceleration due to gravity andk is a constant that represents the effect
of friction. An object is dropped from rest from a plane.

(a) Find the functionv(t) that represents its velocity over time.

(b) What happens to the velocity after the object has been falling for a long time
(but before it has hit the ground)?

13.6. Alcohol level: Alcohol enters the blood stream at a constant ratek gm per unit time
during a drinking session. The liver gradually converts thealcohol to other, non-
toxic byproducts. The rate of conversion per unit time is proportional to the current
blood alcohol level, so that the differential equation satisfied by the blood alcohol
level is

dc

dt
= k − sc

wherek, s are positive constants. Suppose initially there is no alcohol in the blood.
Find the blood alcohol levelc(t) as a function of time fromt = 0, when the drinking
started.

13.7. Newton’s Law of Cooling: Newton’s Law of Cooling states that the rate of change
of the temperature of an object is proportional to the difference between the temper-
ature of the object,T , and the ambient (environmental) temperature,E. This leads
to thedifferential equation

dT

dt
= k(E − T )

wherek > 0 is a constant that represents the material properties and,E is the
ambient temperature. (We will assume thatE is also constant.)

(a) Show that the function

T (t) = E + (T0 − E)e−kt

which represents the temperature at timet satisfies this equation.

(b) The time of death of a murder victim can be estimated from the temperature
of the body if it is discovered early enough after the crime has occurred. Sup-
pose that in a room whose ambient temperature isE = 20 degrees C, the
temperature of the body upon discovery isT = 30 degrees, and that a second
measurement, one hour later isT = 25 degrees. Determine the approximate
time of death. (You should use the fact that just prior to death, the temperature
of the victim was37 degrees.)

13.8. A cup of coffee:The temperature of a cup of coffee is initially 100 degrees C.Five
minutes later, (t = 5) it is 50 degrees C. If the ambient temperature isA = 20
degrees C, determine how long it takes for the temperature ofthe coffee to reach30
degrees C.



272 Chapter 13. More Differential Equations

13.9. Glucose solution in a tank:A tank that holds 1 liter is initially full of plain water.
A concentrated solution of glucose, containing 0.25 gm/cm3 is pumped into the
tank continuously, at the rate 10 cm3/min and the mixture (which is continuously
stirred to keep it uniform) is pumped out at the same rate. Howmuch glucose will
there be in the tank after 30 minutes? After a long time? (Hint: write a differential
equation for c, the concentration of glucose in the tank by considering the rate at
which glucose enters and the rate at which glucose leaves thetank.)

13.10. Pollutant in a lake: (From the Dec 1993 Math 100 Exam) A lake of constant
volumeV gallons containsQ(t) pounds of pollutant at timet evenly distributed
throughout the lake. Water containing a concentration ofk pounds per gallon of
pollutant enters the lake at a rate ofr gallons per minute, and the well-mixed solu-
tion leaves at the same rate.

(a) Set up a differential equation that describes the way that the amount of pollu-
tant in the lake will change.

(b) Determine what happens to the pollutant level after a long time if this process
continues.

(c) If k = 0 find the timeT for the amount of pollutant to be reduced to one half
of its initial value.

13.11. Slope fields: Consider the differential equations given below. In each case, draw
a slope field, determine the values ofy for which no change takes place [such val-
ues are called steady states] and use your slope field to predict what would happen
starting from an initial valuey(0) = 1.

(a)
dy

dt
= −0.5y

(b)
dy

dt
= 0.5y(2− y)

(c)
dy

dt
= y(2− y)(3− y)

13.12. Draw a slope field for each of the given differential equations:

(a) dy
dt = 2 + 3y

(b) dy
dt = −y(2− y)

(c) dy
dt = 2− 3y + y2

(d) dy
dt = −2(3− y)2

(e) dy
dt = y2 − y + 1

(f) dy
dt = y3 − y

(g) dy
dt =

√
y(y − 2)(y − 3)2, y ≥ 0.

(h) dy
dt = 2ey − 2

(i) dy
dt = A − sin y (Hint: consider the casesA < −1, A = −1, −1 < A < 1,
A = 1 andA > 1).

(j) dy
dt − y = et
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13.13. For each of the differential equations (a) to (i) in Problem 12, plotdydt as a function
of y, draw the motion along they axis, identify the steady state(s) and indicate if the
motions are toward or away from the steady state(s).

13.14. Periodic motion:

(a) Show that the functiony(t) = A cos(wt) satisfies the differential equation

d2y

dt2
= −w2y

wherew > 0 is a constant, andA is an arbitrary constant. [Remark: Note
thatw corresponds to thefrequencyandA to theamplitudeof an oscillation
represented by the cosine function.]

(b) It can be shown using Newton’s Laws of motion that the motion of a pendulum
is governed by a differential equation of the form

d2y

dt2
= − g

L
sin(y),

whereL is the length of the string,g is the acceleration due to gravity (both
positive constants), andy(t) is displacement of the pendulum from the vertical.
What property of the sine function is used when this equationis approximated
by the Linear Pendulum Equation:

d2y

dt2
= − g

L
y.

(c) Based on this Linear Pendulum Equation, what function would represent the
oscillations? What would be the frequency of the oscillations?

(d) What happens to the frequency of the oscillations if the length of the string is
doubled?

13.15. A sugar solution: Sugar dissolves in water at a rate proportional to the amountof
sugar not yet in solution. LetQ(t) be the amount of sugar undissolved at timet.
The initial amount is100 kg and after4 hours the amount undissolved is70 kg.

(a) Find a differential equation forQ(t) and solve it.

(b) How long will it take for50 kg to dissolve?

13.16. Infant weight gain: During the first year of its life, the weight of a baby is given by

y(t) =
√
3t+ 64

wheret is measured in some convenient unit.

(a) Show thaty satisfies the differential equation

dy

dt
=

k

y

wherek is some positive constant.
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(b) What is the value fork?

(c) Suppose we adopt this differential equation as a model for human growth.
State concisely (that is, in one sentence) one feature aboutthis differential
equation which makes it a reasonable model. State one feature which makes it
unreasonable.

13.17. Cubical crystal: A crystal grows inside a medium in a cubical shape with side
lengthx and volumeV. The rate of change of the volume is given by

dV

dt
= kx2(V0 − V )

wherek andV0 are positive constants.

(a) Rewrite this as a differential equation fordx
dt .

(b) Suppose that the crystal grows from a very small “seed.” Show that its growth
rate continually decreases.

(c) What happens to the size of the crystal after a very long time?

(d) What is its size (that is, what is eitherx or V ) when it is growing at half its
initial rate?

13.18. Leaking water tank: A cylindrical tank with cross-sectional areaA has a small
hole through which water drains. The height of the water in the tanky(t) at timet
is given by:

y(t) = (
√
y0 −

kt

2A
)2

wherek, y0 are constants.

(a) Show that the height of the water,y(t), satisfies the differential equation

dy

dt
= − k

A

√
y.

(b) What is the initial height of the water in the tank at timet = 0 ?

(c) At what time will the tank be empty ?

(d) At what rate is thevolumeof the water in the tank changing whent = 0?

13.19. Find those constantsa, b so thaty = ex andy = e−x are both solutions of the
differential equation

y′′ + ay′ + by = 0.

13.20. Lety = f(t) = e−t sin t, −∞ < t < ∞.

(a) Show thaty satisfies the differential equationy′′ + 2y′ + 2y = 0.

(b) Find all critical points off(t).

13.21. A biochemical reaction in which a substanceS is both produced and consumed is
investigated. The concentrationc(t) of S changes during the reaction, and is seen to
follow the differential equation

dc

dt
= Kmax

c

k + c
− rc
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whereKmax, k, r are positive constants with certain convenient units. The first term
is a concentration-dependent production term and the second term represents con-
sumption of the substance.

(a) What is the maximal rate at which the substance is produced? At what con-
centration is the production rate 50% of this maximal value?

(b) If the production is turned off, the substance will decay. How long would it
take for the concentration to drop by 50%?

(c)

At what concentration does the production rate just balancethe consumption rate?
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Appendix A

A review of Straight
Lines

A.A Geometric ideas: lines, slopes, equations
Straight lines have some important geometric properties, namely:

The slope of a straight line is the same everywhere along its length.

Definition: slope of a straight line:

∆ y

x

y

∆ x

Figure A.1. The slope of a line (usually given the symbolm) is the ratio of the
change in the y value,∆y to the change in thex value,∆x.

We define the slope of a straight line as follows:

Slope =
∆y

∆x

where∆y means “change in they value” and∆x means “change in thex value” between
two points. See Figure A.1 for what this notation represents.
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Equation of a straight line

Using this basic geometric property, we can find the equationof a straight line given any of
the following information about the line:

• They intercept,b, and the slope,m:

y = mx+ b.

• A point (x0, y0) on the line, and the slope,m, of the line:

y − y0
x− x0

= m

• Two points on the line, say(x1, y1) and(x2, y2):

y − y1
x− x1

=
y2 − y1
x2 − x1

Remark: any of these can be rearranged or simplified to produce the standard form
y = mx+ b, as discussed in the problem set.

The following examples will refresh your memory on how to findthe equation of the
line that satisfies each of the given conditions.

Example A.1 In each case write down the equation of the straight line thatsatisfies the
given statements. (Note: you should also be able to easily sketch the line in each case.)

(a) The line has slope 2 andy intercept 4.

(b) The line goes through the points (1,1) and (3,-2).

(c) The line hasy intercept -1 andx intercept 3.

(d) The line has slope -1 and goes through the point (-2,-5).

