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Chapter 1

How big can a cell be?
(The power of functions)

The shapes of living cells are designed to be uniquely stitdueir functions. Few cells are
really spherical. Many have long appendages, cylindrieaisy or branch-like structures.
But here, we will neglect all these beautiful complexitiesldook at a simple egg-like
spherical cell. The question we want to explore is what deitegs the size (and shape) of
a cell and why some size limitations exist. Why should angb& made of millions of tiny
cells, instead of just a few hundred large ones?

Figure 1.1. A cell (assumed spherical) absorbs nutrients at a rate propoal
to its surface ared: .S, but consumes nutrients at a rate proportional to its volumE.
We use the facts that the surface area and volume of a spheegliof r are given by
S =4nr?V = %m“?’

While these questions seem extremely complicated, avelpgimple mathematical
argument can go a long way in illuminating the situation. &tvd into this mystery of size
and shape, we will formulatemathematical model A model is just a representation of
a real situation which simplifies things by representingriast important aspects, while

1



2 Chapter 1. How big can a cell be? (The power of functions)

neglecting or idealizing the other aspects. Below we fokom@asonable set of assumptions
and mathematical facts to explore how nutrient balance ffantand limit cell size.

1.1 A simple model for nutrient balance in the cell

We base the model on the following assumptions:

1. The cellis roughly spherical (See Figure 1.1).

2. The cell absorbs oxygen and nutrients from the environtteaugh its surface. If
the surface aredy, of the cell is bigger, it can absorb these substances ater fas
rate. We will assume that the rate at which nutrients (or exygre absorbed is
proportionalto the surface area of the cell.

3. The rate at which nutrients are consumed in metaboli@nysed up) is proportional
to the volumeV, of the cell; that is, the bigger the volume, the more nutsere
needed to keep the cell alive. We will assume that the ratehathanutrients (or
oxygen) are consumed jgoportionalto the volume of the cell.

We define the following quantities for our model of a singlé:ce

A = net rate of absorption of nutrients per unit time.
C' = netrate of consumption of nutrients per unit time.
V' = cell volume.

S = cell surface area.

r = radius of the cell.

We now rephrase the assumptions mathematically. By assum(2f), A is propor-
tional to S: This means that
A=K,

wherek; is a constant of proportionality. Since absorption andem@farea are positive
guantities, in this case only positive values of the prdpattlity constant make sense, so
thatk; > 0. (The value of this constant would depend on the permegbiiithe cell mem-
brane, how many pores or channels it contains, and/or aiwednsport mechanisms that
help transfer substances across the cell surface intaéson

Further, by assumption (3); is proportional to//, so that

C=kV,

wherek, > 0 is a second proportionality constant. The valuégfvould depend on the
rate of metabolism of the cell, i.e. how quickly it consumesrients in carrying out its
activities.

Since we have assumed that the cell is spherical, by assam@), the surface area,
S, and volumé/ of the cell are:
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S=dmr?, V= §7TT3. (1.1)

Putting these facts together leads to the following refesiops between nutrient absorption,
consumption, and cell radius:

A = ky(47r?) = (47ky )12, C = kg(gwr?’) = (gm)r?’.
We note thatd, C' are now quantities that depend on the radius of the cell.dddgnce the
terms in brackets on the right hand sides are just constafficgents,each of the above
expressions is simply a power functjanth r the independent variable. That is, each of
these expressions has the form
y=Kr"

for some positive constant coefficieftt (for consumption = %ka and for absorption
K = 4rky). Most importantly, the powers ane = 3 for consumption andh = 2 for
absorption.

In order to appreciate how the size of the cell affects ea¢chefwo processes con-
sumption and absorption of nutrients, let us review sommergary facts about power
functions.

1.2 Power functions

Power functions are among the most elementary and “elefamttions. They are easy to
calculaté, are very predictable and smooth, and, from the point of \eéwalculus, are
very easy to handle.

A power function has the form

y=f(z) ="

wheren is a positive integer. As shown in Fig. 1.2, even and odd pswead to power
functions of distinct symmetry properties. Indeed the ®erenandodd functions stem
directly from the symmetry properties of the power funcionSee Appendix B for a
review of symmetry.) From Figure 1.2, we see that all the eletary power functions
intersect atr = 0 andx = 1. Each of the even (odd) power functions also intersect one
another atr = —1.

Figure 1.2 also demonstrates another extremely importatafe of the power func-
tions: the higher the power, thlatter the graph near the origin and teteepetthe graph
beyond|z| > 1. This can be restated in terms of the relative size of the péuvetions.
We say thatlose to the origin, the functions with lower powers doménathile far from
the origin, the higher powers dominate

So far, we have compared power functions whose coefficigheigonstant 1. How
would we compare two functions of the form

y1 =az", and y, = bx™.

1We only need to use multiplication to compute the value o§éhfeinctions at any point.
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\ I/

Even power flinctions
Odd power functions

y=x
y=x"3

(@) (b)

Figure 1.2. Graphs of power functions (a) A few of the evgn=£ 22, y =
z*, y = 2% ) power functions (b) Some odg & =, y = 2%, y = 2° ) power functions.
Note symmetry properties. Also observe that as the powesases, the graphs become
flatter close to the origin and steeper at largevalues.

This comparison is a slight generalization of what we haemsbove. First, we note that
the coefficientss andb merely scale the vertical behaviour (i.e. stretch the gedphg the

y axis. Itis still true that the higher the power, the flattex tiraph close ta = 0, and the
steeper for large positive or negative values:oHowever, now the points of intersection
of the graphs will occur at = 0 and, in the first quadrant at

az” =bx™ = "™ =(b/a)=> x= (b/a)l/(nfm)

If n, m are both even or both odd, there will also be an intersectien-a—(b/a)'/ (=™,

As one example, for the two functions = 3z* andy, = 2722, intersections occur at
r = 0 and at+(27/3)"/4=2) = +/9 = +3. As a second example, the two functions
y1 = (4/3)m2®,yo = 4max? intersect only atz = 0,3 but not for any negative values
of . In many cases, the points of intersection will be irrationambers whose decimal
approximations can only be obtained by a scientific caloulat some other method (e.g.
see Newton’s Method in a later chapter).



1.3. Cell size for nutrient balance, continued 5

1.3 Cell size for nutrient balance, continued

In our discussion of cell size, we found two power functidmettdepend on the cell radius,
namely the nutrient absorption and consumption rates,

A(r) = (4rk)r?, and C(r) = (gﬂ'kg)’l’?).

(Here we have explicitly noted that both are power functiaith respect to cell radius,

r. Further the coefficients are indicated by terms in bracash f which is a constant.)
Based on our discussion of power functions, we know thatrfaalkr, the power function
with the lower power of- (namelyA) dominates, but for very large valuesigfthe power
function with the higher power() dominates. Where does the switch take place? As
before, we find this by computing the point of intersectionhaf two graphs

A=C = (%Wkg)r?’ = (4mky)r2.

One solution to this equation (which is not too interestiege) isr = 0. If  # 0, then we
can cancel a factor of* from both sides to obtain:

For cells of this radius, absorption and consumption arakgdollows that for smaller cell
sizes the absorptias ~ 2 is the dominant process, which for large cells, the consiampt
C =~ r3 is higher than absorption. We conclude that cells largen tha critical size
r = 3k1 /ko will be unable to keep up with the nutrient demand, and witlswavive.

Thus, using this simple geometric argument, we have dedbegthe size of the cell
has strong implications on its ability to absorb nutrienticly enough to feed itself. The
restriction on oxygen absorption is even more critical ttrenreplenishment of other sub-
stances such as glucose. For these reasons, cells largesiotim&e maximal size (roughly 1
mm in diameter) rarely occur. Furthermore, organisms tfebayger than this size cannot
rely on simple diffusion to carry oxygen to their parts—thayst develop a circulatory
system to allow more rapid dispersal of such life-givingstahces or else they will perish.

1.4 Lessons learned

To be written: Some important observations implicit in thewee discussion.

e Inverse power functions and fractional powers (even and.odd

e General observations about the shapes of graphs, e.g. Wiehminima, which do
not. Behaviour at: — +00. Smoothness properties, etc.

e Other examples of even and odd functions.

e Other information we obtain from graphs.
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1.5 Polynomials

A polynomial is a function in which the simple power functgoare combined in a simple
way. A typical example is

y=p(x) = apz” + ap_12"" " + -+ a1z + ap.

This superposition of the basic power functions with integer powers and reaffuents
aj proves to be a function with particularly convenient featin terms of computations:
evaluatingp at any pointz reduces to simple arithmetical operations of multiplicas and
addition (something that computers are well equipped feurthermore, as we shall see,
these functions are easy to treat using basic calculus tigaesahat we will describe in the
following chapters. The highest poweiis called thedegreeof the polynomial.

In Appendix B, we present some of the special features ofrotyials. Here we can
briefly mention that a polynomial of degreecan have up ta — 1 “wiggles” (by which we
meanmaxima andminima). Every polynomial is unbounded as— oo and ast — —oc.

In fact, for large enough values of the power functiory = f(z) = a,a™ with the largest
power,n, dominates so that

p(x) =~ a,a™ forlargez.
Similarly, for smallz, close to the origin, the smallest powers dominates so that
p(x) = a1z + ap forsmallz.
Example 1.1 Sketch the polynomial
y=npx) =2°+ax.

How would the sketch change if the constarthanges from positive or negative?ll

Solution: The polynomial has two terms, and we will consider their &8endividually.
Near the origin, forrx ~ 0 the termaa dominates so that, close 10 = 0, the function
behaves as

Y~ ar.

This is a straight line with slope. If « > 0 we should see a line with positive slope here,
whereas ifa < 0 the slope of the line should be negative. Far away from thgirarthe
cubic term dominates, so
Y~ z3.

That means that we would see a nearly cubic curve when we lotdege (positive or
negative)r values. Figure 1.3 illustrates these ideas. In column (ajeecthe behaviour
of y = p(x) = 2 + ax for largez, in (b) for smallz. Column (c) shown the graph for an
intermediate range. We might notice that fiox 0, the graph has a local minimum as well
as a local maximum.

The zeros of the polynomial can be found by setting

y=pr)=0 = 2*4+ax=0 = 2°=—az
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(al) (b1) (c1)

(a2) (b2) (c2)

Figure 1.3. The behaviour off = p(x) = 2® + ax is shown here for < 0 (top
row) anda > 0 (bottom row). (a): Zooming out to the rangeb < = < 5, we see that
for very largex the graph looks a lot like the cubic curge= z3. (b): Zooming in to the
range—0.5 < x < 0.5, i.e. at smalke, the graph looks almost like the straight lipe= az,
whose slope is. (c): If we plot the curve for intermediaterange,—2 < x < 2, we see
the behaviour for both small and largevalues.

The above equation always has a solutios 0, but if x # 0, we can cancel and obtain
Tr = —a.

This would have no solutions i is a positive number, so that in that case, the graph
crosses the axis only once, at = 0, as shown in Figure 1.3 (c2). {f is negative, then
the negatives cancel, so the equation can be written in the fo

2® =la
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and we would have two new zeros at
x = £+/]al.

For example, it = —1 then the functiony = 2®> — = has zeros at = 0, 1, —1.

1.6 Rate of an enzyme-catalyzed reaction

1.6.1 Saturation and Michaelis-Menten kinetics

Biochemical reactions are often based on the action of p®ienown as enzymes that
catalyze many reactions in living cells. Shown in Fig. 1.4 tgpical scheme. The enzyme
E binds to its substrate S to form a complex C. The coplex thealis apart into a product,
P, and an enzyme molecule that can repeat its action agaier&lly, the substrate is much
more plentiful than the enzyme.

k, k,
&= &
-1

E S C E P

Figure 1.4. An enzyme (catalytic protein) is shown binding to a substnadlecule
(circular dot) and then processing it into a product (staagled molecule).

Suppose we let: represent the concentration of substrate in the reactiotunai.
The speed of the reaction, (hamely the rate at which product is formed) depends.on
But the relationship is not linear, as shown in Fig. 1.5. letfthis relationships, known as
Michaelis Mentenkinetics, has the form

Kz
v =
kn + 2’

(1.2)

where K, k,, are positive constants that are specific to the enzyme anexiherimental
conditions.

Equation (1.2) is aational function, that is, a ratio of two polynomials. We can
use a graphics calculator or graphing software to plot atgiEphis function, as done
in Fig 1.5, or else we can put our understanding of polynagrialuse in sketching this
function.

Sincez is a concentration, it must be a positive quantity, so weimstttention to
x > 0. The following observations can be made

1. The graph of (1.2) goes through the origin. Indeed, when0 we havev = 0.

2. Close to the origin, the graph “looks like” a straight li#e can see this by consid-
ering values ofr that are much smaller than,. Then the denominatdk,, + z) is
well approximated by the constaht. Thus, for smalls, v ~ (K /k,)x. Thus for
smallz the graph resembles a straight line with sIdp&/'k,,).



1.6. Rate of an enzyme-catalyzed reaction 9

v Michaelis-Menten kingtics

L—] sdturatign

--- [nitial fise

Figure 1.5. The graph of reaction speed, versus substrate concentratierin an
enzyme-catalyzed reaction. This behaviour is called MétikaMenten kinetics. Note that
the graph at first rises almost like a straight line, but theaurves over and approaches a
horizontal asymptote. We refer to this as “saturation”. $igiraph tells us that the speed of
the enzyme cannot exceed some maximal level, i.e. it caaf@aster thank'. See Eqn. 1.2.

3. For largez, there is a horizontal asymptote. The reader can use a siangament
for x > k,, to show thab is approximately constant.

Michaelis-Menten kinetics thus represents one type oficalahip in which the phe-
nomenon obaturation occurs: the speed of the reaction increases for small inesda the
level of substrate, but it cannot increase indefinitely, e enzymes saturate and operate
at their fixed constant speed when the substrate concemtiatvery high.

It is worth pointing out the units of terms in (1.2}). carries units of concentration
(e.g. nano Molar written nM, which means10Moles per litre)v carries units of con-
centration over time (e.g. nM mirt). k,, musthave same units as(only quantities with
identical units can be added or compared!). The units orvtbestdes of the relationship
(1.2) have to balance too, meaning tliatmust have the same units as the speed of the
reaction.
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1.6.2 Hill functions

The Michaelis-Menten kinetics we discussed above fit intocader class oHill func-
tions, which are rational functions of the form

Ax™
a4+ "’

Y= (1.3)
HereA, a > 0is a constant and is some power. This function is often referred taadill
function with coefficient, (although the “coefficient” is actually a power in terms bét
terminology used in this chapter). Hill functions occur iolbgy in situations where the
rate of some enzyme-catalyzed reaction is affected by catipe behaviour of a number
of subunits, or by a chain of steps.

We see that Michaelis Menten kinetics corresponds to a Hiitfion withn = 1.
In biochemistry, expressions of the form (1.3) with> 1 are often denoted “sigmoidal”
kinetics, and a few such functions are plotted in Fig 1.6 ngsirguments similar to those
of Section 1.6.1, we can infer the shapes of these functiofallaws:

y=3 x*n / (1 +x"n)

Figure 1.6. Three Hill functions withA = 3, = 1 and coefficient = 1,2, 3 are
compared on this graph. As the Hill coefficient increases,gtaph becomes flatter close
to the origin, and steeper in its rise to the asymptotg at A.
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e The graph of the Hill function (Figure 1.6) goes through thigio. (At =
see thayy = 0.)

|
e
=
@

e Forvery smallz, (i.e.,x << a) we can make the approximatiaft + =" ~ a™ so

that
Azx™ Azx™ A
y= R =|—)a" for small x

a™ + " am a

This means that near the origin, the graph looks like a powectfon,Cx™ (where
C=A/a").

e Forlarger, i.e.x >> a, itis approximately true that” + =" ~ z™ so that

Azx™ Azx™
a™ + " xm

Y= = A for large x.

This reveals that the graph has a horizontal asymptote A at large values of.
This means that the largest (“maximal”) value thahpproaches iy = A. If y
represents the speed of a chemical reaction (analogous t@tfable we labeled
in chapter 1), the is the “maximal rate” or “maximal speed”.

e Since the Hill function behaves like a simple power functitwse to the origin, we
conclude directly that the higher the valuengthe flatter is its graph near 0. Further,
largen means sharper rise to the eventual asymptote. Hill funstigth largen are
often used to represent “switch-like” behaviour in genattworks or biochemical
signal transduction pathways.

e The constant is sometimes called the “half-maximal activation level? the fol-
lowing reason: When = a then

B Aa™ 7Aa27A
y_a”—i—a"_ 22 27

This shows that the level = a leads to the half-maximal level gf

1.7 For further study: Spacing of fish in a school

Many animals live or function best when they are in a groui@agroups include herds
of wildebeest, flocks of birds, and schools of fish, as wellvearss of insects. Life in a
group can affect the way that individuals forage (searclidod), their success at detecting
or avoiding being eaten by a predator, and other functionk s mating, protection of
the young, etc. Biologists are interested in the ecologmalications of groups on their
own members or on other species with whom they interact, anditdividual behaviour,
combined with environmental factors and random effececathe shape of the groups, the
spacing, and the function.