Solution:

(a) We can use the standard form of the equation of a straight line, y = mx + b where
m is the slope andb is they intercept to obtain the equation:y = 2x+ 4

(b) The line goes through the points (1,1) and (3,-2). We use the fact that the slope is the
same all along the line. Thus,

(y − y0)

(x− x0)
=

(y1 − y0)

(x1 − x0)
= m.

Substituting in the values(x0, y0) = (1, 1) and(x1, y1) = (3,−2),

(y − 1)

(x− 1)
=

(1 + 2)

(1− 3)
= −3

2
.
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(Note that this tells us that the slope ism = −3/2.) We find that

y − 1 = −3

2
(x− 1) = −3

2
x+

3

2
,

y = −3

2
x+

5

2
.

(c) The line hasy intercept -1 andx intercept 3, i.e. goes through the points (0,-1) and
(3,0). We can use the method in (b) to get

y =
1

3
x− 1

Alternately, as a shortcut, we could find the slope,

m =
∆y

∆x
=

1

3
.

(Note that∆ means “change in the value”, i.e.∆y = y1 − y0). Thusm = 1/3 and
b = −1 (y intercept), leading to the same result.

(d) The line has slope -1 and goes through the point (-2,-5). Then,

(y + 5)

(x + 2)
= −1,

so that
y + 5 = −1(x+ 2) = −x− 2,

y = −x− 7.
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Exercises
1.1. Find the slope andy intercept of the following straight lines:

(a) y = 4x− 5

(b) 3x− 4y = 8

(c) 2x = 3y

(d) y = 3

(e) 5x− 2y = 23

1.2. Find the equations of the following straight lines

(a) Through the points (2,0) and (1,5).

(b) Through (3,-1) with slope 1/2.

(c) Through (-10,2) withy intercept 10.

(d) The straight line shown in Figure A.2.

1
y = -8 + 18 x - 9 x 2

Figure A.2. Figure for problem 2(d)

1.3. Find the equations of the following straight lines:

(a) Slope−4 andy intercept3.

(b) Slope3 andx intercept−2/3.

(c) Through the points(2,−7) and(−1, 11).

(d) Through the point(1, 3) and the origin.

(e) Through the intersection of the lines3x + 2y = 19 andy = −4x + 7 and
through the point(2,−7).

(f) Through the origin and parallel to the line2x+ 8y = 3.

(g) Through the point(−2, 5) and perpendicular to the liney = −1

2
x+ 6.
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1.4. Tangent to a circle: Shown in Figure A.3 is a circle of radius 1. Thex coordinate
of the point on the circle at which the line touches the circleis x =

√
2/2. Find

the equation of the tangent line. Use the fact that on a circle, the tangent line is
perpendicular to the radius vector.

x

y

Figure A.3. Figure for problem 4
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Appendix B

A Review of Simple
Functions

Herer we review a few basic concepts related to functions

B.A What is a function
A function is just a way of expressing a special relationshipbetween a value we consider
as the input (“x”) value and an associated output (y) value. We write this relationship in
the form

y = f(x)

to indicate thaty depends onx. The only constraint on this relationship is that, for every
value ofx we can get at most one value ofy. This is equivalent to the“vertical line
property”: the graph of a function can intersect a vertical line at mostat one point. The set
of all allowablex values is called thedomainof the function, and the set of all resulting
values ofy are therange.

Naturally, we will not always use the symbolsx andy to represent independent and
dependent variables. For example, the relationship

V =
4

3
πr3

expresses a functional connection between the radius,r, and the volume,V , of a sphere.
We say in such a case that “V is a function ofr”.

All the sketches shown in Figure B.1 are valid functions. Thefirst is merely a collec-
tion of points,x values and associatedy values, the second a histogram. The third sketch
is here meant to represent the collection of smooth continuous functions, and these are the
variety of interest to us here in the study of calculus. On theother hand, the example shown
in Figure B.2 is not the graph of a function. We see that a vertical line intersects this curve
at more than one point. This is not permitted, since as we already said, a given value ofx
should have only one corresponding values ofy.
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x

x

x

y
yy

Figure B.1. All the examples above represent functions.

x

y

Figure B.2. The above elliptical curve cannot be the graph of a function.The
vertical line (shown dashed) intersects the graph at more than one point: This means that
a given value ofx corresponds to ”too many” values ofy. If we restrict ourselves to the
top part of the ellipse only (or the bottom part only), then wecan create a function which
has the corresponding graph.

B.B Geometric transformations
It is important to be able to easily recognize what happens tothe graph of a function when
we change the relationship between the variables slightly.Often this is calledapplying
a transformation. Figures B.3 and B.4 illustrate what happens to a function when shifts,
scaling, or reflections occur:

x

y

x

y

x

y

b

(a) y = f(x) (b) y = f(x− a) (c) y = f(x) + b

Figure B.3. (a) The original functionf(x), (b) The functionf(x − a) shiftsf to
the right along the positivex axis by a distancea, (c) The functionf(x) + b shiftsf up the
y axis by heightb.
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y= f (− x) y=f(x)

y= − f(x)y= − f(− x)

Figure B.4. Here we see a functiony = f(x) shown in the black solid line. On
the same graph are superimposed the reflections of this graphabout the x axis,y = −f(x)
(dashed black), about the y axisy = f(−x) (red), and about the y and the x axis,y =
−f(−x) (red dashed). The latter is equivalent to a rotation of the original graph about the
origin.
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B.C Classifying

constant    linear     power     smooth      wild

constant
slope

easily
computed

has a
derivative

unpredictable

Figure B.5. Classifying functions according to their properties.

While life offers amazing complexity, one way to study living things is to classify
them into related groups. A biologist looking at animals might group them according to
certain functional properties - being warm blooded, being mammals, having fur or claws,
or having some other interesting characteristic. In the same way, mathematicians often
classify the objects that they study, e.g., functions, intorelated groups. An example of the
way that functions might be grouped into very broad classes is also shown in Figure B.5.
From left to right, the complexity of behaviour in this chartgrows: at left, we see constant
and linear functions (describable by one or two simple parameters such as intercepts or
slope): these linear functions are “most convenient” or simplest to describe. Further to the
right are functions that are smooth and continuous, while atthe right, some more irregular,
discontinuous function represents those that are outside the group of the “well-behaved”.
We will study some of the examples along this spectrum, and describe properties that they
share, properties they inherit form their “cousins”, and new characteristics that appear at
distinct branches.

B.D Power functions and symmetry
We list some of the features of each family of power functionsin this section

Even integer powers

Forn = 2, 4, 6, 8.. the shape of the graph ofy = xn is as shown in Figure??(a).
Here are some things to notice about these graphs:
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1. The graphs of all the even power functions intersect atx = 0 and at atx = ±1. The
value ofy corresponding to both of these isy = +1. (Thus, the coordinates of the
three intersection points are(0, 0), (1, 1), (−1, 1).)

2. All graphs have a lowest point, also called aminimum valueatx = 0.

3. Asx → ±∞, y → ∞, We also say that the functions are “unbounded from above”.

4. The graphs are all symmetric about they axis. This special type of symmetry will be
of interest in other types of functions, not just power functions. A function with this
property is called aneven function.

Odd integer powers

Forn = 1, 3, 5, 7, .. and other odd powers, the graphs have shapes shown in Figure??(b).

1. The graphs of the odd power functions intersect atx = 0 and atx = ±1. The three
points of intersection in common to all odd power functions are (1, 1), (0, 0), and
(−1,−1).

2. None of the odd power functions have a minimum value.

3. Asx → +∞, y → +∞. As x → −∞, y → −∞. The functions are “unbounded
from above and below”.

4. The graphs are all symmetric about the origin. This special type of symmetry will be
of interest in other types of functions, not just power functions. A function with this
type of symmetry is called anodd function.

B.D.1 Further properties of intersections

Here, and in Figure B.6 we want to notice that a horizontal line intersects the graph of a
power function only once for the odd powers but possibly twice for the even powers (we
have to allow for the case that the line does not intersect at all, or that it intersects precisely
at the minimum point). This observation will be important further on, once we want to
establish the idea of an inverse function.

A horizontal line has an equation of the formy = C whereC is some constant. To
find where it intersects the graph of a power functiony = xn, we would solve an equation
of the form

xn = C (B.1)

To do so, we take n’th root of both sides:

(xn)1/n = C1/n.

Simplifying, using algebraic operations on powers leads to

(xn)1/n = xn/n = x1 = x = C1/n,
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However, we have to allow for the fact that there may be more than one solution to equa-
tion B.1, as shown for someC > 0 in Figure B.6. Here we see the the distinction between
odd and even power functions. Ifn is even then the solutions to equation B.1 are

x = ±C1/n,

whereas ifn is odd, there is but a single solution,

x = C1/n.

y=x^2

y=C

-1.5 1.5

0.0

2.25

y=x^3

y=C

-1.5 1.5

-2.25

2.25

(a) (b)

Figure B.6. The even power functions intersect a horizontal line in up totwo
places, while the odd power functions intersect such a line in only one place.

Definition B.1 (Even and odd functions:).A function that is symmetric about they axis
is said to be anevenfunction. A function that is symmetric about the origin is said to be an
oddfunction.

Even functions satisfy the relationship

f(x) = f(−x).

Odd functions satisfy the relationship

f(x) = −f(−x).

Examples of even functions includey = cos(x), y = −x8, y = |x|. All these are
their own mirror images when reflected about they axis. Examples of odd functions are
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y = sin(x), y = −x3, y = x. Each of these functions is its own double-reflection (abouty
and then x axes).