In many social groups, the spacing between individualslaively constant from
one part of the formation to another, because animals thabgelose start to move away
from one another, whereas those that get too far apart aeetel back. These spacing
distances can be observed in a variety of groups, and weacgiloled in many biological
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publications. For example, Emlef][found that in flocks, gulls are spaced at about one
body length apart, whereas Cond&} pbserved a 2-3 body lengths spacing distance in
tufted ducks. Miller P] observed that sandhill cranes try to keep about 5.8 ft dpdte
flock he observed.

To try to explain why certain spacing is maintained in a grofimnimals, it was
proposed that there are mutual attraction and repulsiendotions, (effectively acting like
simple forces) between individuals. Bred&t followed a number of species of fish that
school, and measured the individual spacing in units of gtebdody length, showing that
individuals are separated by 0.16-0.25 body length units.stijgested that the effective
forces between individuals were similar to inverse powensléor repulsion and attraction.
Breder considered a quantity he calEghesivenesslefined as:

A R
c=— — —, 1.4)
xm xm
where A, R are magnitudes of attraction and repulsions the distance between individ-
uals, andm, n are integer powers that govern how quickly the interacti@fisoff with

distance. We could re-express (1.4) as
c=Axz"™ — Rx™"

Thus, the function shown in Breder’s cohesiveness formsilglated to our power func-
tions, but the powers are negative integers. A specific cassidered by Breder was
m = 0,n = 2, i.e. constant attraction and inverse square law repulsion

c=A—(R/x?)

Breder specifically considered the “point of neutrality”’hevec = 0. The distance at
which this occurs is:
z = (R/A)'/?
where attraction and repulsion are balanced. This is thardis at which two fish would
be most comfortable: neither tending to move apart, norlgsec together.
Other ecologists studying a similar problem have used &taoif assumptions about
forces that cause group members to attract or repel one@moth

1.8 For further study: Transforming
Michaelis-Menten kinetics to a linear relationship

Michaelis-Menten kinetics that we explored in (1.2) is a lm@ar saturating function in
which the concentration is the independent variable on which the reaction veloeity,
depends. As discussed in Section 1.6.1, the constéatisdk,, depend on the enzyme and
are often quantified in a biochemical assay of enzyme aclioalder times, a convenient
way to estimate the values &f andk,, was to measure for many different values of the
initial substrate concentration. Before nonlinear fittsggtware was widely available, the
expression (1.2) was transformed (meaning that it was t@nmras a linear relationship.
We can do so with the following algebraic steps:

Kz
k, +x

v =
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so, taking reciprocals and expanding leads to

k, +x
Kz '’
kn, T

Ke Kz
()1, (L
T\K )z K

This suggests defining the two constants:

1
v

kny, 1
b=—.

"R K

In which case, the relationship betwekfv and1 /2 becomes linear:

-~[g

Both the slopesn and intercepb of the straight line provide information about the param-
eters. The relationship (1.5), which is a disguised varnidiMlichaelian kinetics is called
the Linweaver-Burke relationship. Later, we will see hovs tban be used to estimate the
values ofK andk,, from biochemical data about an enzyme.
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Exercises

1.1. Simple transformations: Consider the graphs of the simple functions- z, y =
22, andy = z3. What happens to each of these graphs when the functions are
transformedas follows:

(@) y = Az, y = Az?, andy = Ax® whereA > 1 is some constant.
(b) y =2 +a,y =22+ a,andy = 23 + a wherea > 0 is some constant.
(€) y = (z — b)?, andy = (z — b)* whereb > 0 is some constant.
1.2. Simple sketches:Sketch the graphs of the following functions:
(@) y =22,
(b) y = (x +4)°
(€) y = a(x — b)? + cfor the caser > 0,b > 0, ¢ > 0.
(d) Comment on the effects of the constamt$, ¢ on the properties of the graph
ofy = a(x — b)? +c.

1.3. Power functions: Consider the functiong = 2", y = z'/", y = =", wheren is
an integerf = 1, 2..) Which of these functions increases most steeply for vadfies
x greater than 1? Which decreases for large values?ofVhich functions are not
defined for negative values? Compare the values of these function® farz < 1.
Which of these functions are not definedrat 0?

1.4. Finding points of intersection(l):

(@) Consider the two functiong(z) = 322 andg(x) = 2x°. Find all points of
intersection of these functions.

(b) Repeat the calculation for the two functiofisr) = = andg(z) = 42°.

1.5. Finding points of intersection(ll): Consider the two functiong(x) = Az" and
g(x) = Bz™. Supposen > n > 1 are integers, andl, B > 0. Determine the
values ofz at which the values of the functions are the same. Are theoeptaces
of intersection or three? How does this depend on the integern? (Remark:
The point (0,0) is always an intersection point. Thus, weaaldng when there is
only onemore and when there at@o more intersection points. See Problem 4 for
a simple example of both types.)

1.6. More intersection points: Find the intersection of each pair of functions.
@ y=vry=a®
(b) y=-va,y=2°
(c) y:IQ—L%—i—yQ:l

1.7. Roots of a quadratic: Find the range ofn such that the equatior? — 22z —m = 0
has two unequal roots.

1.8. Power functions with negative powers:Consider the function
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1.9.

1.10.

1.11.

1.12.

1.13.

whereA > 0,a > 1, with ¢ an integer. This is the same as the functfdn) =
Ax~*, which is a power function with a negative power.

(a) Sketch a rough graph of this function for> 0.
(b) How does the function changeAfis increased?
(c) How does the function changedfis increased?

Intersections of functions with negative powers:Consider two functions of the
form A B
f(x):x_a’ g(x):ﬁ

Supposethatl, B > 0, a,b > 1 and thatd > B. Determine where these functions
intersect for positive: values.

Zeros of polynomials: Find all real zeros of the following polynomials:
(a) 23 — 222 — 3z
(b) 2° -1
(c) 322 + 5z — 2.

(d) Find the points of intersection of the functions= 2® + 22 — 2z + 1 and
Yy = Ig.
Qualitative sketching skills:

(a) Sketch the graph of the functign= ax — 2° for positive and negative values
of the constant:. Comment on behaviour close to zero and far away from
Zero.

(b) What are the zeros of this function and how does this d&peia, ?

(c) For what values of, would you expect that this function would have a local
maximum (“peak”) and a local minimum (“valley”)?

Inverse functions: The functiong; = z* andy = z!/3 areinverse functions

(a) Sketch both functions on the same graph+$@r < x < 2 showing clearly
where they intersect.

(b) The tangent line to the curwg = 2 at the point (1,1) has slope = 3,
whereas the tangent line o= z'/3 at the point (1,1) has slope = 1/3.
Explain the relationship of the two slopes.

Properties of a cube:The volumel” and surface arest of a cube whose sides have
lengtha are given by the formulae

V =a S =6d.

Note that these relationships are expressed in terms ofrgowetions. The inde-
pendent variable is, notz. We say that V' is a function ofa” (and also 'S is a
function ofa”).

(a) Sketchl” as a function ofi and.S as a function of: on the same set of axes.
Which one grows faster asincreases?
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1.14.

1.15.

1.16.

(b) What is the ratio of the volume to the surface area; thatieat is% in terms
of a7 Sketch a graph og as a function of.

(c) The formulae above tell us the volume and the area of a ctibegiven side
length. But suppose we are given either the volume or theaserérea and
asked to find the side. Find the length of the side as a fundfidine volume
(i.e. express in terms ofV). Find the side as a function of the surface area.
Use your results to find the side of a cubic tank whose voluniditse (1 litre
=10% cm?). Find the side of a cubic tank whose surface ardd ism?.

Properties of a sphere:The volumeV and surface areé of a sphere of radius
are given by the formulae

4
V= —ﬂ-rg, S = 4mr?.
3
Note that these relationships are expressed in terms ofrdfanetions with constant
multiples such adr. The independent variable is notz. We say that V' is a
function ofr” (and also “S is a function ofr”).

(a) Sketchl” as a function of- and S as a function of on the same set of axes.
Which one grows faster asincreases?

(b) What is the ratio of the volume to the surface area; thatiat is% in terms
of 7 Sketch a graph og as a function of-.

(c) The formulae above tell us the volume and the area of argpifea given
radius. But suppose we are given either the volume or thacaiidrea and
asked to find the radius. Find the radius as a function of tHenve (i.e.
express in terms ofV/). Find the radius as a function of the surface area. Use
your results to find the radius of a balloon whose volume igré.li(1 litre =
103 ecm?). Find the radius of a balloon whose surface areidism?

The size of cell: Consider a cell in the shape of a thin cylinder (lengtland ra-
diusr). Assume that the cell absorbs nutrient through its surédgatek, .S and
consumes nutrients at ratelV whereS, V' are the surface area and volume of the
cylinder. Here we assume thiat = 12uM pm~2 per min andk, = 2uM pm=3
per min. (Note:;:M is 10~% moles.um is 10~meters.) Use the fact that a cylinder
(without end-caps) has surface ai®e= 2L and volumé/ = 72 L to determine
the cell radius such that the rate of consumption exactlgrizas the rate of absorp-
tion. What do you expect happens to cells with a bigger or lemeddius? How
does the length of the cylinder affect this nutrient bal&nce

Allometric relationship: Properties of animals are often related to their physical
size or mass. For example, the metabolic rate of the aniRjgaland its pulse rate
(P) may be related to its body massby the approximate formula® = Am’ and

P = Cm?, whereA, C, b, d are positive constants. Such relationships are known as
allometricrelationships.

(a) Use these formulae to derive a relationship between #tabolic rate and the
pulse rate (Hint: eliminatez).
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(b) A similar process can be used to relate the Volume (4/3)7r® and surface
areaS = 4xr? of a sphere to one another. Eliminatéo find the correspond-
ing relationship between volume and surface area for a spher

1.17. Rate of a very simple chemical reaction:Here we consider a chemical reaction
that does not saturate, and consider the simple linearaesitip between reaction
speed and reactant concentration. A chemical is being addeahixture and is used
up by a reaction that occurs in that mixture. The rate of chasfghe chemical,
(also called “the rate of the reaction?) (in units of M /sec where M stands for
Molar, which is the number of moles per litre) is observedditofv a relationship
v = a — be wherec is the reactant concentration (in units of M) and are positive
constants. (Note that heteis considered to be a function ef and moreover, the
relationship between andc is assumed to be linear.)

(@) What units should andb have to make this equation consistent? (Remember:
in an equation such as= a — bc, each of the three ternmust havehe same
units. Otherwise, the equation would not make sense.)

(b) Use the information in the graph shown in Figure 1.7 to fimel values of:
andb. (To do so, you should find the equation of the line in the figared
compare it to the relationship= a — be.)

(c) What is the rate of the reaction when-= 0.005 M?

V| Reaction rate

slope
4 -0.2

0 0.01 M
concentrationc

Figure 1.7.Figure for problem 17

1.18. Michaelis-Menten kinetics: Consider the Michaelis-Menten kinetics where the
speed of an enzyme-catalyzed reaction is given by Kz /(k,, + z).

(a) Explain the statement that “whenis large there is a horizontal asymptote”
and find the value of to which that asymptote approaches.

(b) Determine the reaction speed when- k,, and explain why the constaht,
is sometimes called the “half-max” concentration.

1.19. A polymerization reaction: Consider the speed of a polymerization reaction shown
in Figure 1.8. Here the rate of the reaction is plotted as atfan of the substrate
concentration. (The experiment concerned the polyméoizatf actin, an impor-
tant structural component of cells; data from Rohatgi et280() J Biol Chem



18 Chapter 1. How big can a cell be? (The power of functions)

276(28):26448-26452.) The experimental points are shavwdots, and a Michaelis-
Menten curve has been drawn to best fit these points. Use therdtne figure to
determine approximate values &fandk,, in the two treatments shown.

0.035

0.030

0.025

S 0.020-

8 GST-Nek

0.015 ® GST-Nek+PIP,

Maximum Polvmerization Rate
(arbitrary units)

0.010

0.0051

0.000 1 T T T T T T
& & @ Rt WP S

Coancentration (uM)

Figure 1.8. Figure for problem 19

1.20. Hill functions: Hill functions are sometimes used to represent a biochéfisiaétch”,
that is a rapid transition from one state to another. ComgiaeHill functions

-
x? x°

NS T BT T

(&) Where do these functions intersect?

(b) What are the asymptotes of these functions?

(c) Which of these functions increases fastest near th@@rig
(d) Which is the sharpest “switch” and why?

1.21. Transforming a Hill function to a linear reationship: A Hill function is a nonlin-
ear function. But if we redefine variables, we can transfdrimto a linear relation-
ship. The process is analogous to transforming Michaeksign kinetics into a
Linweaver-Burke plot. Determine how to define appropriagablesX andY (in
terms of the original variablesandy) so that the Hill functiory = Az3/(a® + 23)
is turned into a linear relationship betwe&nandY . Then indicate how the slope
and intercept of the line are related to the original cortstdna in the Hill function.
1.22. Hill function and sigmoidal chemical kinetics: It is known that theate v at which
a certain chemical reaction proceeds depends ondheentratiorof the reactant
according to the formula
Kc?
a2+ ¢?
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whereK, a are some constants. When the chemist plots the values ofith#ity
1/v (on the %” axis) versus the values df/c? (on the %z axis”), she finds that the
points are best described by a straight line witimtercept2 and slopes. Use this
result to find the values of the constaifsanda.

1.23. Linweaver-Burke plots: Shown in the Figure (a) and (b) are two Linweaver Burke

plots. By noting properties of these figures comment on theparison between
the following two enzymes:

(@) Enzyme (1) and (2).
(b) Enzyme (1) and (3).

1/ v 1/v
(1) (1)

(2) (3)

1/c 1l/c

Figure 1.9. Figure for problem 23

1.24. Michaelis Menten Enzyme kinetics: The rate of an enzymatic reaction according

1.25.

to theMichaelis Menten Kineticassumption is

_ Kc
T ka4

v

wherec is concentration of substrate (shown on thexis) andv is the reaction
speed (given on thg axis). Consider the data points given in the table below:

Substrate conc nM c| 5. 10. 20. 40. 50. | 100.
Reaction speed | nM/min | v | 0.068 | 0.126 | 0.218 | 0.345 | 0.39 | 0.529

Convert this data to a Linweaver-Burke (linear) relatiapstPlot the transformed
data values on a graph or spreadsheet, and estimate theagldpentercept of the
line you get. Use these results to find the best estimateks fandk,, .

Spacing in a school of fish:According to the biologist Breder (1950), two fish in a
school prefer to stay some specific distance apart. Bredgested that the fish that
are a distance apart are attracted to one another by a fafgdx) = A/2* and
repelled by a second fordez (z) = R/x", to keep from getting too close. He found
the preferred spacing distance (also calleditiividual distancg by determining
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the value ofz at which the repulsion and the attraction exactly balanded Ehe
individual distancen terms of the quantitied, R, a, r (all assumed to be positive
constants.)



Chapter 2

Average rates of change,
average velocity and the
secant line

In this chapter, we introduce the idea of an average rateafigé. To motivate ideas, we
examine data for two common processes, changes in temperatid motion of a falling
object. Simple experiments are described in each case,ceme features of the data are
discussed. Based on each example, we define and calculatbarege over some time
interval and so define the average rate of change.This cbgeepralizes to functions of
any variable (not only time). We interpret this idea geoiatly, in terms of the slope a
secant line.

In both cases, we then ask how to use the idea of an averagefreltange (over
a given interval) to find better and better approximationthefrate of change at a single
instant, (i.e. at a point). We will see that one way to arrivéhés abstract concept entails
refining the dataset - collecting data at closer and closee foints. A second, more
abstract way, is to use the idea of a limit. Eventually, thiscedure will allow us to arrive
at the definition of the derivative, which is the instantamemte of change.

2.1 Milk temperature in a recipe for yoghurt

Making yoghurt calls for heating milk to 198 to kill off undesirable bacteria, and then
cooling to 110F. Some pre-made yoghurt with “live culture” is added, anrel ithixture
kept at 110F for 7-8 hours. This is the ideal temperature for growthLa€tobacillus, a
useful micro-organism turns milk into yoghurt as a byprddhfdts growtt?.

Experienced yoghurt-makers follow the temperature of tilke with a thermometer
to avoid scalding the milk or missing the desired final terapae. A set of temperature
measurementss shown in Table 2.1.

To visualize the trend of the data we plot the temperatursugetime in Fig. 2.1(a,b),
where (a) is the heating phase and (b) the cooling phase grtteess. This makes a
number of features stand out.

2The initial heating also denatures milk proteins, whichvpris the milk from turning into curds. Adding
some ready-made yoghurt with live culture and keeping thdure warm for 8-10 hrs will then result in fresh
yoghurt.

3The data was collected by your instructor in her kitchen.

21
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‘ Temperature (F) " Temperature (F)

/

// e

time (min)

time (min)

(@) (b)

Figure 2.1. Plots of the data shown in Table 2.1 (a) Heating and (b) capiirilk
in yoghurt production.

(a) Heating (b) Cooling
time (min) Temperature (F fime (min) _Temperature (F

0.0 44.3

0 190
0.5 61

2 176
1.0 77

4 164.6
15 92.

6 155.4
2.0 108

8 148
25 122

10 140.9
3.0 135.3

14 131
35 149.2

18 123
4.0 161.9

22 116
4.5 174.2 26 1112
5.0 186

Table 2.1. Temperature of the milk as it is (a) Heated and (b) Cooled fegefo
adding live yoghurt bacteria.

e In Fig. 2.1(a) the temperature increases and in Fig. 2.1 (®dreases.

e The measurements are discrete, that is, we only have a finitder of points at
which the temperature was recorded.

e In (a) the increasing phase “looks like” a straight line, védees the cooling phase in
(b) is clearlynot linear. That is (a) appears to be clodi&ar whereas (b) displays
an obviousonlinearrelationship.
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e In Fig. 2.1(a), we have drawn a straight line that appearapiure the data trend
fairly well*. In Fig. 2.1(b), simply connecting the data points lead$htresulting
black curve.

To discuss the trends we have observed, it will be beneficialkefine convenient
notation. We will let

t = time,
Ty = initial temperature of the milk
T(t) = temperature of the milk at time
At = an interval of time
AT = a change in the temperature of the milk

These observations lead to several questions.
1. How “fast” is the temperaturg(t) increasing in (a)?
2. How fastis it decreasing in (b)?

The notion of a rate of change will be useful in addressingdtguestions. We define this
concept shortly, but first we consider another common exampl

2.2 A moving object

We next consider an example that will motivate the rate ohgesof position of a moving
object, for which the ternvelocity is commonly used.Uniform motion is defined as
motion in which a constant distance is covered in constam tintervals. For particles
moving uniformly, velocity is constant, and is simply thetdince travelled per unit time,
or simply displacement divided by time taken. In uniform oot velocity does not change
over time.

Most types of motion that occur in natural systems are ndtdimaple: an example
in Figure 2.2 shows successive heights of an object fallimdeu the effect of gravity. As
shown, a falling object coveliacreasingdistances as time progresses so that the velocity
changes with time. In this situation, we have to rethink hovdéfine the notion of ve-
locity at a given time, and we have to formulate more pregikelw we will calculate it.
Such questions lead us to the central idea in this chapterdéfinition ofaverageand
instantaneousvelocity.

Figure 2.2 displays a set of three stroboscopic images cwdkfor visualization
purposes) on a single graph. Each set of dots shows suceessiical positions of an
object falling from a height of 20 meters over a 2 second tiexéoal. In (a) the location of
the ball is given at times = 0,0.5,1, 1.5, and2.0 seconds, i.e. at intervals dft = 0.5
seconds. (A strobe flashing five times, once ew&ty= 0.5 would produce this data.)

We might wonder where the ball is located at times betweesetsaccessive mea-
surements. Did it vanish? Did it continue in a straight or@pled path? To find out what
happened during the intervals between data points, wedserthe strobe frequency, and

“How to pick the best such line will be the subject of futurecdission.
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=@ T o

Figure 2.2. The height of an object falling under the effect of gravitgh®wn
(from¢ = 0 top, tot = 2 bottom). The time intervakt¢ at which data is collected has been
refined (left to right) to get more and more accurate trackarighe object. (a)At = 0.5,
(b) At = 0.2, (c) At = 0.1.

record measurements more often: for example, in FigurdéoPraéasurements were made
fort =0,0.2,0.4,...,2.0 seconds, i.e. at intervalst = 0.2s. An even closer set of points
appears in (c), where the time interval between strobe fiasias decreased vt = 0.1s.
By determining the position of the ball at closer time paoint®& can determine the tra-
jectory of the ball with greater accuracy. The idea of makimgasurements at finer and
finer time increments is important in this example. We witlra to it often in our goal of
understanding rates of change of natural processes.

We represent the data for the motion of the object in a gratigare 2.3. Here we
have added a time axis for each of the sequences, so thatsh®p@n the vertical axis)
and time horizontal axes) are plotted together. Again feeeaf visualization, we have
combined three possible experiments on the same grid.

We will use the following notation:

t = time,
Yy = initial height of the object
Y (t) = height of the object at timg
At = an interval of time
AY = a change in the vertical position of the object
= the displacement of the object.
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(A) (B)

Figure 2.3.(A) The positions of the object are plotted versus time ihedthree
experiments. We have decreased the time between strobesflash= 0.5,0.2,0.1 for
the trials (from left to right). (B) The same plot, with siti line segments connecting the
data points. The slopes of these straight lines (secarg)iae defined as average velocity
over the given time intervals.

Note that we have indicated above that we considéo be a function of time by writing
Y'(t). Also worth noting is that we have defined the change in heiglin positionAY
as thedisplacementof the object. We later study the motion of a falling objecingsa
variabley(t) that represents the distance fallen. Problem 3 exploreifeection between
these.

2.3 Average rate of change

In the examples discussed in this chapter, the independgiatble is time, and we have
been considering variables such as temperature and pogité depend on time. In this
case, we could represent these relationships by a fungtion Then for a given time
interval,a < ¢t < b, we define theverage rate of changeof f over the given interval to
be:

__ Changeinf Af  f(b) = f(a)
"~ Changein ~ At b—a
We use this definition to compute the average rate of changedch of the examples
presented earlier.

Example 2.1 (Average velocity of a falling object)Find the average velocity of the falling
object over the time intervél <t < 0.5 N
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Solution: SinceY (¢) is the height of the object, the average rate of chang¥ ofith
respect to time is an average velocity. For a given time vialethe average velocity, is
simply defined as

__ Changeinheight AY Y (b)—Y(a)

YT T Timetaken At b-a
For example, in the data shown in Fig 2.3, it turns out that thestime interval < ¢ < 0.5
the ball fell fromY (0) = 20 to Y'(0.5) = 18.775m. This leads to an average velocity over
the given time interval of

Y(0.5) — Y(0) 18775 — 20

05 = 05 = —2.45m/s

v =

The average velocity is negative since the height decreasgghe given interval.

The average velocity can be computed between any two dataspols we have
already seen, this quantity depends on the time interval whéch it is computed. As a
second computation, we could compute average velocity.foK ¢ < 2. Over that time,
we find that the height changed frof(1.5) = 8.9750 to Y'(2) = 0.4m. Computing the
average velocity over this time interval leads to -17.15.r@learly the object is falling at
a faster average rate.

We can put a geometric meaning to this formula by making thevfing observation.
On our graphs of the position of a falling object versus tileiels connect successive points
by straight lines, as shown in Figure 2.3(B). Then we say. fhla¢ average rate of change
of the height” between any two time points is just the slope of the straightdonnecting
the corresponding points on the graphioft). We denote that line by the tersecant line

Example 2.2 (Average rate of change of temperaturefrind the average rates of change
of the temperature over the time inter2ak ¢ < 4 for both the heating and the cooling
milk. W

Solution: The data shown in Table 2.1 tabulated the temperafift¢ versus timet in
minutes. Over a given time interval, the average rate of gaaf the temperature is

Change in temperature AT
Time taken At

For example, the average rate of change of temperature asiltheools over the interval

2<t<4minis
(164.6 — 176)

= —5.7°/min.
-2 /
Over a similar time interval for the heating milk, the avezagte of change of the temper-
ature is (161.9 — 108)
7 — 26.95°/min.
= /

Were we to connect two point®,7'(2)) and (4, T(4) on one of the graphs in Fig. 2.1,
we would find a line segment whose slope matches the avertégefrahange we have
computed here. As before, this is the secant line.
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We can write down thequation of the secant ling(if desired) by using the fact
that it goes through the given points (or, alternately, bpgi®ne point and the computed
slope). Since the latter secant line goes through the pgaifit) = (2, 108) and has slope
26.95, we find that

(yr — 108)

o = 26.95 = yr=108+26.95(t—2) = yr = 26.5t+ 54.1,

where we have useg as the height of the secant line, to avoid confusion @ith) which
is the actual temperature as a function of the time.
We can extend the definition of the average rate of changeytéuaiation.

Definition 2.3 (Average rate of change of a function:).Suppose; = f(z) is a function
of some arbitrary variable:. The theaverage rate of changg f between two points,
andxo + h is given by

changeiny Ay _ [f(zo+h) = f(zo)] _ [f(wo+h) — flzo)]

changeint Az (zo+h)— o h

Here h is the difference of the coordinates and the ratio we have just computed is the
slope of the secant line shown in Figure 2.4(b).

y=£x)
f(xo+h) o

Sf(xo)

Xo Xot h

Figure 2.4. The graph of some arbitrary functiof{x) is shown. Two points on
this graph, (zo, f(z0)) and (z¢ + h, f(zo + h)) are identified. and the line connecting
these is the secant line.The slope of this line is the averaigeof change off over the
intervalzg < x < xg + h.

We caution that the word “average” sometimes causes camfu€ine often speaks in
a different context of the average value of a set of numbegs {ee average of7,1, 3,5}
is(7+ 1+ 3+ 5)/4 = 4.) However the average rate of change is always defined irsterm
of a pair of points. Itis not the average of some arbitraryo$ehlues.

Example 2.4 Prof Molly Lutcavage studied the swimming behaviour of Atia bluefin
tuna (Thunnus thynnus Lin the Gulf of Maine. She recorded their position over a @eri
of 1-2 days. Here we consider the length of the tuna tracks. dpproximate data sets are
shown in Fig 2.5. Determine the average velocity of each e$¢htwo fish over the 35h
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shown in the figure. What is the fastest average velocity shinwhis figure, and over what
time interval and which fish did it occur? l

o km
Tuny/
//
T
Tuna 1
4
time (hrs)

Figure 2.5. Distance travelled by two bluefin tuna over 35 hrs

Solution: We find that Tuna 1 swam 180 km over the course of 35 hr, wheraaa Z
swam 218 km during the same time period. Thus the averageitelaf Tuna 1 was
v = 180/35 ~ 5.14 km/h, whereas a similar calculation for Tuna 2 yields 6.23kknThe
fastest average velocity would correspond to the segerteofitaph that has the largest
slope. We see that the blue curve (Tuna 2) has the greatest dloing the time interval
15 < t < 20. Indeed, we find that the tuna covered a distance from thardistcovered
over that 5 hr interval was from 78 to 140 km over that time, spldicement of 140-
78=62km. Its average velocity over that tie interval wasty5 = 12.4km/h.

2.4 Gallileo’'s remarkable finding

Observations recording the position of a falling object everade long ago by Galileo.
He devised some ingenious experiments in which he was ahledover an interesting
relationship between the total distance that an objedir§alinder the force of gravity)
moves during a given total time. Here we will define the vdealit) to be the distance
fallen at timet. There is a simple relationship between the height) and the distance
falleny(t) that the reader should note. (See Exercise 3.)

Galileo realized that a simple relationship exists betwiendistance fallen by an
object under the effect of gravity and the time taken. Galdéscovered that the distance
fallen under the effect of gravity was proportional to theae of the time, i.e., that

y(t) = ct?, (2.1)
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wherec is a constant. We recognize this quadratic relationshipsasple power function
with a constant coefficient. (Later in this course, we wik $ieat this follows directly from
the fact that gravity causes constant acceleration - bute®atlid not realize this fact, nor
did he have a clear idea about what acceleration meant.) \Mieeise measurements are
carried out, with units of meters (m) for the distance, armbaeds (s) for the time, then it
is found thatc = 4.9m/82. Although Galileo did not have formulae or graph-paper & hi
day, (and was thus forced to express this relationship imabewusome verbal way), what
he had discovered was quite remarkable.

— )
Average velocity for 1.3k t< 1.4 t y(t) = 4.9t

0.0 0.0
D(t)=4.9 tA2 0.1 0.0490
0.2 0.1960
Secant line 1.0 4.9
1.1 5.9290
Secant line through these pajints, - 1.2 7.0560

1.3 8.2810
1.4 9.6040
15 11.0250

1.9 17.6890
2.0 19.6

to to+h

Table 2.2. The average velocity between timie+ h andt, is the slope of the
secant line shown on this graph. Some values,gf) for the functiony = 4.9¢2 are given
in the table.

We show a graph of the relationship (2.1) fo= 4.9 together with some points on
that graph in Table 2.2. On our sketch, we have superimpdmesdcant line connecting
the points at, andt, + h. We now compute the average velocity in this more general
setting.

Example 2.5 (Average velocity using Galileo’s formula)Consider a falling object. Sup-
pose that the total distance fallen at timis given by Eqn. (2.1). Find the average velocity
v, of the object over the time interva) <t <tq+h. 1
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Solution:

y(to + h) — y(to)
h
C(to + h)2 — C(tQ)Q
h
iy <(t3 + 2hto + h?) — (t3)>

v =

h

2hto + h?
= C _—
h

= C(2t0 + h)

Thus the average velocity over the time intetyak ¢ < xto + hisv = ¢(2tg + h).

In an upcoming section, we will use this result to ask what ivdre a reasonable
definition of theinstantaneous velocityat some time. The essential idea will be to compute
the average velocity over a smaller and smaller time intewlaich is equivalent to letting
the valueh become smaller and smaller. This notion has already beeyuatered in the
idea of refining the measurements. For the falling objedtecting data over smaller time
intervals corresponds to the letting the time between stflaishes get smaller and smaller.

2.5 Refining the data

2.5.1 Refined temperature data

In Fig 2.6 we show a similar process of refining the data forgerature versus time. We
not that this process of refinement will allow us to define advetnd better concept of the
rate of change close to a given time.

2.5.2 Instantaneous velocity

To arrive at a notion of an instantaneous velocity at some tiiywe will consider defining
average velocities over time intervals < t < to + h, that get smaller and smaller: For
example, we might make the strobe flash faster, so that treetkigtween flashed\t = h
decreases. (We use the notations 0 to denote the fact that we are interested in shrinking
the time interval.)

At each stage, we calculate an average velocityyer the time interval, < t <
to + h. As the interval between measurements gets smaller, ijertoess of refining our
measurements continues, we arrive at a number that we Withesinstantaneous velocity
This number represents "the velocity of the ball at the vasgantt = ¢”".

More precisely,

. t h) —y(t
Instantaneous velocity v(ty) = %ir%ﬁ = %in%) ylto + ]z u 0).
— —

Example 2.6 Find the instantaneous velocity of the same falling objetinze t,. N
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" Temperature (F) " Temperature (F) " Temperature (F)
time (min) time (min) | time (min)
(a) (b) (c)

Figure 2.6. Three graphs of the temperature of cooling milk showing (@arse
data set (measurements eveéxy = 2 min.), (b) a more refined data set, (measurements
everyAt = 1 min) (c) an even more refined dataset (measurements éery 0.5 min.)

Solution: According to our definition, we must determine

. to+h)—y(t
o) = tim Y0+ ) —1l0)

Our calculation would be nearly identical fo(t,) as forw, but for a final step of taking
the limit ash, the interval between time-points shrinks to zero:

y(to +h) — y(to)

v(to) = Jim, h
_ hm C(to + h)2 — C(tQ)Q
h—0 h
2 2\ _ (42
i c ((to + 2hto + h*) (to))
h—0 h
. (tho + h2)
=lim ¢| —
h—0 h

= }1112%) c(2ty + h)
C(2t0) = QCtO

2.2)

Remarks: In our final steps, we have allowedo shrink. In the limit, andh — 0, we
obtain the instantaneous velocity, idt) = 2cto.
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2.6 Introduction to the derivative

With the concepts introduced in this chapter, we are readyhfe the definition of the
derivative.

Definition 2.7 (The derivative:).
denotedf’(z() and defined as

7 T
[ (o) = Lim

[f(zo + h) — f(x0)]
h

Example 2.8 (Calculating the derivative) Compute the derivative of the functigiiz) =
Cz? at some point = z5. W

Solution: In the previous section, we used the functipr= f(¢) = ct? to calculate an
instantaneous velocity. We now recognize that our resutat problem, namelgct is
the same as the derivative of the function evaluateg.athus, in a sense, we have already
solved this problem. By switching notatioty(— = ande — C) we can write down
the answer2cx at once. However, as practice, we can rewrite the steps icae of the
general point:

Fory = f(z) = C2* we have

dy _ o fla+h) — ()

dx h—0 h
. C(xz+h)? - Ca?
= lim
h—0 h
2 2y _ .2
_ limC(I + 2zh+ h?) —x
h—0 h
2
_ th(2xh+h )
h—0 h
= lim C(2z + h)
h—0
=C(2z) =2Cx

Evaluating this result for. = 2y we obtain the answe&C'x.

We recognize from this definition that the derivative is amea by starting with the
slope of a secant line (average rate of chang¢ ofrer the intervakey < = < xo + h)
and proceeds to shrink the intervih{;_,() so that it approaches a single poing). The
resultant line will be denoted thtangent line. , and the value obtained will be identified
as the thenstantaneous rate of changef the function with respect to the variabieat
the point of interesty;y. Another notation used for the derivative is

ar

dx -

We will explore properties and meanings of this concept értbxt chapter.
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Exercises
2.1. Heating milk: Consider the data gathered for heating milk in Table 2.1 agd*1(a).

(a) Estimate the slope and the intercept of the straighslireevn in the figure and
use this to write down the equation of this line. Accordinghis approximate
straight line relationship, what is the average rate of geaf the temperature
over the 5 min interval shown?

(b) Find a pair of points such that the average rate of chahtieedemperature is
smallerthan your result in part (a).

(c) Find a pair of points such that the average rate of chahtieedemperature is
greaterthan your result in part (a).

(d) Milk boils at 212F, and the recipe for yoghurt calls for avoiding a tempesatur
this high. Use your common knowledge to explain why the dateh&ating
milk is not actually linear.