In a later calculus course, when we compute integrals, taking these symmetries into
account can help to simplify (or even avoid) calculations.

B.D.2 Optional: Combining even and odd functions

Not every function is either odd or even. However, if we startwith symmetric functions,
certain manipulations either preserve or reverse the symmetry.

Example B.2 Show that the product of an even and an odd function is an odd function.

Solution: Let f(x) be even. Then

f(x) = f(−x).

Let g(x) be an odd function. Theng(x) = −g(−x). We defineh(x) to be the product of
these two functions,

h(x) = f(x)g(x).

Using the properties off andg,

f(x)g(x) = f(−x)[−g(−x)]

so, rearranging, we get

h(x) = f(x)g(x) = f(−x)[−g(−x)] = −[f(−x)g(−x)].

but this is just the same as−h(−x). We have established that

h(x) = −h(−x)

so that the new function is odd.
A function is not always even or odd. Many functions are neither even nor odd.

However, by a little trick, we can show that given any function, y = f(x), we can write it
as a sum of an even and an odd function.

Hint: Supposef(x) is not an even nor an odd function. Consider defining the two associ-
ated functions:

fe(x) =
1

2
(f(x) + f(−x)),

and

f0(x) =
1

2
(f(x)− f(−x)).

(Can you draw a sketch of what these would look like for the function given in Fig-
ure B.3(a)?) Show thatfe(x) is even and thatf0(x) is odd. Now show that

f(x) = fe(x) + f0(x).
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B.E Inverse functions and fractional powers
Suppose we are given a function expressed in the form

y = f(x).

What this implies, is thatx is the independent variable, andy is obtained from it by evalu-
ating a function, i.e. by using the “rule” or operation specified by that function. The above
mathematical statement expresses a certain relationship between the two variables,x and
y, in which the roles are distinct.x is a value we pick, andy is then calculated from it.

However, sometimes we can express a relationship in more than one way: as an
example, if the connection betweenx andy is simple squaring, then providedx > 0, we
might write either

y = x2

or
x = y1/2 =

√
y

to express the same relationship. In other words

y = x2 ⇔ x =
√
y.

Observe that we have used two distinct functions in describing the relationship from
the two points of view: One function involves squaring and the other takes a square root.
We may also notice that forx > 0

f(g(x)) = (
√
x)2 = x

g(f(x)) =
√

(x2) = x

i.e. that these two functions invert each other’s effect.
Functions that satisfy

y = f(x) ⇔ x = g(y)

are said to beinverse functions. We will often use the notation

f−1(x)

to denote the function that acts as an inverse function tof(x).

B.E.1 Graphical property of inverse functions

The graph of an inverse functiony = f−1(x) is geometrically related to the graph of the
original function: it is a reflection ofy = f(x) about the45◦ line, y = x. This relationship
is shown in figure B.7 for a pair of functionsf andf−1.

But why should this be true? The idea is as follows: Suppose that (a, b) is any
point on the graph ofy = f(x). This means thatb = f(a). That, in turn, implies that
a = f−1(b), which then tells us that(b, a) must be a point on the graph off−1(x). But the
points(a, b) and(b, a) are related by reflection about the liney = x. This is true for any
arbitrary point, and so must be true forall points on the graphs of the two functions.
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x

y
y=x

y=f(x)

y=f   (x)
−1

(a , b)

(b, a)

−1

y

x

(a,b)

(b,a)
y=f(x)

y=f   (x)

(a) (b)

Figure B.7. The point(a, b) is on the graph ofy = f(x). If the roles ofx and
y are interchanged, this point becomes(b, a). Geometrically, this point is the reflection of
(a, b) about the liney = x. Thus, the graph of the inverse functiony = f−1(x) is related
to the graph of the original function by reflection about the line y = x. In the left panel,
the inverse is not a function, as it does not satisfy the vertical line property. In the panel on
the right, bothf and its reflection satisfy that property, and thus the inverse,f−1 is a true
function.

B.E.2 Restricting the domain

The above argument establishes that, given the graph of a function, its inverse is obtained
by reflecting the graph in an imaginary mirror placed along a liney = x.

However, a difficulty could arise. In particular, for the function

y = f(x) = x2,

a reflection of this type would lead to a curve that cannot be a function, as shown in Fig-
ure B.8. (The sideways parabola would not be a function if we included both its branches,
since a given value ofx would have two associatedy values.)

To fix such problems, we simply restrict the domain tox > 0, i.e. to the solid parts of
the curves shown in Figure B.8. For this subset of thex axis, we have no problem defining
the inverse function.

Observe that the problem described above would be encountered for any of the even
power functions (by virtue of their symmetry about they axis) but not by the odd power
functions.

y = f(x) = x3 y = f−1(x) = x1/3

are inverse functions for allx values: when we reflect the graph ofx3 about the liney = x
we do not encounter problems of multipley values.
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y=x^2

y=x^(1/2)

omit this branch=>

Blue curve not a function
if this branch is included =>

-1.5 1.5

-1.5

1.5

Figure B.8. The graph ofy = f(x) = x2 (blue) and of its inverse function. We
cannot define the inverse for allx, because the red parabola does not satisfy the vertical
line property: However, if we restrict to positivex values, this problem is circumvented.

This follows directly from the horizontal line properties that we discussed earlier, in
Figure B.6. When we reflect the graphs shown in Figure B.6 about the liney = x, the
horizontal lines will be reflected onto vertical lines. Odd power functions will have in-
verses that intersect a vertical line exactly once, i.e. they satisfy the “vertical line property”
discussed earlier.

B.F Polynomials
A polynomial is a function of the form

y = p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

This form is sometimes referred to assuperposition(i.e. simple addition) of the basic
power functions with integer powers. The constantsak are called coefficients. In practice
some of these may be zero. We will restrict attention to the case where all these coefficients
are real numbers. The highest powern (whose coefficient is not zero) is called thedegree
of the polynomial.

We will be interested in these functions for several reasons. Primarily, we will find
that computations involving polynomials are particularlyeasy, since operations include
only the basic addition and multiplication.
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B.F.1 Features of polynomials

• Zeros of a polynomialare values ofx such that

y = p(x) = 0.

If p(x) is quadratic (a polynomial of degree 2) then the quadratic formula gives a
simple way of finding roots of this equation (also called “zeros” of the polynomial).
Generally, for most polynomials of degree higher than 5, there is no analytical recipe
for finding zeros. Geometrically, zeros are places where thegraph of the function
y = p(x) crosses thex axis. We will exploit this fact much later in the course to
approximate the values of the zeros usingNewton’s Method.

• Critical Points: Places on the graph where the value of the function is locallylarger
than those nearby (local maxima) or smaller than those nearby (local minima) will be
of interest to us. Calculus will be one of the main tools for detecting and identifying
such places.

• Behaviour for very large x: All polynomials are unbounded asx → ∞ and as
x → −∞. In fact, for large enough values ofx, we have seen that the power function
y = f(x) = xn with the largest power,n, dominates over other power functions with
smaller powers.For

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

the first (highest power) term willdominatefor largex. Thus for largex (whether
positive or negative)

p(x) ≈ anx
n for large x.

• Behaviour for small x: Close to the origin, we have seen that power functions with
smallest powers dominate. This means that forx ≈ 0 the polynomial is governed by
the behaviour of the smallest (non-zero coefficient) power,i.e,

p(x) ≈ a1x+ a0 for small x.
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Exercises
2.1. Figure B.9 shows the graph of the functiony = f(x). Match the functions (a)-(d)

below with their appropriate graph (1)-(4) in Figure B.10.

(a) y = |f(x)|,
(b) y = f(|x|),
(c) y = f(−x),

(d) y = −f(x).

0

y

x

Figure B.9. Plot for problem 1

xx

y

x

y

x

y

(1) (2) (3) (4)

y

0 00
0

Figure B.10.Plot for problem 1

2.2. Even and odd functions:An even function is a function that satisfies the relation-
shipf(x) = f(−x). An odd function satisfies the relationshipg(x) = −g(−x).
Determine which of the following is odd, which is even, and which is neither.

(a) h(x) = 3x
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(b) p(x) = x2 − 3x4

(c) q(x) = 2

(d) w(x) = sin(2x)

(e) s(x) = x+ x2

2.3. Figure B.11 shows the graph for the functiony = f(x), sketch the graph fory =
f(|x|).

0

2

−2 1 2−1

1

x

y

−1

−2

Figure B.11.Plot for problem 3

2.4. Consider the functiony = Axn for n > 0 an odd integer andA > 0 a constant.
Find the inverse function. Sketch both functions on the sameset of coordinates, and
indicate the points of intersection. How would your figure differ if n were an even
integer?
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Appendix C

Limits

We have surreptitiously introduced some notation involving limits without carefully defin-
ing what was meant. Here, such technical matters are briefly discussed.

The concept of alimit helps us to describe the behaviour of a function close to some
point of interest. This proves to be most useful in the case offunctions that are either not
continuous, or not defined somewhere. We will use the notation

lim
x→a

f(x)

to denote the value that the functionf approaches asx gets closer and closer to the value
a.

C.A Limits for continuous functions
If x = a is a point at which the function is defined and continuous (informally, has no
“breaks in its graph”) the value of the limit and the value of the function at a point are the
same, i.e.

If f is continuous atx = a then

lim
x→a

f(x) = f(a).

Example C.1 Find lim
x→0

f(x) for the functiony = f(x) = 10

Solution: This function is continuous (and constant) everywhere. In fact, the value of the
function is independent ofx. We conclude immediately that

lim
x→0

f(x) = lim
x→0

10 = 10.