2.2. Refining the data: Table 2.3 shows some of the data for cooling milk that was
collected and plotted in Fig. 2.6. Answer the following qtiass.

time Temp| time Temp| time Temp
0 190 0 190 0 190

2 176 1 182 | 0.5 1855
4 1646| 2 176 1 182

6 1554 3 169.5| 15 179.2
8 148 4 1646| 2 176

10 1409| 5 159.8| 25 1729

Table 2.3. Partial data for temperature in degrees Farenheit for theethgraphs
shown in Fig. 2.6. The pairs of columns indicate that the dweta been collected at more
and more frequent intervals.

(a) Use the above table to determine the average rate of elwditige temperature
over the first 10 min.

(b) Compute the average rate of change of the temperaturef@etervald) <
t<2,0<t<land0<t<0.5.

(c) Which of your results in (b) would be closest to the “imgtmeous” rate of
change of the temperaturetat 0?

2.3. Height and distance dropped: We have defined the variablé(t) =height of the
object at timetand the variable(t) as the distance dropped by time State the
connection between these two variables for a ball whosialihi¢ight isY,. How is
the displacement over some time intervak ¢ < b related between these two ways
of describing the motion? (Assume that the ball is in the @iowghout this time
interval).
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2.4. Height of a ball: The vertical height of a bally” (in meters) at time (seconds)
after it was thrown upwards was found to satidfyt) = 14.7t — (1/2)gt> where
g = 9.8 m/ for the first 3 seconds of its motion.

(a) What happens after 3 seconds?
(b) What is the average velocity of the ball between the times0 andt = 1
second?

2.5. Falling ball: A ball is dropped from height;, = 490 meters above the ground. Its
height,Y’, at timet is known to follow the relationship’(¢) = Y, — %th where
g=9.8m/s.

(a) Find the average velocity of the falling ball between 1 and¢ = 2 seconds.

(b) Find the average velocity betweesec and + ¢ where0) < ¢ < 1 is some
small time increment. (Assume that the ball is in the airlgithis time inter-
val.)

(c) Determine the time at which the ball hits the ground.

2.6. Average velocity at time t: A ball is thrown from the top of a building of height,.

The height of the ball at timeis given by
1 2
Y(t) =Yy + vot — 5gt
whereh, vg, g are positive constants. Find the average velocity of thefbathe
time intervald < ¢ < 1 assuming that itis in the air during this whole time interval
Express your answer in terms of the constants given in thielgamo

2.7. Average velocity and secant lineThe two points on Figure 2.2 through which the
secant line is drawn ar@ .3, 8.2810) and(1.4,9.6040). Find the average velocity
over this time interval and then write down the equation efghcant line.

2.8. Average rate of change:A certain function takes values given in the table below.

t 0|05|10|15]|20
f@& {0 1 0|-1|0
Find the average rate of change of the function over thevater
(@ 0<t<0.5,
(b) 0 <t < 1.0,
(c) 0.5 <t < 1.5,
(d) 1.0 < t < 2.0.
2.9. Consider the functiong (z) = =, fo(z) = 22, f3(z) = 2°.
Find the average rate of change of these functions over dabke éollowing inter-
vals.
(@) Overd <z < 1.
(b) Over—1 <z < 1.
(c) Over0 < x < 2.
2.10. Find the average rate of change for each of the follg\imctions over the given

interval.
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@ y=f(z) =3z—2fromz =3.3t0x = 3.5.
(b) y = f(x) = 22 + 42 over[0.7,0.85].
(c) y = —2 andz changes fron.75 to 0.5.

2.11. Trig Minireview: Consider the following table of values of the trigonometuiac-
tionssin(x) andcos(x):

x | sin(x) | cos(x)
0 0 1

x 1 V3

6 2 2

T V2 V2

1 2 2

z V3 1

3 2 2

z 1 0

2
Find the average rates of change of the given function owegiven interval. Ex-
press your answer in terms of square roots an®o not compute decimal expres-
sions.

(a) Find the average rate of changesof{z) over0 < x < /4.
(b) Find the average rate of changecof(z) overn/4 < x < 7/3.

(c) Isthere an interval over which the functiotis(x) andcos(z) have the same
average rate of change? (Hint: consider the graphs of thiestiéns over one
whole cycle, e.g. fof < x < 2x. Where do they intersect?)

2.12. (a) Consider the function= f(x) = 1+ 2%. Consider the pointl,2) on its
graph and some point nearby, for examfle- 2, 1+ (1+ h)?). Find the slope
of a secant line connecting these two points.

(b) Use this slope to figure out what the slope of the tangesttld the curve at
(1,2) would be.
(c) Find the equation of the tangent line through the pgin2).

2.13. Given the functioy = f(z) = 22% + 22 — 4, find the slope of the secant line
joining the points(4, f(4)) and(4 + h, f(4 + h)) on its graph, wheré is a small
positive number. Then find the slope of the tangent line tatiree at(4, f(4)).

2.14. Average rate of change: Consider the functiorf(z) = 22 — 4z and the point
Tro = 1.

(a) Sketch the graph of the function.

(b) Findthe average rate of change over the inteftaly, [-1, 1], [1, 1.1}, [0.9, 1]
and[1 — h, 1], whereh is some small positive number.

(c) Findf'(1).

2.15. Giveny = f(x) = 2% — 22 + 3.

(a) Find the average rate of change over the intdal + h].

(b) Find f'(2).

(c) Using only the information from (a), (b) anfd2) = 3, approximate the value
of y whenz = 1.99, without substituting: = 1.99 into f(x).
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2.16. Find the average rates of the given function over thierginterval. Express your
answer in terms of square roots andDo not compute the decimal expressions.

(a) Find the average rate of changetafi(z) over0 < xz < T (Hint: tan(z) =
sin(x)
COS(I))'

(b) Find the average rate of changecof(z) over
cos(x)
sin(z) )

2.17. (a) Find the slope of the secant line to the graph ef 2/2 between the points

r=1andzr = 2.

<z<

w3

T (Hint: cot(z) =

(b) Find the average rate of change/dfetween: = 1 andx = 1+ ¢ wheree > 0
is some positive constant.

(c) What happens to this slopeas+ 0 ?

(d) Find the equation of the tangent line to the cuyve 2/x at the pointz = 1.

2.18. For each of the following motions wherés measured in meters ands measured
in seconds, find the velocity at tinte= 2 and the average velocity over the given
interval.

(@) s = 3t%2 + 5 andt changes from to 3s.
(b) s =13 —3t2fromt = 3stot = 5s.
(c) s=2t>+5t—30n][1,2].

2.19. The velocityw of an object attached to a spring is givendby- — Aw sin(wt + ),
whereA, w andé are constants. Find the average change in velocity (“actea”)
of the object for the time interval < ¢ < 27”

2.20. Use the definition of derivative to calculate the daixe of the function

(intermediate steps required).



Chapter 3

Zooming into the graph

of a function: tangent
lines and derivatives

In Chapter 2 we used the concept of average rate of change @fsecant line) to motivate
and then define the notion of an instantaneous rate of chamgelérivative). We arrived
at a “recipe” for calculating the derivative algebraicallpn this chapter we take a more
geometric approach and connect the same idea to the logad sh#he graph of a function.

3.1 Tangent lines: zooming in on the graph of a

function

/

y=X’\3-X y:x/\3-x

/

y=x"3-X

;

(@)

Figure 3.1. Zooming in on the point = 1.5 on the graph of the functiop =
f(z) = 23 — 2. As we zoom in, we see that locally, the graph “looks like" rigiht line.

(b)

(©

We refer to this line as the tangent line, and its slope is #révdtive of the function at that

point.

37
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Another approach to the idea of the derivative is based offiolf@ving geometric
idea. Consider the graph of some function, and pick somet moirthat graph. In the
example in Figure 3.1 we have shown a graph of the fungfien f(z) = 23> — z and a
point shown by a heavy (red) dot.

Now zoom into the selected point, looking at ever higher nifagtion. (This is
shown in the sequence of zooms in Figure 3.1). Eventuallyeaget closer to the point of
interest, the hills and valleys on the graph disappear offest and we start to feel that we
live in a much flatter world. In fact, locally, the graph loak®re and more like a straight
line. We will refer to this straight line as thangent lineto the graph of the function at the
given point. The slope of this tangent line will be what weerdab as thalerivative of the
function, at the given point.

Clearly the configuration of the tangent line will depend ba point we chose to
zoom into. Its slope will also vary from place to place. Fastreason, the derivative,
denotedf’(z) is, itself, a function.

In Figure 3.2 we show a zoom into the origin on the graph of tinefion

y = sin(x).

y=siJ1(x) y=sin(x) y=sin(x)

(@) (b) (©

Figure 3.2. Zooming in on the point = 0 on the graph of the functiop =
f(x) = sin(z). Eventually, the graph resembles a line of slope 1. Thisaegdhgent line
atz = 0 and its slope is the derivative gf= sin(z) atz = 0.

We see from this graph that the slope of the line that we ol#aiwe zoom into
x = 0ism = 1. We say that the derivative of the functign= f(z) = sin(z) atz =0
is 1. We also observe that the line shown in the final imageeérstquence of Figure 3.2
is the tangent line to the curve at= 0. The equation of this line is simply = z. (This
follows from the fact that the line has slope 1 and goes thindbg point(0,0).) We can
also say that close te = 0 the graph ofy = sin(x) looks a lot like the lingy = «. This is
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equivalent to saying that

sin(x
sin(xz) ~ x, or (z) ~1
X
for smallx, or, more formally, that
sin
lim ﬂ =1.
x—0 x

We will find this limit useful in later calculations.

y=s|n(x) y=sin(x) y=sin(x)

() (b) (c)

Figure 3.3. Here we zoom in on the point= /2 on the graph of) = f(x) =
sin(z). This pointis a “local maximum”. Eventually, we see the tangline whose slope
is O (it is is horizontal). Thus the derivative 9f= sin(x) atz = /2 is zero.

Example 3.1 (Derivative ofy = C) Use a geometric argumentto determine the derivative
of the functiony = f(z) = C at any pointz, on its graph. B

Solution: This function is a horizontal straight line, whose slopedsozeverywhere. Thus
“zooming in” at any pointz, leads to the same result, so the derivative is 0 everywhere.

Example 3.2 (Derivative ofy = Bz) W
Solution: The functiony = Bz is a straight line of slopé. At any point on its graph, it

has the same slop®. Thus the derivative is equal 8 at any point on the graph of this
function.

The reader will notice that in the above two examples, we liageeby found the
derivative for the two power functiong,= z° andy = ='.
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3.2 Equation of the tangent line

The examples above allow us to visualize the tangent linexhgnining the local (“zoomed
in”) shape of the function. In two examples, we found the slopthat tangent line, which
is identified by the derivative of the function at the giverirpio Using such information,
we can write down the equation of that tangent line.

Example 3.3 Find the equation of the tangent line to the graply ef sin(x) at the points
r=0andz=m/2 N

Solution: In Fig. 3.2 we found that the tangent line o= sin(x) atz = 0 has slope
m = 1. We also know that this line goes through the pgihtsin(0)) = (0,0). Thus its
y-intercept is 0 and we can immediately write down its equrain the formy = ma + b.
We obtainy = x as the equation of this line.

In Fig. 3.3, we found that the tangent line to the same funaticthe point: = /2
has slope 0. We must also use the fact that the line goes thtbagoint /2, sin(7/2)) =
(r/2,1). Since the tangent line is horizontal (equivalent to sayiritas slope 0), the
value is constant everywhere, so that the equation of thésidi simplyy = 1.

Example 3.4 Find the equation of the tangent line to the graplyef f(z) = 2 — z at
the pointz = 1.5 shown in Fig. 3.1. N

Solution: The point of interest has coordinates f(z)) = (1.5,1.875). From the graph
shown in Fig. 3.1 (c) we see that the “tangent line” approxetyegoes througlil.7, 1.47)

as well as the red poirft.5, 1.875). We can compute its slope and find to be approximately
Ay/Az ~ 5.8. To find the equation of the tangent line, we use its slope graird on that
line to write

1875
LS -58 = y-18T5458@w—-15) = y=580- 682

Later, we will use the definition of the derivative and an éxalgebraic calculation to
improve on this result.

3.3 Sketching the graph of the derivative

f(x)

Figure 3.4. The graph of a function. We will sketch its derivative
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In Figure 3.4 we show the graph of some functigiiz). We would like to sketch
the derivative,f’(x) corresponding to this function. (Recall that the derivatiy also
a function.) Keep in mind that this sketch will be approximabut will contain some
important elements.

In Figure 3.5 we start by sketching in a number of tangensloethe graph of ().
We will pay special attention to the slopes (rather thanlitelgngth, or any other property)
of these dashes. Copying these lines in a row along the dirnect thex axis, we estimate
their slopes with rather approximate numerical values.

f(x)

N )
N4

S/ — N~ /]

Tangent
Lines

21 0 -1 -05 0 1 2 3 Slopes

f (x) !

Figure 3.5. Sketching the derivative of a function

We notice that the slopes start out positive, decrease t become negative, and
then increase again through zero back to positive values.s@¥ precisely two dashes that
are horizontal, and so have slope 0.) Next, we plot the nuralkevalues (for slopes) that
we have recorded on a new graph. This is the beginning of taphgof the derivative,
f/(x). Only a few points have been plotted in our figureféfz); we could add other
values if we so chose, but the trend, is fairly clear: Thewdéitie function has twaeros
(places of intersection with the axis). It dips down below the axis between these places.
In Figure 3.6 we show the original functigf{z) and its derivativef’ (=) now drawn as a
continuous curve. We have aligned these graphs so thaoibe sff (z) matches the value
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of f/(x) shown directly below.

f(x)

£ (x)

Figure 3.6. A sketch of the function and its derivative

3.4 For further study: tangent line to a circle

Example 3.5 (A multi-step problem) Find the area of the triangle AOB in Figure 3.7.
The circle shown in the figure has radius 1 and center at tiggnoiThe line AB is tangent
to the circle at the point = 1/2. 1

Figure 3.7. Problem: Find the area of triangle AOB, given that the line BB
tangent to the circle at the point T.



3.4. For further study: tangent line to a circle 43

3.4.1 The solution

This problem involves multiple steps, and uses severalcésjpd the geometry shown in
Figure 3.7. Our strategy will be to find the height and the liddbe triangle shown, since
then we can easily find its area. To do so, we first need to knewltpe of the line AB, a
line that (we are told) touches the circle at the point T.

The equation and the point
The equation of a circle with radius 1 and center at the oiggin
2?4y =1 (3.2)

We are givernz = 1/2 so we can find the corresponding y value:

1 3
2 2
y v 171
Thus
_ V3
Y=

so that the point T has coordinates y) = (1/2,/3/2).

Property of tangents to circles

Later on in this course we will find clever ways of determinghgpes of tangent lines using
derivatives. For now, we will use the following property afates:

In a circle, the tangent line is always perpendicular to tlelius vector See Fig-
ure 3.8.

Figure 3.8. In a circle, a tangent line is perpendicular to the radius teecat a
given point.
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More specifically, in the picture shown in Figure 3.7, a linenfi O to T (the radius
vector), would be perpendicular to the tangent line AB. Hié® allows us to determine its
slope, using the following geometric fact:

If L, is a line having slopen,, and L is a line perpendicular to L, then the slope
ofline Ly ismy = —1/m;.

Slopes

The slopenor of the line OT can be found simply as follows:

_ Ay VB/2-0
moT= 3, = 1z—g ~V?

Thus the slope of the tangent line, (using the perpendigutaserty) is
1 1

MAB = ——— = ——=.

mot V3

Where to go from here?

Now that we have found the slope of the line AB, we are closeutogoal. However, we
still need to get the actual points of intersection of line wih the axes so that we can
determine the base and height of the triangle AOB. To do teswill find the equation of
the tangent line, using the fact that it has a known slope aed through a known point

(z,y) = (1/2,V3/2)

Equation of the tangent line AB

We use the following facts: The line AB has slopé/+/3 and goes througfi /2, v/3/2).

Thus

yovs2 1 (3.2)

x—1/2 V3
We could use this relationship directly to find the desiredricepts: plugging ip = 0 and
solving forz would lead to ther intercept, and plugging im = 0 would similarly lead to
they intercept. However, for practice, we will first determine tbquation of the tangent
line in standard form:
Rearranging equation (3.2) leads to

or simply
(3.3)
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Intercepts

With the equation of the tangent line (3.3) in hand, we camiokthe desired coordinates
of the points A and B:

Point B is simply the y-intercept, which, from equation (3s3 2/+/3.

Point A, the x-intercept can be found be setting- 0 and solving forz in equation
(3.3):

We find thatr = (2/v/3)(v/3) = 2.

The desired area

We now have the height of the triangle, namejs/3 and the base, i.e2 as shown in
Figure 3.9.

Figure 3.9. We find the area by first determining the equation of the tanigssn
and, thus, its x and y intercepts. This gives us the heighttaseé of the triangle, from
which its area is easily computed4 (= hb/2).