Example C.2 Find lim
x→0

f(x) for the functiony = f(x) = sin(x).

299
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Solution: This function is a continuous trigonometric function, and has the valuesin(0) =
0 at the origin. Thus

lim
x→0

f(x) = lim
x→0

sin(x) = 0

Power functions are continuous everywhere. This motivatesthe next example.

Example C.3 Compute the limitlim
x→0

xn wheren is a positive integer.

Solution: The function in question,f(x) = xn is a simple power function that is continu-
ous everywhere. Further,f(0) = 0. Hence the limit asx → 0 coincides with the value of
the function oat that point, so

lim
x→0

xn = 0.

C.B Properties of limits
Suppose we are given two functions,f(x) andg(x). We will also assume that both func-
tions have (finite) limits at the pointx = a. Then the following statements follow.

1.
lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

2.
lim
x→a

(cf(x)) = c lim
x→a

f(x)

3.
lim
x→a

(f(x) · g(x)) =
(

lim
x→a

f(x)
)

·
(

lim
x→a

g(x)
)

4. Provided thatlim
x→a

g(x) 6= 0, we also have that

lim
x→a

(

f(x)

g(x)

)

=

(

lim
x→a

f(x)

lim
x→a

g(x)

)

.

The first two statements are equivalent to linearity of the process of computing a
limit.

Example C.4 Find lim
x→2

f(x) for the functiony = f(x) = 2x2 − x3.

Solution: Since this function is a polynomial, and so continuous everywhere, we can sim-
ply plug in the relevant value ofx, i.e.

lim
x→2

(

2x2 − x3
)

= 2 · 22 − 23 = 0.

Thus whenx gets closer to 2, the value of the function gets closer to 0. (In fact, the value
of the limit is the same as the value of the function at the given point.)
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C.C Limits of rational functions

C.C.1 Case 1: Denominator nonzero

We first consider functions that are the quotient of two polynomials,y = f(x)/g(x) at
points wereg(x) 6= 0. This allows us to apply Property 4 of limits together with what
we have learned about the properties of power functions and polynomials. Much of this
discussion is related to the properties of power functions and dominance of lower (higher)
powers at small (large) values ofx, as discussed in Chapter 1. In the examples below, we
consider both limits at the origin (atx = 0) and at infinity (forx → ∞). The latter means
“very largex”. See Section 1.5 for examples of the informal version of thesame reasoning
used to reach the same conclusions.

Example C.5 Find the limit asx → 0 and asx → ∞ of the quotients

(a)
Kx

kn + x
, (b)

Axn

an + xn
.

Solution: We recognize (a) as an example of the Michaelis Menten kinetics, found in (1.2)
and (b) as a Hill function in (1.3) of Chapter 1. We now compute, first forx → 0,

(a) lim
x→0

Kx

kn + x
= 0, (b) lim

x→0

Axn

an + xn
= 0.

This follows from the fact that, provideda, kn 6= 0, both functions are continuous atx = 0,
so that their limits are the same as the actual values attained by the functions. Now for
x → ∞

(a) lim
x→∞

Kx

kn + x
= lim

x→∞
Kx

x
= K, (b) lim

x→∞
Axn

an + xn
= lim

x→∞
Axn

xn
= A.

This follows from the fact that the constantskn, an are always “swamped out” by the value
of x asx → ∞, allowing us to obtain the result. Other than the formal limit notation, there
is nothing new here that we have not already discussed in Sections 1.6.

Below we apply similar reasoning to other examples of rational functions.

Example C.6 Find the limit asx → 0 and asx → ∞ of the quotients

(a)
3x2

9 + x2
, (b)

1 + x

1 + x3
.

Solution: For part (a) we note that asx → ∞, the quotient approaches3x2/x2 = 3. As
x → 0, both numerator and denominator are defined and the denominator is nonzero, so
we can use the 4th property of limits. We thus find that

(a) lim
x→∞

3x2

9 + x2
= 3, lim

x→0

3x2

9 + x2
= 0,
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For part (b), we use the fact that asx → ∞, the limit approachesx/x3 = x−2 → 0. As
x → 0 we can apply property 4 yet again to compute the (finite) limit, so that

(b) lim
x→∞

1 + x

1 + x3
, lim

x→0

1 + x

1 + x3
.

Example C.7 Find the limits of the following function at 0 and∞

y =
x4 − 3x2 + x− 1

x5 + x
.

Solution: for x → ∞ powers with the largest power dominate, whereas forx → 0, smaller
powers dominate. Hence, we find

lim
x→∞

x4 − 3x2 + x− 1

x5 + x
= lim

x→∞
x4

x5
= lim

x→∞
1

x
= 0.

lim
x→0

x4 − 3x2 + x− 1

x5 + x
= lim

x→0

−1

x
= − lim

x→0

1

x
= ∞

So in the latter case, the limit does not exist.

C.C.2 Case 2: zero in the denominator and “holes” in a graph

In the previous examples, evaluating the limit, where it existed, was as simple as plugging
the appropriate value ofx into the function itself. The next example shows that this isnot
always possible.

Example C.8 Compute the limit asx → 4 of the functionf(x) = 1/(x− 4)

Solution: This function has a vertical asymptote atx = 4. Indeed, the value of the function
shoots off to+∞ if we approachx = 4 from above, and−∞ if we approach the same point
from below. We say that the limitdoes not existin this case.

Example C.9 Compute the limit asx → −1 of the functionf(x) = x/(x2 − 1)

Solution: We compute

lim
x→−1

x

x2 − 1
= lim

x→−1

x

(x − 1)(x+ 1)

It is evident (even before factoring as we have done) that this function has a vertical asymp-
tote atx = −1 where the denominator approaches zero. Hence, the limit does not exist.

Next, we describe an extremely important example where the function has a “hole” in
its graph, but where a finite limit exists. This kind of limit plays a huge role in the definition
of a derivative.



C.C. Limits of rational functions 303

Example C.10 Find lim
x→2

f(x) for the functiony = (x − 2)/(x2 − 4).

Solution: This function is a quotient of two rational expressionsf(x)/g(x) but we note that
limx→2 g(x) = limx→2(x

2−4) = 0. Thus we cannot use property 4 directly. However, we
can simplify the quotient by observing that forx 6= 2 the functiony = (x− 2)/(x2− 4) =
(x − 2)/(x − 2)(x + 2) takes on the same values as the expression1/(x + 2). At the
point x = 2, the function itself is not defined, since we are not allowed division by zero.
However, the limit of this function does exist:

lim
x→2

f(x) = lim
x→2

(x− 2)

(x2 − 4)
.

Providedx 6= 2 we can factor the denominator and cancel:

lim
x→2

(x− 2)

(x2 − 4)
= lim

x→2

(x− 2)

(x− 2)(x+ 2)
= lim

x→2

1

(x + 2)

Now we can substitutex = 2 to obtain

lim
x→2

f(x) =
1

(2 + 2)
=

1

4

y

2

1/4

y=f(x)

x

Figure C.1. The functiony = (x−2)
(x2−4) has a “hole” in its graph atx = 2.

The limit of the function asx approaches 2 does exist, and “supplies the missing point”:
limx→2 f(x) =

1
4 .

Example C.11 Compute the limit

lim
h→0

K(x+ h)2 −Kx2

h
.
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Solution: This is a calculation we would perform to compute the derivative of the function
y = Kx2 from the definition of the derivative. Details have already been displayed in
Example 2.8. The essential idea is that we expand the numerator and simplify algebraically
as follows:

lim
h→0

K
(2xh+ h2)

h
= lim

h→0
K(2x+ h) = 2Kx.

Even though the quotient is not defined at the valueh = 0 (as the denominator is zero
there), the limit exists, and hence the derivative can be defined. See also Example 4.1 for a
similar calculation for the functionKx3.

C.D Right and left sided limits
Some functions are discontinuous at a point, but we may stillbe able to define a limit that
the function attains as we approach that point from the rightor from the left. (This is
equivalent to gradually decreasing or gradually increasing x as we get closer to the point
of interest.

Consider the function

f(x) =

{

0 if x < 0;
1 if x > 0.

This is a step function, whose values is 0 for negative real numbers, and 1 for positive real
numbers. The function is not even defined at the pointx = 0 and has a jump in its graph.
However, we can still define a right and a left limit as follows:

lim
x→+0

f(x) = 0, lim
x→−0

f(x) = 1.

That is, the limit as we approach from the right is 0 whereas from the left it is 1. We also
state the following result:

If f(x) has a right and a left limit at a point x = a and if those limits
are equal, then we say that the limit atx = a exists, and we write

lim
x→+a

f(x) = lim
x→−a

f(x) = lim
x→a

f(x)

Example C.12 Find lim
x→π/2

f(x) for the functiony = f(x) = tan(x).

Solution: The functiontan(x) = sin(x)/ cos(x) cannot be continuous atx = π/2 because
cos(x) in the denominator takes on the value of zero at the pointx = π/2. Moreover, the
value of this function becomes unbounded (grows without a limit) asx → π/2. We say in
this case that “the limit does not exist”. We sometimes use the notation

lim
x→π/2

tan(x) = ±∞.

(We can distinguish the fact that the function approaches+∞ asx approachesπ/2 from
below, and−∞ asx approachesπ/2 from higher values.
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C.E Limits at infinity
We can also describe the behaviour “at infinity” i.e. the trend displayed by a function for
very large (positive or negative) values ofx. We consider a few examples of this sort below.

Example C.13 Find lim
x→∞

f(x) for the functiony = f(x) = x3 − x5 + x.

Solution: All polynomials grow in an unbounded way asx tends to very large values. We
can determine whether the function approaches positive or negative unbounded values by
looking at the coefficient of the highest power ofx, since that power dominates at largex
values. In this example, we find that the term−x5 is that highest power. Since this has a
negative coefficient, the function will approach unboundednegative values asx gets larger
in the positive direction, i.e.

lim
x→∞

x3 − x5 + x = lim
x→∞

−x5 = −∞.

Example C.14 Determine the following two limits:

(a) lim
x→∞

e−2x, (b) lim
x→−∞

e5x,

Solution: The functiony = e−2x becomes arbitrarily small asx → ∞. The function
y = e5x becomes arbitrarily small asx → −∞. Thus we have

(a) lim
x→∞

e−2x = 0, (b) lim
x→−∞

e5x = 0.

Example C.15 Find the limits below:

(a) lim
x→∞

x2e−2x, (b) lim
x→0

1

x
e−x,

Solution: For part (a) we state here the fact that asx → ∞, the exponential function with
negative exponent decays to zero faster than any power function increases. For part (b) we
note that for the quotiente−x/x we have that asx → 0 the top satisfiese−x → e0 = 1,
while the denominator hasx → 0. Thus the limit atx → 0 cannot exist. We find that

(a) lim
x→∞

x2e−2x = 0, (b) lim
x→0

1

x
e−x = ∞,

C.F Summary of special limits
As a reference, in the table below, we collect some of the special limits that are useful in a
variety of situations.

We can summarize the information in this table informally asfollows:
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Function point Limit notation value
e−ax, a > 0 x → ∞ lim

x→∞
e−ax 0

e−ax, a > 0 x → −∞ lim
x→−∞

e−ax ∞

eax, a > 0 x → ∞ lim
x→∞

eax ∞

ekx x → 0 lim
x→0

ekx 1

xne−ax, a > 0 x → ∞ lim
x→∞

xne−ax 0

ln(ax), a > 0 x → ∞ lim
x→∞

ln(ax) ∞

ln(ax), a > 0 x → 1 lim
x→1

ln(ax) 0

ln(ax), a > 0 x → 0 lim
x→0

ln(ax) −∞

x ln(ax), a > 0 x → 0 lim
x→0

x ln(ax) 0

ln(ax)

x
, a > 0 x → ∞ lim

x→∞
ln(ax)

x
0

sin(x)

x
x → 0 lim

x→0

sin(x)

x
1

(1− cos(x))

x
x → 0 lim

x→0

(1 − cos(x))

x
0

Table C.1.A collection of useful limits.

1. The exponential functionex grows faster than any power function asx increases, and
conversely the functione−x = 1/ex decreases faster than any power of(1/x) asx
grows. The same is true foreax provideda > 0.

2. The logarithmln(x) is an increasing function that keeps growing without bound as
x increases, but it does not grow as rapidly as the functiony = x. The same is true
for ln(ax) provideda > 0. The logarithm is not defined for negative values of its
argument and asx approaches zero, this function becomes unbounded and negative.
However, it approaches−∞ more slowly thanx approaches 0. For this reason, the
expressionx ln(x) has a limit of 0 asx → 0.



Appendix D

Short Answers to
Problems

307



308 Appendix D. Short Answers to Problems

D..1 Answers to Chapter 1 Problems

• Problem 1.1:

(a) Stretched iny direction by factorA; (b) Shifted up bya; (c) Shifted in positivex
direction byb.

• Problem 1.2:

Not Provided

• Problem 1.3:

y = xn; y = x−n; y = x1/n, n = 2, 4, 6, . . .; y = x−n, n = 1, 2, 3, . . .

• Problem 1.4:

(a)x = 0, (3/2)1/3; (b) x = 0, x = ±
√

1/4.

• Problem 1.5:

if m− n even:x = ±
(

A
B

)1/(m−n)
, x = 0; if m− n odd:x =

(

A
B

)1/(m−n)
, x = 0

• Problem 1.6:

(a) (0, 0) and(1, 1); (b) (0, 0); (c) (
√
7
2 , 3

4 ), (−
√
7
2 , 3

4 ), and(0,−1).

• Problem 1.7:

m > −1

• Problem 1.8:

Not Provided

• Problem 1.9:

x =

(

B

A

)
1

b−a

• Problem 1.10:

(a)x = 0, −1, 3; (b) x = 1; (c) x = −2, 1/3; (d) x = 1.

• Problem 1.11:

(b) a < 0: x = 0; a ≥ 0: x = 0, ±a1/4; (c) a > 0.

• Problem 1.12:

Not Provided

• Problem 1.13:

(a)V ; (b)
V

S
=

1

6
a, a > 0; (c) a = V

1
3 ; a = (16S)

1
2 ; a = 10 cm; a =

√
15
3 cm.

• Problem 1.14:

(a) V ; (b)
r

3
; (c) r =

(

3
4π

)1/3
V 1/3; r =

(

1
4π

)1/2
S1/2; r ≈ 6.2035 cm; r ≈

0.8921 cm.
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• Problem 1.15:

r = 2k1/k2 = 12µm.

• Problem 1.16:

(a)P = C
(

R
A

)d/b
; (b) S = 4π

(

3V
4π

)2/3
.

• Problem 1.17:

(a)a: Ms−1, b: s−1; (b) b = 0.2, a = 0.002; (c) v = 0.001.

• Problem 1.18:

(a)v ≈ K, (b) v = K/2.

• Problem 1.19:

K ≈ 0.0048, kn ≈ 77 nM

• Problem 1.20:

(a)x = −1, 0, 1 (b) 1 (c)y1 (d) y2.

• Problem 1.21:

Line of slopea3/A and intercept1/A

• Problem 1.22:

K = 0.5, a = 2

• Problem 1.23:

Not Provided

• Problem 1.24:

m ≈ 67, b ≈ 1.2, K ≈ 0.8, kn ≈ 56

• Problem 1.25:

x =
(

R
A

)
1

r−a
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D..2 Answers to Chapter 1 Problems

• Problem 1.1:

(a) Stretched iny direction by factorA; (b) Shifted up bya; (c) Shifted in positivex
direction byb.

• Problem 1.2:

Not Provided

• Problem 1.3:

y = xn; y = x−n; y = x1/n, n = 2, 4, 6, . . .; y = x−n, n = 1, 2, 3, . . .

• Problem 1.4:

(a)x = 0, (3/2)1/3; (b) x = 0, x = ±
√

1/4.

• Problem 1.5:

if m− n even:x = ±
(

A
B

)1/(m−n)
, x = 0; if m− n odd:x =

(

A
B

)1/(m−n)
, x = 0

• Problem 1.6:

(a) (0, 0) and(1, 1); (b) (0, 0); (c) (
√
7
2 , 3

4 ), (−
√
7
2 , 3

4 ), and(0,−1).

• Problem 1.7:

m > −1

• Problem 1.8:

Not Provided

• Problem 1.9:

x =

(

B

A

)
1

b−a

• Problem 1.10:

(a)x = 0, −1, 3; (b) x = 1; (c) x = −2, 1/3; (d) x = 1.

• Problem 1.11:

(b) a < 0: x = 0; a ≥ 0: x = 0, ±a1/4; (c) a > 0.

• Problem 1.12:

Not Provided

• Problem 1.13:

(a)V ; (b)
V

S
=

1

6
a, a > 0; (c) a = V

1
3 ; a = (16S)

1
2 ; a = 10 cm; a =

√
15
3 cm.

• Problem 1.14:

(a) V ; (b)
r

3
; (c) r =

(

3
4π

)1/3
V 1/3; r =

(

1
4π

)1/2
S1/2; r ≈ 6.2035 cm; r ≈

0.8921 cm.
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• Problem 1.15:

r = 2k1/k2 = 12µm.

• Problem 1.16:

(a)P = C
(

R
A

)d/b
; (b) S = 4π

(

3V
4π

)2/3
.

• Problem 1.17:

(a)a: Ms−1, b: s−1; (b) b = 0.2, a = 0.002; (c) v = 0.001.

• Problem 1.18:

(a)v ≈ K, (b) v = K/2.

• Problem 1.19:

K ≈ 0.0048, kn ≈ 77 nM

• Problem 1.20:

(a)x = −1, 0, 1 (b) 1 (c)y1 (d) y2.

• Problem 1.21:

Line of slopea3/A and intercept1/A

• Problem 1.22:

K = 0.5, a = 2

• Problem 1.23:

Not Provided

• Problem 1.24:

m ≈ 67, b ≈ 1.2, K ≈ 0.8, kn ≈ 56

• Problem 1.25:

x =
(

R
A

)
1

r−a
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D..3 Answers to Chapter 2 Problems

• Problem 2.1:

(a)m = 28◦/min, b = 50.

• Problem 2.2:

(a)−4.91◦F/min. (b) -7, -8, -9◦F/min. (c) -9◦F/min.

• Problem 2.3:

Displacements have same magnitude, opposite signs.

• Problem 2.4:

(b) 9.8 m/s.

• Problem 2.5:

(a)−14.7 m/s; (b)−gt− gǫ
2 ; (c) t = 10 s.

• Problem 2.6:

v0 − g/2

• Problem 2.7:

v̄ = 13.23 m/s.; secant line isy = 13.23x− 2.226

• Problem 2.8:

(a)2; (b) 0; (c)−2; (d) 0.

• Problem 2.9:

(a)1; 1; 1; (b) 1; 0; 1; (c) 1; 2; 4.