We now obtain

.2

N —

1
Areap = 3 height - base =

Sl
Eh

Comments

This problem illustrates that the strategy for solving alpea of this type is to break
it down into a series of steps, each one simple and straigtefol, together getting us
to the goal. Many problems in science and mathematics ieviiultiple steps, not just
one simple formula or method. We have here used some geonfestts about circles,
some knowledge of properties of slopes and straight linesyell as simple algebraic
manipulations to get to our final destination.
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Exercises

3.1. You are given the following information about the sigrfishe derivative of a func-
tion, f(z). Use this information to sketch a (very rough) graph of thecfion for
-3 < <3

z ||-3]-2|-1]0]1|2]|3
) | O] +]0]-[0]+]+

3.2. You are given the following information about the théues of the derivative of a
function, g(x). Use this information to sketch (very rough) graph the fiorcfor
-3 <x <3

x ||3]2[-1]0[1][2]3
J@ [1]ol2[1[0]1]-=2

3.3. What is the slope of the tangent line to the functios= f(z) = 5z + 2 when
x = 2? whenz = 4 ? How would this slope change if a negative valuerafas
used? Why?

3.4. Find the equation of the tangent line to the funcjea f(z) = |z + 1| at:
@ z=-1,
(b) z = -2,
(c) x =0.
If there is a problem finding a tangent line at one of thesetppindicate what the
problemiis.
3.5. Afunctionf(z) has as its derivativg’ (z) = 222 — 3z
(&) Inwhatregions ig increasing or decreasing?
(b) Find any local maxima or minima.
(c) Is there an absolute maximum or minimum value for thicfiom?

3.6. Sketch the graph of a functigiiz) whose derivative is shown in Figure 3.10. Is
there only one way to draw this sketch? What difference migicur between the
sketches drawn by two different students?

3.7. Shown in Figure 3.11 is the graph of some functfdm). Sketch the graph of its
derivative,f’(z).

3.8. Shown in Figure 3.12 below are three functiofi&;) (dotted lines). Sketch the
derivatives of these functiong; ().

3.9. A functionf(z) satisfiesf(1) = —1 and f’(1) = 2. What is the equation of the
tangent line off (x) atz = 1?

3.10. Sketch the graph of the derivative of the function shewFigure 3.13.
3.11. For each of the following functions, sketch the graph$f1 < z < 1, find
£'(0), f'(1), f'(—1) and identify any local minima and maxima.

(a) Yy = IQ!
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Figure 3.10.Figure for Problem 6

1.s ]

Figure 3.11.Figure for Problem 7

(b) y = —a?,

) y=—a

(d) Using your observations above, when can you concludethanction whose
derivative is zero at some point has a local maximum at thiatpo

3.12. (a) Given the function in Figure 3.14(a), graph its\ddive.

(b) Given the function in Figure 3.14(b), graph its derivati
(c) Given the derivativg’(x) shown in Figure 3.14(c) graph the functigz).
(d) Given the derivativg’(2:) shown in Figure 3.14(d) graph the functigtx).

3.13. Given the derivativg’(x) shown in Figure 3.14(c), graph the second derivative
[ ().

3.14. Shown in Figure 3.15 is the graph of the velocity of dip@moving in one dimen-
sion. Indicate directly on the graph any time(s) at whichpheicle’s acceleration
is zero.

3.15. Use the definition of the derivative to compute the slopthe tangent line to the
graph of the functioy = 3t2 — ¢ + 2 at the pointt = 1.

3.16. Shown in Figure 3.16 is the functigifr) = 23 with a tangent line at the point

(1,1).
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y y

AN N
v 7 \

Figure 3.12.Figure for problem 8

f

Figure 3.13.Figure for Problem 10

(a) Find the equation of the tangent line.
(b) Determine the point at which the tangent line intersduts: axis.

(c) Compute the value of the functionaat= 1.1. Compare this with the value gf
on the tangentline at = 1.1. (This latter value is thénear approximatiorof
the function at the desired point based on its known valu&andn derivative

at the nearby point = 1.)
3.17. Shown in Figure 3.17 is the functigiiz) = 1/2* together with its tangent line at
rz=1.
(a) Find the equation of the tangent line.
(b) Determine the points of intersection of the tangent liith the = and they

axes.

(c) Use the tangent line to obtain a linear approximatiorh®value off(1.1).
Is this approximation larger or smaller than the actual @afithe function at

z=1.17
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y=f(x)

y=f(x)

(@) (b)

)
fr(x)

(© (d)
Figure 3.14.Figures for Problem 12.

3.18. Shown in Figure 3.18 is the graph of a function and itgéat line at the point.

(a) Find the equation of the tangent line expressed in terims, o f(z¢) and
f'(@o).
(b) Find the coordinate; at which the tangent line intersects thaxis.

3.19. Shown in Figure 3.19 is the graph 8fz), the derivative of some function. Use
this to sketch the graphs of the two related functigf{s,) and f”(x)
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Figure 3.15.Figure for Problem 14

) f(x)

1, 1)

X

Figure 3.16.Figure for Problem 16

1 X

Figure 3.17.Figure for problem 17
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y tangent
line

f(x)

Figure 3.18.Figure for problem 18

144
12

104

Figure 3.19.Figure for Problem 19

3.20. Concentration gradient: Certain types of tissues, called epithelia are made up
of thin sheets of cells. Substances are taken up on one sithe sheet by some
active transport mechanism, and then diffuse down a coratéort gradient by a
mechanism called facilitated diffusion on the oppositesi8hown in Figure 3.20
is the concentration profilgx) of some substance across the width of the sheet (
represents distance). Sketch the corresponding contientggadient, i.e. sketch
¢ (x), the derivative of the concentration with respeci:to

3.21. The vertical height of a balf, (in meters) at timég (seconds) after it was thrown
upwards was found to satisfy(t) = 14.7t — 4.9¢> for the first 3 seconds of its
motion.

(a) What is the initial velocity of the ball (i.e. the instaneous velocity at = 0)
?

(b) What is the instantaneous velocity of the balt at 2 seconds?
3.22. Shown in Figure 3.21 is the graphyof= 22 with one of its tangent lines.

(a) Show that the slope of the tangent to the cuyve 2 at the pointr = a is
2a.

(b) Suppose that the tangent line intersectsutlais at the point (1,0). Find the
coordinateg, of the point of tangency.
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cx) _ facilitated
: - diffusion

active
transport;
N/

distance across the sheet

Figure 3.20.Figure for Problem 20

Figure 3.21.Figure for Problem 22

3.23. The parabolg = 22 has two tangent lines that intersect at the pé8). These
are shown as the dark lines in Figure 3.22. [Remark: notettteapoint(2, 3) is
not on the parabola]. Find the coordinates of the two pointshéch the lines are
tangent to the parabola.
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unknown

coordinates

to find

Figure 3.22.Figure for Problem 23
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Chapter 4
The Derivative

In our investigation so far, we have defined the notion of ataintaneous rate of change,
and called this the derivative. We have also identified thagshmatical concept with the
slope of a tangent line to the graph of a function. Recalldhatdefinition for the derivative
of a functiony = f(x) is

dy ., . .. flx+h)— f(x)
o @)= fim h

In this chapter, we will use this definition to establish havedbmpute the derivatives
of power functions. In our previous discussions, we obsetixat power functions are
building blocks of polynomials, a family of well-behavedfttions that are exceedingly
useful in approximations. Using some further elementaopprties of derivatives we will
arrive at a simple way of calculating the derivative of anyypomial. This will permit
interesting and useful calculations, on a variety of agptieoblems.

In this and the following sections, we will gain experiencghvthe many-faceted
properties of derivatives that use relatively simple défgiation calculations. (Some of
the problems we address will be challenging neverthelagsalbof them will be based
on polynomial and power function forms.) Using the defimitaf the derivative, we can
compute derivatives of a power function. While we here shapecific example for the
cubic, the general idea can be extended to other cases, adglttea pattern that we will
call thepower rule of differentiation.

4.1 The derivative of power functions: the power rule

We have already computed the derivatives of several of thepéunctions. See Exam-
ple 3.1 fory = 2 = 1 and Example 3.2 foy = z!'. See also Example 2.8 fgr= 22. We
tabulate these results in Table 4.1. Let us extend our sesofts by another calculation of
the derivative of a cubic function.

Example 4.1 (Derivative of the cubic power function) Compute the derivative of the func-
tiony = f(z) = Kz3. 1

55
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solution: Fory = f(r) = Ka® we have

dy _ o fa+h) - f()

dx h—0 h
. K(x+h)?—Kaz?
= lim
h—0 h
— lim K(x3 + 32%h + 3zh? + h3) — 23
h—0 h
2 2, 13
_ th(3x h + 3zh? + h?)
h—0 h

= lim K (32% 4 3zh + h?)
h—0

= K(32%) = 3K2?

We see from simple experimentation that a derivatives ofgpdunction consists of
reducing the power (by 1) and multiplying the result by thigioal power. See Table 4.1,
where we have taken all the coefficients to be 1 for simpliditee refer to this pattern as
thepower rule of differentiation.

Function | Derivative
f(x) f'(z)
1 0
T 1
22 2
3 312
" nz"1

Table 4.1. The Power Rule of differentiation states that the derivative of the
power functiony = =™ is nz"~'. For now, we have established this result for integer
Later, we will find that this result holds for other valuesof

We can show that this rule applies for any power function effitmy = f(z) = 2"
wheren is an integer power. The calculation is essentially the sasithe examples we
have shown, but the step of expanding the binoifaiat 1)™ entails lengthier algebra. Such
expansion contains terms of the forrfi—*r* multiplied by binomial coefficientsand we
omit the details here. From now on, we will use this convetriesult to simply write down
the derivative of a power function, without having to recddde it from the definition.

Example 4.2 Find the equation of the tangent line to the graph of the pdurgstiony =
f(x) = 42° atz = 1, and determine thg intercept of that tangent line. l

Solution: The derivative of this function is
f'(x) = 202"
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At the pointz = 1, we havedy/dx = f’(1) = 20 andy = f(1) = 4. This means that the
tangent line goes through the po(it 4) and has slop&0. Thus, its equation is

4
Y—2 _ 9
x—1

y=4+20(zx—1) =20z — 16.

(Atthis pointis is a good idea to do a quick check that the pdird) satisfies this equation,
and that the slope of the line is 20.) Thus, we find thattlivgercept of the tangent line is
y = —16.

Next, we find that the result for derivatives of power funnacan be extended to
derivatives of polynomials, using further simple propestof the derivative.

4.2 The derivative is a linear operation

The derivative satisfies several convenient properties:stim of two functions or the con-
stant multiple of a function has a derivative that is relai@aply to the original function(s).
The derivative of a sum is the same as the sum of the derigativeonstant multiple of a
function can be brought outside the differentiation.

L (@) o) =L B (4.
d L

We can summarize these observations by saying that theatleeivs alinear oper-
ation. In general, a linear operatidnis a rule or process that satisfies two properties: (1)
L[f + ¢] = L[f] + Llg] and L[cf] = cL[f], wheref, g are objects (such as functions,
vectors, etc) on whicll, acts, and: is a constant multiple. We will refer to (4.1) and (4.2)
as the “linearity” properties of the derivative.

4.3 The derivative of a polynomial

Using the properties (4.1) and (4.2), we can extend ourreiffégation power rule to com-
pute the derivative of any polynomial. Recall that polynalmare sums of power functions
multiplied by constants. A polynomial afegreen has the form

p(aj) = apx" + anflxnil +...a1° + ag (43)

where the coefficients; are constant and is an integer. Thus, by the above two prop-
erties, the derivative of a polynomial is just the sum of dstives of power functions
(multiplied by constants). Thus the derivative of (4.3) is

_dy

p'(z) = g = 0n " a1 (n—1Da" 4.4y (4.4)
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(Observe that each term consists of the coefficient timedeheative of a power functions.
The constant termag has disappeared since the derivative of any constant is)zéthe
derivative,p’(x), is apparently also a function, and a polynomial as well. degree is

n — 1, one less than that gf(x). In view of this observation, we could ask what is the
derivative of the derivative, which we henceforth call #exond derivative, written in

the notatiorp” (x) or, equivalently%. Using the same rules, we can compute this easily,
obtaining

d? _ _
p’(x) = d—xg =a,-nn—12"2?4a, 1-(n—1)-(n=2)2"3+...ap (4.5)

We demonstrate the idea with a few examples

Example 4.3 Find the first and second derivatives of the functionya} f(z) = 22° +
3zt + 2% — 522 + 2 — 2 with respect tar and (b)y = f(t) = At® + Bt?> + Ct + D with
respectta. N

Solution: We obtain the results (g (z) = 102* + 1223 + 322 — 10z + 1 and f"'(x) =
4022 + 3622 + 62 — 10. (b) f/(t) = 3At?> + 2Bt + C and f”'(t) = 6 At + 2B. In (b) the
independent variable is but, of course, the rules of differentiation are the same.

Example 4.4 Find the equation of the tangent line to the graplyef f(z) = 2* — z at
the pointz = 1.5. N

Solution: In Example 3.4, we approximated the slope of the tangensksvn in Fig. 3.1,
and used that value to solve the problem. We return to thibleno using the rules of
differentiation to get an exact result. As we have learnieel derivative of the polynomial
flx) =23 —xis f'(x) = 322 — 1. Atz = 1.5 we havef’(1.5) = 3(1.5)> — 1 = 5.75, SO
the slope of the tangent line is 5.75 (an exact result, bttar our eyeball approximation
in Example 3.4). The coordinates of the point of interestjgrie5) = 1.875), as before.
Thus the equation of the tangent line is

y — 1.875

15 575 = y=1875+5.75(x—15) = y=>5."75x—06.75.

4.4 Antiderivatives of polynomials

As seen above, when we differentiate a polynomial, we okdgimlynomial of a lower
degree, that is, the highest power decreases by 1. We nowdeotise idea of "antidiffer-
entiation”, which reverses the operation of the derivati8eppose we are given that the
second derivative of some function is

y"(t) = c1t + ca.

(This is a polynomial of degree 1.) Evidently, this functi@sulted by taking the derivative
of y'(t), which had to be a polynomial of degree 2. We can check that

y/(t) = S + ot
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could be such a function, but so could
C
y(t) = Eth + cot + c3

for any constants. In turn, the functiorny(¢) had to be a polynomial of degree 3. We can
see that one such function is

& C
y(t) = Elt3 + 529 + et +

wherec, is any constant. (This can be checked by differentiatingg $teps we have just
illustrated are “antidifferentiation”. In short, the rétanship is:

for differentiation y(t) — 3/(t) — y"(t)

whereas
for antidifferentiation " (t) — v/(¢) — y(¢).

(Arrows denote what is done to one function to arrive at the¢.h&Ve also note an impor-
tant result that holds for functions other than polynomials

Given a function, f(z) we can only determine its antiderivative up to some (additie)
constant

We apply these ideas in the following section.

4.5 Position, velocity, and acceleration

As an example of the relation between a function and its finst second derivative, we
return to the discussion of displacement, velocity andlecaton of an object falling under
the force of gravity. Here we will use the notatig(t) to denote the position of the object
at timet. From now on, we will refer to the instantaneous velocity pbaticle or object at
timet simply asthe velocity v(t).

Definition 4.5 (The velocity). Given the position of some particle as a function of time,
y(t), we define the velocity as the rate of change of the positienttie derivative of(¢):

oty =2 = y/1)

Here we have just used two equivalent notations for the devi. In generaly may
depend on time, a fact we indicated by writin@).

Definition 4.6 (The acceleration).We will also define the acceleration as the (instanta-
neous) rate of change of the velocity, i.e. as the derivativét).

a(t) = % ='(t).
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(Acceleration could also depend on time, hea(sg.)

Since the acceleration is the derivative of a derivativehef driginal function, we
also use the notation
d (dy d2y 1
t = — _— = — = t
alt) dt(dt> az Y0

Here we have used three equivalent ways of writing a secoridatige. (This notation
evolved for historical reasons, and is used interchangealscience.) The acceleration is
hence the second derivative of the position.

In view of our discussion of antidifferentiation, given émmation about the acceler-
ation as a function of, we can obtain the velocity(t) (up to some constant) by antidif-
ferentiation. Similarly, we can use the velocityt) to determine the position(¢) (up to
some constant). The constants must be obtained from otteeniation, as examples that
follow will illustrate.

Example 4.7 (Uniformly accelerated motion) Suppose that the acceleration of an object
is constant in time, i.ea(t) = g = constant. Use antidifferentiation to determine the
velocity and the position of the object as functions of timell

Solution: We ask: what function of time(t) has the property that
a(t) =v'(t) = g = constant?

The functiona(t) = v'(t) is a polynomial of degree 0 in the varialleTo find the velocity,
we apply antidifferentiation to obtain a polynomial of degrl,

v(t) = gt.
This is one antiderivative of the acceleration, but in fatler functions such as
v(t) = gt + ¢, (4.6)

would work for any constant. How can we decide which value of the constamd use?
To determine: we need additional information about the velocity, for exéaratt = 0.

Suppose we are told that0) = v, is the known value of thénitial velocity ®>. Then,
substitutingt = 0 into (4.6), we find that = vy. Thus in general,

v(t) = gt + vy

whereuy is the initial velocity of the object.
To now determine the position of the particle as a functiotheftimet, we recall
thatv(t) = y/(¢). Thus, using the result (4.6), we have

y'(t) = v(t) = gt +vo (4.7)

5The statemeni(0) = v will later be called an “initial condition”, since it speaf how fast the particle was
moving initially.
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Then, by antidifferentiation of (4.7), we obtain a polynahof degree 2,
1
y(t) = ith +oot + k (4.8)

where, as before we allow for some additive constarit is a simple matter to check that
the derivative of this function is the given expressiond(r). By reasoning as before, the
constant: can be determined from the initial position of the objg@) = y,. A before,
(pluggingt = 0 into (4.9)) we find thak = yo, so that

1
y(t) = 59752 + vot + Yo. (4.9)

Here we use the acceleration due to gravifjput any other motion with constant acceler-
ation would be treated in the same way.

Summary, uniformly accelerated motion: If an object moves with constant acceleration
g, then given its initial velocity, and initial positiony, at timet = 0, the position at an
later time is described by:

1
y(t) = Eth + vot + yo.

This powerful and general result is a direct result of theiagsion that the acceler-
ation is constant, using the elementary rules of calcuhug tlae definitions of velocity and
acceleration as first and second derivatives of the posiMnfurther illustrate these ideas
with examples of motion under the influence of gravity.

Example 4.8 (The motion of a falling object, revisited) A falling object experiences uni-
form acceleration (downwards) with(t) = —g = constanf. Suppose that an object is
thrown upwards at initial velocity, from a building of heighty.

(a) Find the velocity and the acceleration of the object gttame ¢.
(b) When does the object hit the ground?

(c) Determine when the object reaches its highest pointydrat is its velocity at that
time.

(d) Find the velocity of the object when it hits the ground.
|

Solution: By previous reasoning, the height of the object at timéenotedy(t) is given
by
1
y(t) = —§gt2 + vot + ho.

6Here we have chosen a coordinate system in which the poditizetion is “upwards”, and so the acceleration,
which is in the opposite direction, is negative. On Eagth; 9.8 m /s?.
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(a) The velocity is given by:

(b)

(©

v(t) =y'(t) =vo — 2(%gt) =y — gt.

We may observe that at= 0, theinitial velocity is v(0) = vy. If the object was
thrown upwards theny > 0, i.e., itis initially heading up. Differentiating one more
time, we find that the acceleration is:

a(t) =v'(t) = —g.

We observe that the acceleration is constant. The negéjinvergeans that the object
is accelerating downwards, in the direction opposite topthstive direction of the

y axis. This makes sense, since the force of gravity acts denasy causing this
acceleration.

We will assume that the object hits the ground at level 0. Then we must solve
for t in the equation:

1
y(t) = ho + vot — 59152 =0.

Here we must observe that the highest power of the indepéndeable is 2, so
thaty is a quadratic function of, and solving fort requires us to solve a quadratic
equation. This is a quadratic equation, which could be @mith the form

1
§gt2 —vot — hg = 0, = th — 2vgt — 2hg = 0.

Using the quadratic formula, we obtain

2’00 + 41)(2) + 8gh0 Vo \/ ’0(2) + 2gh0
tground: 29 = tground: ? + f

We have found two roots. One is positive and the other is hnegaSince we are
interested int > 0, we will reject the negative root, so

Vo + \/’U(Q) + 2gh0

t d = —
groun
g

To find when the object reaches its highest point, we rtaethe object shoots up,
but it slows down with time. Eventually, it can no longer daoe to go up: this
happens precisely when its velocity is zero. From then orilitstart to fall to the
ground. The top of its trajectory is determined by finding wiiee velocity of the
object is zero. Equating

v(t) =vg — gt =0
we solve fort, to get

Vo
ttop =
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(d) To find the velocity of the object when it hits the grounde meed to use the time
determined in part (b). Substitutingoundinto the expression for velocity, we obtain:

Vo n N —|—29h0>

U(tground) = vp — gtground= Vo — g < g g

After some algebraic simplification, we obtain

U(tground) == 'Ug + 2gho.

We observe that this velocity is negative, indicating (aseeted) that the object is
falling down

Figure 4.1 illustrates the relationship between the thueetions.

y

0 t
Vv

0 t
a

0 t

Figure 4.1. The position, velocity, and acceleration of an object thsathrown
upwards and falls under the force of gravity.

4.6 Sketching skills

We have already encountered the idea of sketching the dieevaf a function, given a
sketch of the original function. Here we practice this skilither. In the examples below,
we make no attempt to be accurate about heights of peaks #agsvia our sketches (as
would be certainly possible using numerical methods likpr@adsheet). Rather, we are
aiming for qualitative features, where the most importamtegts of the graphs (locations
of key points such as peaks and troughs) are indicated.
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Example 4.9 (Sketching the derivative from the original furction) Use the function shown
in Figure 4.2 to sketch the first and second derivativedl

Solution: See the panels of Figure 4.2 for the functign), its first derivativep(t) = y'(¢),

and its second derivative,t) = y”(¢). (This was done in two steps: in each case, we
determined the slopes of tangent lines as a first step.) Anritapt feature to notice is that
wherever a tangent line to a curve is horizontal, e.g. at thyes‘of peaks” (local maxima)
or “bottoms of valleys”(local minima), the derivative isrpe This is indicated at several
places in Figure 4.2.

t
o + + + 0
v |
t
0+ 0 - 0
a
t

Figure 4.2. Figure for Example 4.9.

Example 4.10 (Sketching a function from a sketch of its deriative) Use the sketch of
f'(x) in the top panel of Figure 4.3 to sketch the original functigm) N

Solution: See the bottom panel of Figure 4.3. An important point is thate are many
possible ways to dravf(x) given f’(z), becausef’(x) only contains information about
changesn f(x), not about how high the function is at any point. This meaas th
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Given the derivative of a function, f’(z), we can only determine f(x) up to some
(additive) constant

In Figure 4.3 we show a number of possibilities far). If we were given araddi-
tional piece of information, for example thg{0) = 0, we would be able to select out one
specific curve out of this family of solutions.

£ (x)

Figure 4.3. Using the sketch of a functiofi(z) to sketch the functioffi(x).
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4.7 A biological speed machine

Figure 4.4. The parasitdysterialives inside a host cell. It assembles a “rocket-
like” tail made up of actin, and uses this assembly to moveiadothe cell, and to pass
from one host cell to another.

Lysteria monocytogenésa parasite that lives inside cells of the host, causingtyna
infection. It has been studied by cellular biologists ferdmazingly fast propulsion, which
uses the host’s actin filaments as “rocket fuel”. Actin istdrthe structural component
of all animal cells, and is known to play a major role in celltifity. Lysteria manages to
“hijack” this cellular mechanism, assembling it into its maomet tail, which can be used
to propel inside the cell and pass from one cell to the nexguréi 4.4 illustrates part of
these curious traits.

Researchers in cell biology use Lysteria to find out more aiatility at the cellular
level. It has been discovered that certain proteins on thereal surface of this parasite
(ActA) are responsible for the ability of Lysteria to asséendm actin filament tail. Surpris-
ingly, even small plastic beads artificially coated in Lyitis ActA proteins can perform
the same “trick”: they assemble an actin tail which pushed#ad like a tiny rocket.

Arecent paper in the literature (Bernheim-Groswasser Askiég S, Goldsteyn RM,
Carlier M-F, Sykes C (2002) The dynamics of actin-based Iihotiepend on surface pa-
rameters Nature 417: 308-311.) describes the motion oétheads, shown in Figure 4.5.
When the position of the bead is plotted on a graph with timthasorizontal axis, (see
Figure 4.6) we find that the trajectory is not a simple onepjears that the bead slows
down periodically, and then accelerates.

With the techniques of this chapter, we can analyze the @rpeatal data shown
in Figure 4.6 to determine both the average velocity of thedsgand the instantaneous
velocity over the course of the motion.

Average velocity of the bead

We can get a rough idea of how fast the micro-beads are moyicgimputing an average
velocity over the time interval shown on the graph. We cantuse(approximate) data
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Diameter (um)

Figure 4.5. Small spherical beads coated with part of Lysteria’s splea@in-
assembly kit also gain the ability to swim around. Based omB&m-Groswasser et al,
2002.
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Figure 4.6. The distance traveled by a little bead is shown as a functfdiree.
The arrows point to times when the particle slowed down gutal. We can use this data
to analyze the velocity of the particles. Based on BernHeémswasser et al, 2002.

points(¢, D(t), at the beginning and end of the run, for example (45,20) 8a¢B6): Then
the average velocity is

,_AD
At
. 35-20 .
U—m~0.43um1n

so the beads move with average velocity 0.43 microns pertein@©ne micron isl0—6
meters.)
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The changing instantaneous velocity:

Because the actual data points are taken at finite time ireaveanthe curve shown in Fig-
ure 4.6 is not smooth. We will smoothen it, as shown in Figuvefdr a simpler treatment.
In Figure 4.8 we sketch this curve together with a collectodiines that represent the
slopes of tangents along the curve. A horizontal tangensloge zero: this means that
at all such points (also indicated by the arrows for emphatie velocity of the beads is
zero. Between these spots, the bead has picked up speed wead fovard until the next
time in which it stops.

We show the velocity(t), which is the derivative of the original functiaB(¢) in
Figure 4.9. As shown here, the velocity has periodic inareasd decreases.

40 o

30

20

! ! ! ‘ ! |
40 50 60 70 80 90

Figure 4.7. The (slightly smoothened) bead trajectory is shown here.

4.8 Additional problems and examples

We now turn to a number of problems based on derivatives gtarimes, and slopes of
polynomials. We use these to build up our problem-solviritisskh examples where the
calculations are relatively straight-forward. In the twamples below, we use information
about a function to identify the slope and/or equation ofatggent line.

Example 4.11 (a) Find the equation of the tangent line to

y=f(z)=2°—ax
for @ > 0 a constant, at the point = 1. (b) Find where that tangent line intersects the
axis.

Solution: The function given in the example is a simple polynomial, soeasily calculate
its derivative. The idea is very similar to that of the prexdexample, but the constant
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. .

0 |

40 50 60 70 80 90

Figure 4.8. We have inserted a sketch of the tangent line configuratitorga
the trajectory from beginning to end. We observe that somhesfe tangent lines are
horizontal, implying a zero derivative, and, thus, a zestamtaneous velocity at that time.

T

| | | ! | |
40 50 60 70 80 90

Figure 4.9. Here we have sketched the velocity on the same graph.

makes this calculation a little less straightforward.y(a) f(z) = 23 —ax so the derivative
is
dy

I f'(x) =32% —a

and atz = 1 the slope (in terms of the constaijtis f'(1) = 3 — a. The point of interest
on the curve has coordinates= 1,y =13 —a-1=1—a.
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We look for a line througtfl, 1 — a) with slopem = 3 — a. That, is,

y—(1-a)
x—1

=3—a.
Simplifying algebraically leads to
y=0B-a(z-1)+(1-a)

or simply
y=B8—-a)r—2.
[Remark: at this pointis is wise to check that the tangemtdjoes through the desired
point and has the slope we found. One way to do this is to piéknple value fora, e.g.

a = 1 and do a quick check that the answer matches what we have.found
(b) To find the point of intersection, we set

y=0B—-a)z—2=0

and solve forz. We find that

xr = .
3—a
Example 4.12 Find any value(s) of the constamtsuch that the ling = ax is tangent to
the curve

y=f(z)=—2®+3z - 2.

Figure 4.10.Figure for Example 4.12

Solution: This example, too, revolves around the properties of a mohyjal, but the prob-
lem is somewhat more challenging. We must use some georpatperties of the function
and the tentative candidate for a tangent line to deterrhmedlue of the unknown constant
a.

As shown in Figure 4.10, there may be one (or more) points atvthngency occurs.
We do not know the coordinate of any such point, but we wilklabzx, to denote that it
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is some definite (as yet to be determined) value. Notationscametimes be confusing.
We must remember that while we can compute the derivativg atf any point, only the
specific point at which the tangent touches the curve willehsppecial properties that we
will outline below. Finding that point of tangency, will be part of the problem.

What we know is that, atg,

The straight line and the graph of the functiffx) go through the same point.

The straight line; = ax and the tangent line to the graph coincide, i.e. the devigati
of f(x) atzy is the same as the slope of the straight line, which is clearly

Using these two facts, we can write down the following equragi

Equating slopes:
(o) =—220+3=a

Equatingy values on line and graph gf(z):
f(zo) = —2% + 320 — 2 = axo

We now have two equations for two unknownsafidxy). We can solve this system easily
by substituting the value af from the first equation into the second, getting

—Ig + 3560 —2= (—2170 + 3):170

Simplifying:
—x3 + 339 — 2 = —223 + 3z

SO
x%—2:0, zo = £V2.

This shows that there are two points at which the conditiooslavapply. In Fig-
ure 4.11 we show two such points.

Y y=ax

y=f(x)

X
Xo

Figure 4.11.Figure for solution to Example 4.12

We can now find the slopeusinga = —2x¢ + 3. We get:

To=V2 a=—-2v2+3,
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and
o= —V2 a=2V2+3.

Remark: This problem illustrates the idea that in some casegproceed by listing
properties that are known to be true, using the informatioalitain a set of (algebraic)
equations, and then solving those equations. The chalisrigaise these sequential steps
properly - each step on its own is relatively understandaht&clearcut. Most problems
encountered in scientific and engineering applicationsireg whole chain of reasoning,
calculation, or logic, so practicing such multi-step peshk is an important part of training
for science, medicine, engineering, and other fields.



Chapter 5

What the Derivative tells
us about a function

The derivative of a function contains a lot of important imf@tion about the behaviour of
a function. In this chapter we will focus on how propertiestaf first and second derivative
can be used to help up refine curve-sketching techniques.

5.1 The shape of a function: from  f/(z) and f"(x)

(@) (b)
f(x) f(x)
AV
X X
f'(x) fr (%)
X X

Figure 5.1. In (a) the function is concave up, and its derivative thugsdases
(in the positive direction). In (b), for a concave down fuant we see that the derivative

decreases.
Consider a function given by = f(x). We first make the following observations:

1. If f(z) > 0thenf(z) isincreasing

73
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2. If f'(z) < Othenf(x) isdecreasing

Naturally, we read graphs from left to right, i.e. in the diien of the positiver axis,
so when we say “increasing” we mean that as we move from lefgtd, the value of the
function gets larger.

We can use the same ideas to relate the second derivative fiosthderivative.

1. If f”(x) > 0thenf’(x) is increasing This means that the slope of the original
function is getting steeper (from left to right). The fureticurves upwards: we say
that it isconcave upSee Figure 5.1(a).

2. If f”(x) < 0then f’(z) is decreasing This means that the slope of the original
function is getting shallower (from left to right). The furan curves downwards:
we say that it iconcave downSee Figure 5.1(b).

We see examples of the above two types in Figure 5.1. In Figur@), f(z) is
concave up and its second derivative (not shown) would be positive Figure 5.1(b),
f(x) is concave down and second derivative would be negative.

To summarize, the second derivative of a function providésrination about the
curvature of the graph of the function, also called the cueitgaf the function.

5.2 Points of inflection

Definition 5.1. A point of inflection of a functionf(z) is a pointxz at which the concavity
of the function changes.

Inflection point

f7(x)=0
f”(x) >0
concave
f” (x) <0 up
concave
down

Figure 5.2. An inflection point is a place where the concavity of a functibanges.

We can deduce from the definition and previous remarks thepaint of inflection
the second derivative changes sigifihis is illustrated in Figure 5.2Note carefully: It
is not enough to show that’(z) = 0 to conclude that is an inflection point. We must
actually check thay” (x) changes sign at opposite sides of the vatuas the following
example shows:

Example 5.2 Show that the functiorf (z) = z* does not have a point of inflection at the
origin, even though its second derivative is zero at thamtpoi W
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Solution: Consider the function

y=f(z)=a".
The first and second derivatives phre:
2
;l—gyc = f'(z) =42°, and % = f'(z) = 1222

Thenf”(x) = 0 whenz = 0. However,z = 0 is NOT an inflection point. In fact, it is a
local minimum, as is evident from Figure 5.3.

y

Figure 5.3. The functiory = f(z) = x* has a minimum at = 0. The fact that
the second derivative is zero at the origjff;(0) = 0, is clearly NOT associated with an
inflection point. This results from the fact thét does not change sign as we crass- 0.

5.3 Ciritical points

Definition 5.3. A critical point of the functionf(z) is any pointxz at which the first
derivative is zero, i.ef’(z) = 0.

N

Figure 5.4. A critical point (place wheref’(z) = 0) can be a local maximum,
local minimum, or neither.

Clearly, this will occur whenever the slope of the tangene Ilto the graph of the
function is zero, i.e. the tangent line is horizontal. Fg&r4 shows several possible shapes
of the graph of function close to a critical point.

We will call the first of these (on the left) lmcal maximum, the second docal
minimum, and the last two cases (which are bends in the curve) irdlepbints.

In many scientific applications, critical points play a vamyportant role. (We will
see examples of this sort shortly.) We would like criteriadetermining whether a critical
point is a local maximum, minimum, or neither. We will develsuch diagnoses in the
next section.
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5.4 What happens close to a critical point

f(x) local max f(x)  local min
| X X
f'(x) 7 (x)
74 «
f (x)
: X

Figure 5.5. Close to a local maximuny;(x) is concave downf’(z) is decreas-
ing, so thatf”(z) is negative. Close to a local minimunfi(x) is concave up/’(x) is
increasing, so thaf”’(z) is positive.