• Problem 2.10:

(a)3; (b) 5.55; (c) 32
3 .

• Problem 2.11:

(a) 2
√
2

π ; (b) 6(1−
√
2)

π ; (c) π/4 ≤ x ≤ 5π/4 (one solution).

• Problem 2.12:

(a)2 + h; (b) 2; (c) y = 2x.

• Problem 2.13:

2h2 + 25h+ 104; 104

• Problem 2.14:

(b) 0,−4,−1.9,−2.1,−2− h; (c)−2.

• Problem 2.15:

(a)2 + h; (b) 2; (c) 2.98.
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• Problem 2.16:

(a) 4
π ; (b) 4

√
3−12
π .

• Problem 2.17:

(a)−1; (b) −2
1+ǫ ; (c) Slope approaches -2; (d)y = −2x+ 4.

• Problem 2.18:

(a)v(2) = 12 m/s;v̄ = 15 m/s; (b)v(2) = 0 m/s; v̄ = 25 m/s; (c)v(2) = 13 m/s;
v̄ = 11 m/s.

• Problem 2.19:

0

• Problem 2.20:
−1

(x+1)2
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D..4 Answers to Chapter 3 Problems

• Problem 3.1:

Not Provided

• Problem 3.2:

Not Provided

• Problem 3.3:

5; 5; no change; linear function

• Problem 3.4:

(a) no tangent line; (b)y = −(x+ 1); (c) y = (x+ 1).

• Problem 3.5:

(a) increasing:−∞ < x < 0, 1.5 < x < ∞; decreasing for0 < x < 1.5; (b) 0,
local maximum;1.5, local minimum; (c) No.

• Problem 3.6:

Not Provided

• Problem 3.7:

Not Provided

• Problem 3.8:

Not Provided

• Problem 3.9:

y = 2x− 3

• Problem 3.10:

Not Provided

• Problem 3.11:

(a) f ′(x) = 2x, f ′(0) = 0, f ′(1) = 2 > 0, f ′(−1) = −2 < 0. Local minimum at
x = 0; (b) f ′(x) = −3x2, f ′(0) = 0, f ′(1) = −3 < 0, f ′(−1) = −3 < 0. No local
maxima nor minima; (c)f ′(x) = −4x3, f ′(0) = 0, f ′(1) = −4 < 0,f ′(−1) = 4 >
0. Local maximum atx = 0.

• Problem 3.12:

Not Provided

• Problem 3.13:

Not Provided

• Problem 3.14:

Not Provided
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• Problem 3.15:

5

• Problem 3.16:

(a)y = 3x− 2; (b) x = 2/3; (c) 1.331; 1.3.

• Problem 3.17:

(a)y = −4x+ 5; (b) x = 5/4, y = 5; (c) y = 0.6, smaller.

• Problem 3.18:

(a)y = f ′(x0)(x− x0) + f(x0); (b) x = x0 −
f(x0)

f ′(x0)
.

• Problem 3.19:

Not Provided

• Problem 3.20:

Not Provided

• Problem 3.21:

(a)14.7 m/s; (b)−4.9 m/s.

• Problem 3.22:

(b) a = 2.

• Problem 3.23:

(3, 9), (1, 1)
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D..5 Answers to Chapter 5 Problems

• Problem 5.1:

(a) zeros:x = 0, x = ±
√
3; loc. max.:x = −1; loc. min.: x = 1; (b) loc. min.:

x = 2; loc. max.:x = 1; (c) (a):x = 0; (b): x = 3/2.

• Problem 5.2:

(a) max.:18; min.: 0; (b) max.:25; min.: 0; (c) max.:0; min.: −6; (d) max.:−2;
min.: −17/4.

• Problem 5.3:

min.: 3/4

• Problem 5.4:

x = 0

• Problem 5.5:

critical points:x = 0, 1, 1/2; inflection points:x =
1

2
±

√
3

6

• Problem 5.6:

Not Provided

• Problem 5.7:

a = 1, b = −6, c = 7

• Problem 5.8:

(a)v = 3t2 + 6t, a = 6t+ 6; (b) t = 0,
√

3/a; (c) t = 0,
√

3/2a; (d) t = 1/
√
2a.

• Problem 5.9:

Not Provided

• Problem 5.10:

(a) t = v0/g; (b) h0 +
v2
0

2g ; (c) v = 0.

• Problem 5.11:

min. atx = −
√
3; max. atx =

√
3; c.u.: x < −1, 0 < x < 1; c.d.: −1 < x <

0,x > 1; infl.pt.: x = 0

• Problem 5.12:

loc. min.:x = a loc. max.:x = −2a

• Problem 5.13:

(a) increasing:x < 0, 0 < x < 3k, x > 5k; decreasing:3k < x < 5k; loc. max.:
x = 3k; loc. min.:x = 5k; (b) c.u.: 0 < x < (3 −

√
6
2 )k, x > (3 +

√
6
2 )k; c.d.:

x < 0, (3 −
√
6
2 )k < x < (3 +

√
6
2 )k; infl.pts.:x = 0, (3±

√
6
2 )k.
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• Problem 5.14:

(b) dv/dp = −b (a+p0)
(p+a)2 ; (c) p = p0.

• Problem 5.15:

Not Provided

• Problem 5.16:

abs. max. of4.25 at end points; abs. min. of2 atx = 1

• Problem 5.17:

(a)36x2 − 16x− 15; (b)−12x3 + 3x2 − 3; (c) 4x3 − 18x2 − 30x− 6; (d) 3x2; (e)
36x

(x2+9)2 ; (f) 6x3−3x2+6
(1−3x)2 ; (g) 18b2−7b

8
3

3(2−b
2
3 )2

; (h) −36m3+72m2−36m+5
(3m−1)2 ; (i) 9x4+8x3−3x2−4x+6

(3x+2)2 .
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D..6 Answers to Chapter 6 Problems

• Problem 6.1:

(a)10, 10; (b) 10, 10; (c) 12, 8.

• Problem 6.2:

(a)v(t) = 120t2 − 16t3; (b) t = 5; (c) t = 7.5.

• Problem 6.3:

9 : 24A.M., 15 km

• Problem 6.4:

(a)t ≈ 1.53 sec; (b)v(0.5) = 10.1m/sec,v(1.5) = 0.3m/sec,a(0.5) = −9.8m/sec2,
a(1.5) = −9.8 m/sec2; (c) t ≈ 3.06 sec.

• Problem 6.5:

30× 10× 15 cm

• Problem 6.6:

(a)y = (1/
√
3); (b)

√
3/9.

• Problem 6.7:

|a| if a < 4; 2
√
2a− 4 if a ≥ 4

• Problem 6.8:

A = 625 ft2

• Problem 6.9:

All of the fencing used for a circular garden.

• Problem 6.10:

Squares of side6− 2
√
3 cm.

• Problem 6.11:

Straight lines from(10, 10) to (163 , 0) then to(3, 5).

• Problem 6.12:

4 ◦C

• Problem 6.13:

(a)x = 2B/3, R = (4/27)AB3; (b) x = B/3, S = AB2/3.

• Problem 6.14:

r = 2k1/k2

• Problem 6.15:

h = 20, r = 5
√
2
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• Problem 6.16:

(b) x = a
2b ; (c) x = 0; (d) x = a−m

2b .

• Problem 6.17:

x = (A/2B)1/3 − 1

• Problem 6.18:

(b)N = K/2.

• Problem 6.19:

NMSY = K(1− qE/r)

• Problem 6.20:

E = r/2q
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D..7 Answers to Chapter 7 Problems

• Problem 7.1:

(a) dy
dx = 21x2+2

6y5+3 ; (b) dy
dx = − 2y

ey+2x ; (c) dy
dx = xcosx

(

− sinx · lnx+ cos x
x

)

.

• Problem 7.2:

(a)4πr2k; (b) 8πrk; (c)− 3k
r2 .

• Problem 7.3:

(a)dA/dt = 2πrC; (b) dM/dt = α2πrC.

• Problem 7.4:
dM
dt = Cπ(3r2)a

• Problem 7.5:
dV
dt = 1 m3/min

• Problem 7.6:

(a) 1
300π cm/s; (b) 2

5 cm2/s.

• Problem 7.7:

5 cm/s

• Problem 7.8:

(a) dV
dt = nR

P
dT
dt ; (b) dV

dt = −nRT
P 2

dP
dt .

• Problem 7.9:

π−1/2k

• Problem 7.10:

− 1
10π cm/min

• Problem 7.11:

1 cm/sec toward lens

• Problem 7.12:
dh
dt = −1

36π cm/min

• Problem 7.13:

k = 1
10 + 4π

45

• Problem 7.14:
dh
dt = 6

5π ft/min

• Problem 7.15:

h′(5) = 2
5π m/min



321

• Problem 7.16:

(a) 1
4π m/min; (b) 1

π m/min.

• Problem 7.17:

(a)−4 m/s; (b)− 25
32 per sec.

• Problem 7.18:
−1
4
√
6

m/min

• Problem 7.19:
dS
dA = ab

1+bA ; no.

• Problem 7.20:
dy
dt = 3 l2

l1
cm/hr

• Problem 7.21:

Not Provided

• Problem 7.22:

Not Provided

• Problem 7.23:

(a) dy
dx = − 2x

2y = −x
y ; (b) y = 1√

2
(−x+ r

√
3); y = (1/

√
2)(x − r

√
3).

• Problem 7.24:

(a)−3/4; (b) y = −(3/4)x+ 8.