From Figure 5.5 we see the behaviour of the first and secorihtiees of a function
close to critical points. We already know that at the poirguestion,f’(z) = 0, so clearly
the graph off’(x) crosses the: axis at each critical point. However, note that next to
a local maximum, (and reading from left to right, as is thewasriion in any graph) the
slope off () is first positive (to the left), then becomes zero (at theaaitpoint) and then
becomes negative (to the right of the point). This meanstti@terivative iddecreasing
from left to right, as indicated in Figure 5.5.

Since the changes in the first derivative are measurets bigrivative, i.e. byf” (z),
we can say, equivalently that the second derivative is negat a local maximum.

The converse is true near any local minimum. This is showrherright column of
Figure 5.5. We conclude from this discussion that the falhgrdiagnosis would distin-
guish a local maximum from a local minimum:

Test for maxima and minima

e Firstderivative test: Near a local maximum, the first derivative has a transitromf
positive to zero to negative values reading across the dgraphleft to right. Near a
local minimum, the first derivative goes from negative toozer positive values.

e Second derivative test Near a local maximum, the second derivative is negative.
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Near a local minimum, the second derivative is positive.

Summary: first derivative

f(x) <0 f(xo) =0 f(x) >0
decreasing function critical point | increasing function
atxg

Summary: second derivative

f'(x) <0 f"(x0) =0 f"(x) >0
curve concave dowr check for curve concave uf]
inflection point
atxg
if f” changes sign

Summary: type of critical point

Here we assume thay, is a critical point, i.e. a point at whicli’(zg) = 0. Then the
following table summarizes what happens at that point

[ (@) <0 | f"(@wo)=0 ] f"(z0)>0

local maximum| inconclusive| local minimum

Important note:

The fact thatf” (xg) = 0 may alert us to look for an inflection point. However, onlyfif
changes sign from left to right af, can we conclude that, is an inflection point.
We will apply some of these ideas to a number of examples aplitafions.

5.5 Sketching the graph of a function
Example 5.4 Sketch the graph of the function defined Byz) = C(2* — 2%). 1

Solution: To prepare the way, we compute the derivatives:
B'(z) = C(2x — 32%), B"(z) = C(2 — 6x).
The following set of steps will be a useful way to proceed:
1. We can easily find theerosof the function by settind3(x) = 0. We find that
Ca?—-2%)=0, = 2*=23

sox = 0 orz = 1 are the solutions.
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W

close to 0 far from 0 \

B(x)

\

-

Figure 5.6. Figure for Example 5.4 showing which power dominates.

2. By considering powers, we note that close to the origia pbwerz? would domi-
nate (so we expect to see something resembling a parabaiagpgwards close to
the origin), whereas, far away, where the term® dominates, we expect an (upside
down) cubic curve, as shown in a preliminary sketch in Figufe

3. To find the critical points, we sé’(x) = 0, obtaining
B'(z)=C(2x —32*) =0, = 20-32°=0, = 2z=32°

so eitherx = 0 or 2 = 2/3. From the sketch in Figure 5.6 it is clear that the
first is a local minimum, and the second a local maximum. (Betwill also get a
confirmation of this fact from the second derivative.)

4. From the second derivative we find thf (0) = 2 > 0 so thatz = 0 is indeed a
local minimum. FurtherB”(2/3) =2 —6-(2/3) = —2 < 0 so thatr = 2/3isa
local maximum. This is the confirmation that our sketch malerse.

5. Now identifying whereB” (x) = 0, we find that

2 1
B"(z)=C(2-62)=0, when 2—62=0 = z= 63
we also note that the second derivative changes sign heréoiiz < 1/3, B” (x) >
0 and forx > 1/3, B”(x) < 0. Thus there is an inflection point at= 1/3. The
final sketch would be as given in Figure 5.7.
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B(X)

inflection . |ocal max

N\

L

local min =

Figure 5.7. Figure for Example 5.4.

Example 5.5 Sketch the graph of the functign= f(z) = 82° +52* — 202> N

Solution:

Figure 5.8. The functiony = f(z) = 8 2° + 5 2* — 20 23 of Example 5.5 behaves
roughly like the negative cubic near the origin, and like® for large .

1. Consider the powers:

The highest power i8 z° so that far from the origin we expect a typical positive odd
function behavior.

The lowest power is-20 3, which means that close to zero, we would expect to see
a negative cubic. This already indicates to us that the fanéturns around”, and
so, must have some local maxima and minima. We draw a rougthsikeFigure 5.8.

2. Zeros: Factoring the expression fgrleads to
y = 23(822 + 5z — 20).

Using the quadratic formula, we can find the places whete 0, i.e. thezerosof
the function. They are
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y=f(x)

N
| |

\ y=f'(x)

ER)

/

Figure 5.9. The functiony = f(x) = 8 2° +52* — 20 22, and its first and second
derivativesf’(x) and /"' (z)
5

5 1 1
£=0,0, 0~ + 7= V665, — — 7= V65

In decimal form, these are approximately= 0,0,0,1.3, —1.92
3. First derivative: Calculating the derivative of () and then factoring leads to

d
= = f'(2) = 402 + 202" — 6027 = 202 (22 + 3) (¢ — 1)
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so that the places where this derivative is zero are= 0,0,1, —3/2. We expect
critical points at these places.

4. Second derivative:We calculate the second derivative and factor to obtain

d2
d_;; = f"(z) = 1602° + 602° — 120z = 202(82 + 3z — 6)

Thus, we can find places where the second derivative is z&ie.OEcurs at

301 31
=0, —— + — /201, —— — — 201
=095 T g VL~ T g VO

The values of these roots can be approximatedrby: 0, 0.69, —1.07

5. Classifying the critical points: To identify the types of critical points, we can use
the second derivative test, i.e. determine the sign of tberskderivative at each of
the critical points.

At z = 0 we see thaff”’(0) = 0 so the test is inconclusive. At = 1, we have
f"(1) = 20(8 +3 — 6) > 0 implying that this is a local minimum. At = —3/2
we havef”’(—1.5) = —225 < 0 so this is a local maximum. In fact we find that the
value of the function at = —1.5isy = f(—1.5) = 32.0625, whereas at = 1
f(1)=-1.

The table below summarizes what we have found, and what welumed. Each of
the values ofr across its top row has some significance in terms of the betawi the
function.

T = -192 | —-15| —-1.07 |0 0.69 1 1.3
flz) = 0 32.0 0 -7 0
fl(x) = 0 0 0
1 (x) = <0 0 0 0 >0

zero | max | inflection inflection | min | zero

We can now sketch the shape of the function, and its first acohskderivatives in
Figure 5.9.

5.6 Product and Quotient rules for derivatives

So far, using a single “rule” for differentiation, the powete, together with properties of
the derivative such as additivity and constant multiplma{described in Section 4.2), we
were able to calculate derivatives of polynomials. here tageswithout proof, two other

rules of differentiation that will prove to be useful in dulmé.
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The product rule: If f(x) andg(x) are two functions, each differentiable in the dom

of interest, then
dlf(z)g(z)] _ df(z)

dx T dx 9(@) +

Another notation for this rule is

[f(@)g(@)) = ['(@)g(x) + ¢'(2)f ().

Example 5.6 Find the derivative of the product of the two functiohs) = = andg(z) =
1+z. 1

Solution: Using the product rule leads to

dlf(x)g(@)] _dlz(1+)] dz] d1+=)] _
o = I _%-(1—1—17)—1- T cx=1-(14z)+1-2 =2z+1.

(This can be easily checked by noting tifét)g(x) = x(1+x) = z+22, whose derivative
agrees with the above.)

The quotient rule: If f(z) andg(x) are two functions, each differentiable in the dom
of interest, then

d [f@)] _ L2g) - L f(x)
dr [ g(x) '
We can also write this in the form

[f(x)]' _ '(@)9(x) - g'(@)f(2)
g9(z)

Example 5.7 Find the derivative of the function = az~" = a/2™ wherea is a constant
andn is a positive integer. i

Solution: We can rewrite this as the quotient of the two functigfis) = a« andg(z) = 2.
Theny = f(z)/g(x) so, using the quotient rule leads to the derivative

dy _ f'(z)g(z) —g'(@)f(x) 0-a"—(na""')-a —ana""!

dx lg(x)]? (x7)? o e

After algebraic simplification, we obtaify /dx = a(—n)z" 172" = a(—n)z~""1. This
is an interesting resultThe power rule of differentiation holds for negative intege
powers.

ain

ain
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5.7 Global maxima and minima: behaviour at the
endpoints of an interval

Global (absolute) maxima and minima:

A global (or absolute) maximum of a functign= f(x) over some interval is the largest
value that the function attains on that interval. Similaxlglobal (or absolute) minimum is
the smallest value.

Comment: If the function is defined on a closed interval, westraheck both the
local maxima and minima as well as the endpoints of the iate¢os/determine where the
global maxima and minima occur.

Example 5.8 Consider the functiog = f(z) = % +2% 0.1 <z < 4. Find the largest
and smallest values that this function takes over the givemial. B

Solution: We first compute the derivatives:

1
f/(I) = _2F + 2':67

1
" _
We now determine where critical point$(«) = 0 occur:
1
—2— +22=0.
X

Simplifying, we ﬁnd—2ggl2 = 2z, soz® = 1 and the critical pointis at = 1. Observe that
the second derivative at this point is

1
[ =45 +2=6>0,

so thatz = 1 is a local minimum.
We now calculate the value of the function at the endpaints 0.1 andz = 4

as well as at the critical point = 1 to determine where global and local minima and/or

maxima occur:

£(0.1) = 20.01 fh=3 f(4)=16.5

global maximum| global minimum

We see that the global minimum occursrat= 1. There are no local maxima. The
global maximum occurs at the left endpoint.

5.8 For further study: Automatic landing system

We now discuss a practical example that uses many of the stefas. Our goal is to design
an automatic landing system for an airplane.

We would like to find a polynomial of smallest degree that vadodgscribe the trajec-
tory of an airplane as it makes its final approach to a landiieg ¥/e will assume that the
landing trajectory starts when the plane is at a distancom the site where it touches
down (atz = 0) and that it has been flying at a level (horizontal) directiprto that point.
(See Figure 5.10.) We also want to make sure that the langliag $mooth as possible!
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h

=

0 Xo
Figure 5.10.The trajectory of a plane landing

5.8.1 Solution:

Let x stand for the distance of the plane from its touch down sigmgipoint in its landing
maneuver. A polynomial is a function of the form

y=np(x)=Az" + Ba"" ...,

“Finding a polynomial” is the same as determining the cogfits of the various powers.
To do so, we will make following observations:

1. The plane it at height when it is at position:y. Thus
p(xo) = h.

2. The plane is moving horizontally before it starts to desceThis means that, pre-
cisely at the pointzg, at which the descent starts, the tangent line to the curve is
horizontal. The derivative gi(z) is zero atry:

P (x0) = 0.
3. The plane is supposed to be on the ground by the time itgets-t0. Thus
p(0) = 0.

4. If the plane lands at an angle to the ground, we'd have a lpuangd dangerous
landing. The nose of the plane might get damaged too! To ptekies, we want the
plane to be moving horizontally on the final part of its apgtoarhus atc = 0 we
want

P’ (0) = 0.

The above observations have resulted in four conditionsthi@polynomial is to
satisfy. The polynomial of smallest degree in which we cdectdour coefficients is:

p(z) = ax® + ba® + cx + d.
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Below, we show how to solve for each of these coefficientsimseof the height: and the
locationz, at which descent starts. (Note: if we use a polynomial of éigtegree, our
four conditions would not suffice to completely determirleted coefficients. Since we are
asked to find the polynomial of least degree, we shall settlihis cubic polynomial.)

We will need to use the fact that the derivative of this polyrial is

p'(z) = 3ax® + 2bx + c.
From the above conditions we get:

1. p(zp) = h. Thus
p(xo) = axy + bxd + cxo +d = h.

2. p'(xg) = 0. Thus
p'(x0) = 3axg + 2bxg + ¢ = 0.

3. p(0) = 0. Thus
p(0)=a-0>+b-0*+c-04+d=0.

All the terms disappear but one, from which we conclude that0.

4. p'(0) = 0. Thus
p'(0)=3a-0>4+2b-04c=0.

Again, all terms but one disappear, leaving: 0.

Using the fact that, d = 0, and returning to the first two equations, we are left with
two equations and two unknowns:

axg + bx% =h,

3axd + 2bxg = 0

(Remember that here we are trying to find the values of the awhkrcoefficients:, b, and
the quantitiesty andh are known fixed constants that represent the starting poititeo
plane as it initiates landing procedures.)

Solving fora andb we get, from the second equation:

20

3az? = —2b = .
azg 20, a 370

Plugging into the first we arrive at:

2b

2b
—Ex(g) + bx% =h

2
ba? (—§+1) =h
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so, after simplification, we get

h 2 2h
b:3 a = = —_——

3 Iy 3
g 3o Ty

Thus, we have arrived at the desired result:

(The expression looks cumbersome, but we remember thadriineg tn brackets are actually
constants.)

To illustrate how this would work in a specific example, suppthat the plane starts
its descent 20 km away from the airport at a height of 1 km. Thea 20,h = 1, so

3 2
557 = 00075, a = —55 = —0.00025

In this case, the polynomial that describes the landing¢tajy would be:

p(z) = —0.000252> + 0.00752>
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Exercises

5.1. A zero of a function is a place wheféz) = 0.

(a) Find the zeros, local maxima, and minima of the polynémia= f(z) =
x® — 3z

(b) Find the local minima and maxima of the polynomjak f(z) = (2/3)a® —
322 + 4x.

(c) A point of inflection is a point at which the second derivatchanges sign.
Determine whether each of the polynomials given in partsuia) (b) have an
inflection point.

5.2. Find the absolute maximum and minimum values on thengiverval:

(@) y=2220on-3<z<3

O y=(z—-5%*on0<2<6

C)y=a2>2—-z—-60n1<2<3

1 1
dy=—4+zon—4<z<——.
T 2

5.3. Sketch the graph af* — 22 + 1 in the range-3 to 3. Find its minimum value.

5.4. Identify all the critical points of the following funion.
y=a3-27

5.5. Consider the functiogp(z) = 2% — 22 + 22. Determine locations of critical points
and inflection points.

5.6. Consider the polynomial = x® + 322 + ax + 1. Show that wherm > 3 this
polynomial has no critical points.

5.7. Find the values af, b, andc if the parabolay = ax? + bx + c is tangent to the line
y = —2x + 3at(2,—1) and has a critical point when= 3.

5.8. The position of a particle is given by the functipa- f(t) = t3 + 3t

(a) Find the velocity and the acceleration of the particle.

(b) A second particle has position given by the function= g(t) = at* + 3
whereq is some constant and > 0. At what time(s) are the particles in the
same position?

(c) Atwhat times do the particles have the same velocity?

(d) When do the particles have the same acceleration?

5.9. Double Wells and Physicsin physics, a function such as
fz) =2t — 222

is often called adouble well potential Physicists like to think of this as a “land-
scape” with hills and valleys. They imagine a ball rollingmad) such a landscape:
with friction, the ball eventually comes to rest at the bottof one of the valleys

in this potential. Sketch a picture of this landscape andinfeemation about the

derivative of this function to predict where the ball miglet tound, i.e. where the
valley bottoms are located.
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5.10.

5.11.

5.12.

5.13.

5.14.

A ball is thrown from a tower of height. The height of the ball at timeis

h(t) = ho + vot — (1/2)gt>
wherehg, vy, g are positive constants.
(&) When does the ball reach its highest point?
(b) How high is it at that point?
(c) What is the instantaneous velocity of the ball at its kftpoint ?

(From Final Exam, Math 100 Dec 1996) Find the first amdsd derivatives of the

function

3

y=f(z)= T— 2
Use information about the derivatives to determine anyllowima and minima,
regions where the curve is concave up or down, and any irdlepiints.
Find all the critical points of the function

y = f(z) = 223 + 3az? — 12a°z + 1

and determine what kind of critical point each one is. Yowsveer should be given
in terms of the constant, and you may assume that> 0.

(From Final Exam Dec 1995) The functifx) is given by
y = f(x) = 2° — 10ka? + 25k223

wherek is a positive constant.

(a) Find all the intervals on whiclfi is either increasing or decreasing. Determine
all local maxima and minima.

(b) Determine intervals on which the graph is either conegver concave down.
What are the inflection points gf(x) ?

Muscle shortening: In 1938 Av Hill proposed a mathematical model for the rate of
shortening of a muscle, (in cm/sec) when it is working against a loadin gms).
His so called force-velocity curve is given by the relatioips

(p+a)v =b(po — p)
wherea, b, py are positive constants.

(a) Sketch the shortening velocity versus the load,.as a function op. (Note:
the best way to do this is to find the intercepts of the two axes,find the
value ofv corresponding te = 0 and vice versa.)

(b) Find the rate of change of the shortening velocity witspext to the load, i.e.
calculatedv/dp.

(c) What is the largest load for which the muscle will contagHint: A contract-
ing muscle has a positive shortening velocity, whereas aclawgth a very
heavy load will stretch, rather than contract, i.e. will Banegative value of

v.)
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5.15. Reaction kinetics: Chemists often describe the rate of a saturating chemieat re
tion by using simplified expressions. Two examples of sugitessions are:

. . . K . . . Kc?
Michaelis-Menten kinetics: R,,(c) = c Sigmoidal kinetics: R;(c) c

)

kn+c o :kfl—i-cQ

wherec is the concentration of the reactaif, > 0, k, > 0 are constantsR(c)
is the speed of the reaction (Observe that the speed of théaeaepends on the
concentration of the reactant).