• Problem 7.25:

Not Provided

• Problem 7.26:

( 2√
10
, 9√

10
) and(− 2√

10
,− 9√

10
)

• Problem 7.27:

m =
4yp

xp

• Problem 7.28:

(c) Global minimum occurs at an endpoint, rather than at a critical point.

• Problem 7.29:

Not Provided

• Problem 7.30:

(b) dy
dx = (ay−x2)

(y2−ax) ; (c) x = 0, x = 21/3a; (d) No.



322 Appendix D. Short Answers to Problems

• Problem 7.31:

(a) dp
dv = (2 a

v3 )− (p+ a
v2 )/(v − b).

• Problem 7.32:

(0, 5/4)

• Problem 7.33:

(a)y − 1 = −1(x− 1); (b) y′′ = 4
5 ; (c) concave up.
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D..8 Answers to Chapter 8 Problems

• Problem 8.1:

Not Provided

• Problem 8.2:

Not Provided

• Problem 8.3:

(a) 50.75 > 50.65; (b) 0.4−0.2 > 0.40.2; (c) 1.0012 < 1.0013; (d) 0.9991.5 >
0.9992.3.

• Problem 8.4:

Not Provided

• Problem 8.5:

(a)x = a2b3; (b) x = b

c
2
3

.

• Problem 8.6:

Not Provided

• Problem 8.7:

(a)x = 3−ln(5)
2 ; (b) x = e4+1

3 ; (c) x = e(e
2) = ee·e; (d) x = ln(C)

a−b .

• Problem 8.8:

(a) dy
dx = 6

2x+3 ; (b) dy
dx = 6[ln(2x+3)]2

2x+3 ; (c) dy
dx = − 1

2 tan
1
2x; (d) dy

dx = 3x2−2
(x3−2x) ln a ;

(e) dy
dx = 6xe3x

2

; (f) dy
dx = − 1

2a
− 1

2
x ln a; (g) dy

dx = x22x(3+x ln 2); (h) dy
dx = ee

x+x;
(i) dy

dx = 4
(et+e−t)2 .

• Problem 8.9:

(a) min.: x = 2√
3
; max.: x = − 2√

3
; infl.pt.: x = 0; (b) min.: x = 1

3
√
3
; (c) max.:

x = 1; inf.pt.: x = 2; (d) min.: x = 0; (e) min.: x = 1; max.: x = −1; (f) min.:
x = ln(2); infl. pt.: x = ln(4).

• Problem 8.10:

C = 4, k = −0.5

• Problem 8.11:

(a) decreasing; (b) increasing;y1(0) = y2(0) = 10; y1 half-life = 10 ln(2); y2
doubling-time= 10 ln(2)

• Problem 8.12:

Not Provided

• Problem 8.13:

Not Provided
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• Problem 8.14:

Not Provided

• Problem 8.15:

crit.pts.:x = 0, x ≈ ±1.64; f(0) = 1; f(±1.64) ≈ −0.272

• Problem 8.16:

x = 1/β

• Problem 8.17:

(a)x = r; (c) x = ar
a−r ln

(

R
A

)

; (d) decrease; (e) decrease.

• Problem 8.18:

x = b
√

ln((a2 + b2)/b2)

• Problem 8.19:

Not Provided
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D..9 Answers to Chapter 9 Problems

• Problem 9.1:

Not Provided

• Problem 9.2:

(a)C any value,k = −5; (b)C any value,k = 3.

• Problem 9.3:

(a)y(t) = Ce−t; (b) c(x) = 20e−0.1x; (c) z(t) = 5e3t.

• Problem 9.4:

t = − ln 2
ln 7−ln 10

• Problem 9.5:

(a)57300 years; (b)22920 years

• Problem 9.6:

(a) 29 years; (b) 58 years; (c)279.7 years.

• Problem 9.7:

(a)80.7%; (b) 12.3 years.

• Problem 9.8:

y ≈ 707.8 torr

• Problem 9.9:

(a)P (5) ≈ 1419; (b) t ≈ 9.9years.

• Problem 9.10:
dN
dt = 0.05N ; N(0) = 250; N(t) = 250e0.05t; 2.1× 1010 rodents

• Problem 9.11:

(a)dy/dt = 2.57y; (b) dy/dt = −6.93y.

• Problem 9.12:

(a)12990; (b) 30792 bacteria.

• Problem 9.13:

1.39 hours;9.2 hours

• Problem 9.14:

20 min; 66.44 min

• Problem 9.15:

(a)y1 growing,y2 decreasing; (b)3.5, 2.3; (c)y1(t) = 100e0.2t, y2(t) = 10000e−0.3t;
(d) t ≈ 9.2 years.



326 Appendix D. Short Answers to Problems

• Problem 9.16:

12265 people/km2

• Problem 9.17:

(a) 1 hour; (b)r = ln(2); (c) 0.25 M; (d)t = 3.322 hours.

• Problem 9.18:

6.93 years

• Problem 9.19:

1.7043 kg

• Problem 9.20:

(a) $510, $520.20, $742.97; 17.5 years; for 8% interest:$520, $540.80, $1095.56;
(b) $510.08, $520.37, $745.42; (c) 5%.
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D..10 Answers to Chapter 10 Problems

• Problem 10.1:

(a) dy
dx = 2x cosx2; (b) dy

dx = sin 2x; (c) dy
dx = − 2

3x
− 2

3 (cot 3
√
x)(csc2 3

√
x); (d)

dy
dx = (1−6x) sec(x−3x2) tan(x−3x2); (e) dy

dx = 6x2 tanx+2x3 sec2 x; (f) dy
dx =

cosx+x sin x
cos2 x ; (g) dy

dx = cosx − x sinx; (h) dy
dx =

sin 2
x

x2esin
2 1

x

; (i) dy
dx = 6(2 tan 3x +

3 cosx)(2 sec2 3x− sinx); (j) dy
dx = − sin(sinx) · cosx+ cos 2x.

• Problem 10.2:

(a)f ′(x) = −(4x3+10x) sin(ln(x4+5x2+3))
(x4+5x2+3) ; (b)f ′(x) =

(3x2−2 cos(x) sin(x)) cos(
√

cos2(x)+x3)

(2
√

cos2(x)+x3)
;

(c)f ′(x) = 6x2+ 1
x ln(3) ; (d)f ′(x) = 4(x2ex+tan(3x))3(2xex+x2ex+3 sec2(3x));

(e)f ′(x) = 2x
√

sin3(x) + cos3(x) + 3x2(sin2(x) cos(x)−cos2(x) sin(x))

2
√

sin3(x)+cos3(x)
.

• Problem 10.3:

(a)180o (b) 300o (c) 164.35o (d) 4320o

(e)5π/9 (f) 2π/45 (g) 5π/2 (h) π/2

(i) 1/2 (j)
√
2/2 (k)

√
3/3

• Problem 10.4:

Not Provided

• Problem 10.5:

Not Provided

• Problem 10.6:

Not Provided

• Problem 10.7:

−
√
3/20, 1/20

• Problem 10.8:

(a) [0, π/4], [5π/4, 2π]; (b) [3π/4, 7π/4]; (c) x = 3π/4, 7π/4.

• Problem 10.9:

(a)T (t) = 37.1 + 0.4 cos[π(t− 8)/12]; (b)W (t) = 0.5 + 0.5 cos[π(t− 8)/6].

• Problem 10.10:

(a)S = 3 cos
(√

g
l t
)

; (b) y = 2 sin
(

2π
3 t+ π

6

)

+ 10.

• Problem 10.11:

±(π8 , 1)
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• Problem 10.12:

−0.021 rad/min

• Problem 10.13:

0.125 radians per minute

• Problem 10.14:

Not Provided

• Problem 10.15:

(a)π/8; (b) 5π/8.

• Problem 10.16:

(a) dy
dt = − Cx√

L2−x2
; (b) dθ

dt = C
y .

• Problem 10.17:

R = 1
32 v

2
0

• Problem 10.18:

8π m/s;0 m/s

• Problem 10.19:

30π cm/s; to the right

• Problem 10.20:

(a)
√
h2 + 2hR; (b)−v

√
h2 + 2hR/R.

• Problem 10.21:

(a) dy
dx = 4 sec2(2x+y)

1−2 sec2(2x+y) ; (b) dy
dx = 2 sin x

cos y ; (c) dy
dx = − y cosx+sin y

x cos y+sin x .

• Problem 10.22:

y = −x+ 2
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D..11 Answers to Chapter 11 Problems

• Problem 11.1:

y′ = a/
√
1− a2x2

• Problem 11.2:

(a)x; (b) x/
√
1− x2; (c)

√
1− x2.

• Problem 11.3:

(a)
dy

dx
=

1

3x
2
3

√

1− x
2
3

; (b)
dy

dx
=

1

3(arcsinx)
2
3

√
1− x2

; (c)
dθ

dr
=

1

2r2 + 2r + 1
;

(d)
dy

dx
= arcsec1x − x√

1−x2
; (e)

dy

dx
=

−2x2 + a2 − a

a
√
a2 − x2

; (f)
dy

dt
= −

∣

∣

∣

∣

1 + t2

1− t2

∣

∣

∣

∣

·
2(1− t2)

(1 + t2)2
.

• Problem 11.4:

0.4 m

• Problem 11.5:
5
26 rad/s
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D..12 Answers to Chapter 12 Problems

• Problem 12.1:

(a) 19
6 ; (b) 3; (c)−0.1, −0.1.

• Problem 12.2:

(a)0.40208; (b) 5.99074.

• Problem 12.3:

0.99

• Problem 12.4:

(a)0.98255; (b) 0.87475.

• Problem 12.5:

−2.998

• Problem 12.6:

Not Provided

• Problem 12.7:

1030 cm3

• Problem 12.8:

x = 0.357403, 2.153292

• Problem 12.9:

2.83

• Problem 12.10:

(a)(3.41421, 207.237),(0.58580, 0.762), (−0.42858,−0.895); (b) (1.30980, 0.269874).

• Problem 12.11:

(a)x = 0.32219; (b)x = 0.81054; (c)x = 0.59774,x = −0.68045,x = −4.91729;
(d) x = 2.34575.

• Problem 12.12:

x = 0, ± 1.895

• Problem 12.13:

(a) loc.max.:x = 1.1397, − 1.9100; loc.min.: x = −0.2297; (b) f ′′(x) positive:
(−∞,−2.1902], [−0.7634, 0.3801], [1.5735,∞).

• Problem 12.14:

−0.9012
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• Problem 12.15:

Not Provided

• Problem 12.16:

(a) y5 = 1.61051; y(0.5) = 1.6487213; error = 0.03821; (b) y5 = 0.59049;
y(0.5) = 0.60653; error= 0.01604.

• Problem 12.17:

0.55, 0.5995, 0.6475, 0.6932, 0.7357

• Problem 12.18:

Not Provided

• Problem 12.19:

(a)0.806; (b) 0.681; (c) 4.027.

• Problem 12.20:

(a)1.112; (b) 0.622.
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D..13 Answers to Chapter 13 Problems

• Problem 13.1:

Not Provided

• Problem 13.2:

Not Provided

• Problem 13.3:

Not Provided

• Problem 13.4:

(a)C = −12; (b)C1 = 1, C2 = −5; (c)C1 = −1, C2 = 0.

• Problem 13.5:

(a)v(t) = − g
k e

−kt + g
k ; (b) v = g

k .

• Problem 13.6:

c(t) = −k
s e

−st + k
s

• Problem 13.7:

(b) 46 minutes before discovery.

• Problem 13.8:

10.6 min

• Problem 13.9:

64.795 gm,250 gm

• Problem 13.10:

(a)Q′(t) = kr − Q
V r = − r

V [Q− kV ]; (b)Q = kV ; (c) T = V ln 2/r.

• Problem 13.11:

Not Provided

• Problem 13.12:

Not Provided

• Problem 13.13:

Not Provided

• Problem 13.14:

(c) y(t) = A cos(
√

g/Lt).

• Problem 13.15:

(a) dQ
dt = kQ; Q(t) = 100e(−8.9×10−2)t; (b) 7.77 hr.
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• Problem 13.16:

(b) k = 3/2.

• Problem 13.17:

(a) dx
dt = k

3 (V0 − x3); (d) V = 1
2V0.

• Problem 13.18:

(b) y0; (c) t = 2A
√
y0

k ; (d)−k
√
y0.

• Problem 13.19:

a = 0, b = −1

• Problem 13.20:

(b) t = π/4 + nπ.

• Problem 13.21:

(a)Kmax, c = k; (b) ln(2)/r; (c) c = 0, c = Kmax
r − k.
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D..14 Answers to Appendix A Problems

• Problem 1:

(a) slope4, y intercept−5; (b) slope3
4 , y intercept−2; (c) slope2

3 , y intercept0; (d)
slope0, y intercept3; (e) slope5

2 , y intercept− 23
2 .

• Problem 2:

(a) y = −5(x − 2) = −5x + 10; (b) y = 1
2x − 5

2 ; (c) y = 4
5x + 10; (d) y =

−(3/4)x+ 1.

• Problem 3:

(a)y = −4x+ 3; (b) y = 3x+ 2; (c) y = −6x+ 5; (d) y = 3x; (e)y = −6x+ 5;
(f) y = −x/4; (g) y = 2x+ 9.

• Problem 4:

y =
√
2− x
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D..15 Answers to Appendix B Problems

• Problem 1:

Not Provided

• Problem 2:

(a) Odd; (b) Even; (c) Even; (d) Odd; (e) Neither.

• Problem 3:

Not Provided

• Problem 4:

y = [(1/A)x]1/n; x = 0,±(1/A)1/(n−1)
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Index

Arrhenius, 155
differential equation, 163
Lysteria

monocytogenes, 66

acceleration, 59, 63
uniform, 60

ActA, 66
actin, 66
age distribution, 167
airplane, 83
ambient temperature, 174, 252
Andromeda strain, 145, 153
angle

degrees, 181
radians, 182

ant trails, 133
antiderivative, 58
antidifferentiation, 58, 60
approximation

linear, 227
arccosine, 214
arcsine, 212
arctan, 215
argument

geometric, 5
astroid, 126
attention, 129
attraction, 12
average

rate of change, 25, 27

biochemical
reaction, 8

bird flock, 11
box

rectangular, 96

carrying capacity, 91, 264
cell

length, 96
shape, 1
size, 92
spherical, 2

cesium-137, 172
chain rule, 115
Chernoby, 172
clock hands, 197, 198
coffee budget, 117
comet tail, 66
concave

down, 74
up, 74

cone, 120
converge, 237
cooling, 21
cooling object, 258
cosine, 184

derivative, 194
Crichton

Michael, 145
critical point, 75, 231, 235
critical points

classifying, 81
cryptic food, 129
cubic, 55
cycle

peridic, 187
cylinder

surface area, 94
volume, 94

daylight cycle, 188
decreasing

function, 74

337
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degree
of polynomial, 57

density dependent
growth, 91
growth rate, 264

derivative, 38
definition, 32

differential
equation, 241

differential equation, 151, 249
Dill

Larry, 218
displacement, 23, 25
doubling time, 169
Dukas

Reuven, 129

E. coli, 145
ellipse

rotated, 127
endpoints

maxima at, 98
energy gain, 105
enzyme, 8
escape response, 218
Euler’s method, 176, 227, 238, 267
even

function, 3
even function, 186
exponential decay, 250
exponential function, 147, 161

base 10, 149
base 2, 148
base e, 150

exponential growth, 240, 250

falling object, 25, 59, 61, 256
fertility, 167
fish school, 11
food patch, 104
food type, 129
foraging

optimal, 104
frequency, 186

Galileo, 28

geometric argument, 5, 107
geometric relationships, 118
gravity, 28, 59
growth

rate, 168
growth rate

intrinsic, 91

half life, 172
harmonic oscillator, 201
heating, 21
Hill

coefficient, 10
function, 10

hormone cycle, 189

implicit differentiation, 121
increasing

function, 74
inflection

point, 74
infusion, 256
initial

value, 164
velocity, 60

initial guess, 237
instantaneous

rate of change, 32
intrinsic growth rate, 264
inverse function, 151, 211
iodine-131, 172
iteration, 233

Kepler, 99
wedding, 99

Lactobacillus, 21
landing system, 83
law of cosines, 192, 196
limits

trigonometric, 193
linear

approximation, 227, 228
operation, 57

linearity
of derivative, 57
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of limits, 300
Linweaver-Burke, 13
local

maximum, 75
minimum, 75

logarithm
natural, 151

logistic
growth, 91

logistic equation, 264

maximum, 91
absolute, 83
global, 83

Michaelis-Menten
kinetics, 8

milk
temperature, 21

minimum, 91
absolute, 83
global, 83

model
mathematical, 1

molecular collision, 155
moon phase, 190
mortality, 168
moving bead, 66
moving object, 23

Newton’s
law of cooling, 174, 241, 252
method, 4, 227, 230

nM
nano Molar, 9

nonlinear
differential equation, 264

nuclear power plant, 172
numerical solution, 175
nutrient

absorption, 3
consumption, 3

odd
function, 3

odd function, 186
one-to-one, 211

oxygen, 5

parameter, 165
per capita

birth rate, 165
mortality rate, 165

perimeter
maximal, 98

period, 185
periodic function, 185
pheromone, 133
pollution, 116
polynomial, 6

degree, 6
derivative of, 57

population
density, 91
growth, 165, 249

position, 63
power

dominant, 3
function, 3

power function, 55
power rule, 55, 82, 124
powers

of 2, 145
predator

size, 220
Pythagoras

theorem, 103
Pythagoras theorem, 212, 214

race track, 196
radioactive decay, 171
radioactivity, 171
rate

constant, 168
rate of change

average, 21, 25, 27
instantaneous, 55

rational
function, 8

reaction
speed, 8

related rates, 195
repulsion, 12
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rescaling, 265
residence time, 106
restricting the domain, 211
roots

of equation, 237

saturation, 9
scientific problems, 165
secant

line, 26
secant line, 27, 29
second derivative, 58, 76
shortest path, 133
sine, 184

derivative, 193
sketching

the derivative, 41, 63
slope

of tangent line, 55
slope field, 259
solution

approximate, 227
numerical, 227
to differential equation, 163

solution curve, 249
solution curves, 253
spacing distance, 11
spreadsheet, 234, 241
stability, 263
stable

steady state, 263
steady state, 263
step size, 239
stroboscope, 23
substrate, 8
superposition, 6
symmetry, 3

tangent
to a circle, 42

tangent line, 32, 38, 40, 58, 68
temperature

ambient, 174, 241
milk, 21

terminal velocity, 256
time of death, 254

trigonometric functions, 181, 211
trigonometric identities, 192
tumor growth, 118

unstable, 263

velocity, 23, 59, 63
average, 23
instantaneous, 23, 30

visual angle, 199, 220

wine barrel, 99

yoghurt, 21

zebra danio, 218
zeros

of a function, 41, 79
zoom, 38