(a) Sketch the two curves. To do this, you should analyze¢heviour forc = 0,
for smallc, and for very large. You will find a horizontal asymptote in both
cases. We refer to that asymptote as the “maximal reacteedSpWhat is the
“maximal reaction speed” for each of the functiaRs,, R, ? (Note: express
your answer in terms of the constars &,,.)

(b) Show that the value = k,, leads to a half-maximal reaction speed.

For the questions below, you may assume fkat 1 andk,, = 1.

(c) Sketch the curveR,,(c), Rs(c).

(d) Show that sigmoidal kinetics, but not Michaelis Mentémekics has an inflec-
tion point.

(e) Explain how these curves would chang&ifs increased; if;,, is increased.

5.16. Checking the endpoints !:Find the absolute maximum and minimum values of the
function

1
_ .2
f((E) =1+ IQ
on the interva[%, 2]. Be sure to verify if any critical points are maxima or minima

and to check the endpoints of the interval.
5.17. Find the first derivative for each of the following ftioos.

@ f(z) = (222 — 3z)(6x + 5)
(b) f(z) = (2° + 1)(1 — 3z)
©) g(x) = (z —8)(z? + 1)(z +2)
@d) f(z)=(xz—-1)(2>+2+1)
z2 -9
© f0) = 5
2 —a?
0 f2) = -
b3
(9) f(b) = b2
() fm) = 2 (m—2)(2m — 1)
22 22—
() ()= T2

3r+2
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Chapter 6
Optimization

In this chapter, we collect a variety of problems in which itieas developed in earlier
material are putto use. In particular, we will use calcuturtd local (and global) maxima,

and minima so as to get the best (optimal) values of someaddsiguantity. Setting up

these problems, from first verbal description, to clear cathematical formulation is the

main challenge we will face. Often, we will use geometricasléo express relationships
between variables leading to our solution.

6.1 Density dependent (logistic) growth in a
population

Biologists often notice that the growth rate of a populati@pends not only on the size
of the population, but also on how crowded it is. When indixts have to compete for
resources, nesting sites, mates, or food, they cannotdapeoas quickly, leading to a
decline in the rate of growth of the population.
The rule that governs this growth, callémhistic growth assumes that the growth
rateG depends on the density of the populati¥ras follows:
K—-N
G(N)=rN < % >
wherer > 0 is a constant, called thietrinsic growth rate andK > 0 is a constant called
the carrying capacity of the environment for the population. We will soon see tihat t
largest population that would grow at allié = K. We show a sketch of this function in
Figure 6.1. But how would we arrive at such a sketch?

Example 6.1 Answer the following questions:
e Find the population density that leads to the maximal graaté.
e What is the maximal growth rate?

e For what population size is the growth rate zero?

91
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Solution:
K—-N o

To find the maximal growth rate we differentiatewith respect to the variabl®/,
remembering thak(, » are here treated as constants. We get

"N = — 9
G'(N)=r—22N.

SettingG’(N) = 0 and solving forV leads to

r
r= QEN
SO
N=2
By taking a second derivative we find that
r
G"(N) = —2?

which is negative for all population sizes. This tells ug tha functionG(N') is concave
down, and thafV = K /2 is a local maximum. Thus the density leading to largest gnowt
rate is one half of the carrying capacity.

The growth rate at this density is

K K\ [(K-% K1 7K
G<5>—7‘(3)< I )”‘35—7

To find the population size at which the growth rate is zeroset®s = 0 and solve
for N:

)= (55 o

The two solutions aré&' = 0 (which is not very interesting, since when there is no popula
tion there is no growth) anty = K.

We will have many more things to say about this type of derdgfyendent growth a
little later on in this course.

6.2 Cell size and shape

Consider a spherical cell that is absorbing nutrients ateap@portional to its surface area
and consuming them at a rate proportional to its volume. ib@te the size of the cell for
which the net rate of increase of nutrients is largest.
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0 K/2 K\ N

Figure 6.1. The growth ratez depends on population siZé as shown here for
logistic growth.

Solution:

We have seen in a previous chapter that the absorptican@ consumption() rates for
this simple spherical cell are:
A= le = 4]{3171'7’2,

4
C=kV = §7Tl€27’3,

wherekq, ko > 0 are constants andis the radius of the cell.
The net rate of increase of nutrients is just the rate of gdtigor minus the rate of con
sumption, and it follows that it depends on the size of thé cel

N=A-C =dkimr? - %Wkg?‘3.
To find the size for greatest net nutrient increase rate, wecfitical points of this function:
N'(r) = 8kymr — dkomr?.
Critical points occur wheiV'(r) = 0, i.e.
N'(r) = 8kymr — 4komr? = 0.

Simplifying leads to
dmr(2ky — kor) = 0.

This is satisfied (trivially) whem = 0, and also when

We need to check that this is a local maximum. We obtain therskderivative
NN(T) = Sklﬂ' — 8k27‘1’7‘ = 87T(/€1 — kg?‘).
plugging inr = 2k, /ks we get

2k
N" =8r(ky — kgk—l) = —8rk; < 0.
2

This verifies that we have a local maximum.
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6.3 A cylindrical cell

Not all cells are spherical. Some are skinny cylindricahfiéants, or sausage shapes. Some
even grow as helical tubes, but we shall leave such compticaxamples aside here. We
will explore how minimization of surface area would detemmithe overall shape of a
cylindrical cell.

Consider a cell shaped like a cylinder with a circular cresstion. The volume
of the cell will be assumed to be fixed, because the cytoplasits iinterior cannot be
“compressed”. However, suppose that the cell has a “rujinegynbrane that tends to take
on the smallest surface area possible. (In physical largyubhg elastic energy stored in the
membrane tends to a minimum.) We want to find the proportidétiseocylinder (e.g. the
ratio of length to radius) so that the cell has minimal swefaea.

Recall the following properties for a cylinder:

r
— D

Figure 6.2. Properties of a cylinder

the volume of a cylinder is the product of its base a#leand its heighth. That is,
V = Ah. For a cylinder with circular cross-sectioti: = 772 L.

e A cylinder can be “cut and unrolled” into a rectangle. Oneegidi the rectangle has
length L. and the other has length that made the perimeter of the citgle The
surface area of the unrolled rectangle is ti¥gg. = 27 L. See Figure 6.2

If the “ends” of the cylinder are two flat circular caps, thée sum of the areas of
these two ends iSengs= 2772.

e The total surface area of the cylinder with flat ends is then

S = 2nrL + 272,

We would expect that in a cell surrounded by a rubbery mengyréne end caps
would not really be flat. However for simplicity, we will heneglect this issue and assume
that the ends are flat and circular. Then, mathematicallypoablem can be restated as
follows

Example 6.2 Minimize the surface are§ = 27rL + 2712 given that the volumé’ =
mr?L = K is constant. W
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Solution: The shape of the cell depends on both the lengttand the radiug of the
cylinder. However, these are not independent . They argerbta one another because the
volume of the cell has to be constant. This is an example opéimazation problem witta
constrainti.e. a condition that has to be satisfied. The constraimtaldw us to eliminate
one of the variables, as we show below.

The constraint is “the volume is fixed”, i.e.,

V=nm?L=K
whereK > 0 is a constant that represents the volume of the given cellcalieause this to
express one variable in terms of the other. For example, wealae forL.

P (6.1)

The function to minimize is
S = 2xrL + 2712,

We eliminate by using the previous relationship, (6.1) to obt&iras a function ofr
alone:

K 2
S(r) = 27Trm + 27mr
Simplification leads to
K
S(r) =2— + 212
T

observe thab' is now clearly a function of the single variable, (K andr are constants).
In order to find local minima, we will look for critical pointsf the functionS(r).
We compute the relevant derivatives:

K
S'(r) = —2— + 4,

T
The second derivative will also be useful.

K

" _
From the last calculation, we observe that the second dméves always positive since
K,r > 0, so the functionS(r) is concave up. Any critical point we find thus will be a
minimum automatically.
To find a critical point, sef’(r) = 0:

S'(r) = —252 +4mr = 0.
r

Solving forr:

SO
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We also find the length of this cell using Eqn. 6.1.

AKN\'?
L= (_) |
7T
This comes about from a manipulation of powers:

-2/3
I — K — Kn! K — K172/3,-142/392/3 _ pe1/3 1 —1/3 41/3
2 2
We can finally characterize the shape of the cell. One way thidas to specify the ratio of
its radius to its length. Based on our previous results, wecoapute that ratio as follows:
L (4K/m)Y/3

2 BB Q13
r (K/2m)Y/3 =8r=

Thus, the length of this cylinder is the same as its diametkich is twice the radius). This
means that in a cylindrical cell with a rubbery membrane, we & short and fat shape. In
order for the cell to grow as a long skinny cylinder, it has &wvénsome structural support
that prevents the surface area from contracting to the sestglbssible area. An example of
this type occurs in fungal cells. These grow as long branéfedents. The outer cell wall
contains structural components that prevent the cell sarfiamm contracting elastically.

I would like to thank Prof Nima Geffen (Tel Aviv Universityijhwproviding the inspi-
ration for this example.

6.4 Geometric optimization

We consider several other examples of optimization wheliawes, lengths, and/or surface
areas are considered.

Example 6.3 (Wrapping a rectangular box:) A box with square base and arbitrary height
has string tied around each of its perimeter. The total keo§string so used is 10 inches.
Find the dimensions of the box with largest surface areaat(id) figure out what is the
largest amount of wrapping paper needed to wrap this boXll)

Solution: The total length of string shown in Figure 6.3, consistinghwée perimeters of
the box is as follows:

L=2x+z)+2(rz+y)+2(r+y) =8 +4y=10

This total length is to be kept constant, so the above equédidhe constraint in this
problem. This means that andy are related to one another. We will use this fact to
eliminate one of them from the formula for surface area.

The surface area of the box is

S = 4(xy) + 222
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el

X

Figure 6.3. A rectangular box is to be wrapped with paper

since there are two faces (top and bottom) which are squares:) and four rectangular
faces with areary. At the moment, the total area is expressed in terms of bathhlas.
Suppose se eliminaigby rewriting the constraint in the form:

y:g—Qa:.

Then
)
S(x) = 4z (5 - 296) + 227 = 10z — 822 + 227 = 10z — 627,

We show the shape of this function in Figure 6.4. Note that) = 0 atz = 0 and at
10 — 62 = 0 which occurs atr = 5/3. Now thatS is expressed as a function of one

S(x)

: X
0 5/6 5/3

Figure 6.4. Figure for Example 6.3.
variable, we can find its critical points by settifg(z) = 0, i.e., solving
S'(z) =10 —122 =0

for x: We getz = 10/12 = 5/6. To find the corresponding value gfwe can substitute
our result back into the constraint. We get

5, (5)_15-10 5
y=3 6) - 6 6
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Thus the dimensions of the box of interest are all the samei is a cube with side length
5/6.
We can verify that
S"(x)=-12<0,
(indeed this holds for alt), which means that = 5/6 is a local maximum.
Further, we can find that

s=1(3) () +2(F) -7

square inches. Figure 6.4 shows how the surface area varihe dimension: of the box
is varied.

6.5 Checking endpoints

In some cases, the optimal value of a function will not oc¢warg of its local maxima, but
rather at one of the endpoints of an interval.
The following example illustrates this point:

Example 6.4 (maximal perimeter) The area of a rectangle having sides of lengtand
yis A = xy. Suppose that that the variahias only allowed to take values in the range
0.5 < z < 4 Find the dimensions of the rectangle having largest peemehose area is
fixed. (The perimeter of a rectangle is the total length obitter edge.) W

Solution: The perimeter of a rectangle whose sides are lemggtis
P=x+y+zr+y=2r+2y.

We are asked to maximize this quantity, whege= 1 is our constraint.
Using the constraint, we can solve fpand eliminate it:

1

y=—

X
Then )
P(x) =2z + —.

xZ
To find critical points, we set

P'(z)=2 (1— x—lz) =0.

Thus,z? = 1 orz = +1. We reject the negative root as it is irrelevant for the (fhes)
side length of the rectangle. Checking if this is a maximunfing that
4
P”(I) = F > O
so we have found a locatinimum This is clearly not the maximum we were looking for.
We must thus check the endpoints of the interval for the makiralue of the func-

tion. We find thatP(4) = 8.5 and P(0.5) = 5. The largest perimeter for the rectangle will
thus occur when = 4, indeed at the endpoint of the domain, as shown in Figure 6.5.
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Figure 6.5. In Example 6.4, the critical point we found is a local minimufo
maximize the perimeter of the rectangle, we must consideetid points of the interval
0.5 <z <4,

6.6 Kepler's wedding

In 1613, Kepler set out to purchase a few barrels of wine ferwedding party. The
merchant selling the wine had an interesting way of compuitire cost of the wine: He
would plunge a measuring rod through a hole in the barrelha#:s in Figure 6.6. The
price was proportional to the length of the “wet” part of rétle will refer to that length as
L in what follows.

Kepler noticed that barrels come in different shapes. Sam&ad and skinny, while
others are squat and fat. He conjectured that some shapéd @antain larger volumes
for a given length of the measuring rod, i.e. would containrenwine for the same price.
Knowing mathematics, he set out to determine which baregdshvould be the best bargain
for his wedding.

o

Figure 6.6. Barrels come in various shapes. But the cost of a barrel oéwias
determined by the length of the wet portion of the rod inskit¢o the barrel diagonally.
Some barrels contain larger volume, but have identical.cost

Suppose we ask what shape of barrel will contain the most feireegiven cost. This
is equivalent to askingvhich cylinder has the largest volume for a fixed (constaariyth
L. Below, we show how this optimization problem can be solved.
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Solution

To simplify the problem, we will assume that the barrel israe cylinder, as shown in
Figure 6.7. We also assume that the tap-hole (normally eaMeravoid leaks) is half-way
up the height of the barrel. We will defineas the radius antl as the height of the barrel.
These two variables uniquely determine the shape as wéikastume of the barrel. We'll
also assume that the barrel is full up to the top with delisiaine, so that the volume of
the cylinder is the same as the volume of wine.

The volume of a cylinder is

V = base area x height.
The base is a circle of area= 72, so that the volume of the barrel is:
V = 7r2h.

The rod used to “measure” the amount of wine (and hence ditetime cost of the barrel)

is shown as the diagonal of lengthin Figure 6.7. Because the cylinder walls are perpen-
dicular to its base, the lengthis the hypotenuse of a right-angle triangle whose othesside
have length@r andh /2. (This follows from the assumption that the tap hole is hredfy

up the side.) Thus, by the Pythagorean theorem,

L? = (2r)* + (g)Q

The problem can be restated: maximiZesubject to a fixed value of. The fact
that L is fixed means that we have a constraint. That constrainbeillsed to reduce the
number of variables in the problem.

Yy
e

h/2

Figure 6.7. Here we simplify and idealize the problem to consider a cylzal
barrel with diameter2r and heighth. We assumed that the tap-hole is at heigf2. The
lengthZ denotes the “wet” portion of the merchant’s rod, used to d@iee the cost of this
barrel of wine. We observe that the dotted lines form a Pythag triangle.

The function to be maximized is:

V = mr?h.
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After expanding the squares, the constraintis:
h2
L =4r? + —.
e+ 1

We can use the constraint to eliminate one variable; in thgedhe simplest way is to

replacer? using:
1 h?
2 2
L O -
g 4 ( 4 )

h2
Vemh="1(102-")h=
r 4( 4)

Then

We now have a function of one variable, namely

V(h) = % <L2h - %h?’) .

For this function, the variablk could sensibly take on any value in the rafige h < 2L.
Outside this range, the volume is negative, and at the twpa@nts the volume is zero.
Thus, we anticipate that somewhere inside this range ofgalte should find the desired
optimum.

To find any critical points of the functiol’ (h), we calculate the derivativeé’(h)
and set it to zero:

/ T 2_§2 _
V(h)—4<L 4h) 0

This implies thatL? — 212 = 0, i.e.

3h? =412,
L2
h?=4—
3 b
L
h=2—.
V3

Now we must check whether this solution is a logaximunm(or a minimum).
The second derivative is:

oy T (og_9.2,) - _3
V(h)_4(0 2 4h)_ ™h <0.

From this we see thdt”(h) < 0 for any positive value ofi. The the functiorV/(h) is
concave down wheh > 0. This verifies that the solution above is a local maximum.
According to the discussion of the relevant range of valtiés this local maximum is also
the optimal solution we need. i.e. there are no larger vadtiesndpoints of the interval
0<h<2L.



102 Chapter 6. Optimization

To finish the problem, we can find the radius of the barrel lgthis height by
plugging this result fok into the constraint equation, i.e. using

1 h? 1 L? 1/2
2:_ LQ__ i L2__ i _L2 .
-i(7-%)-i(2-5) -1 (67)

After simplifying and rewriting, we get
1
=— L.
V3v2

The shape of the wine barrel with largest volume for the gjgece can now be specified.
One way to do this is to specify the ratio of height to radiugall(skinny barrels have a
high ratioh/r and squat fat ones have a low ratio.) By the above reasoriegatio of
h/r for the optimal barrel is

1
7l

The height of the barrel should Bg/2 ~ 3 times the radius in these most economical wine
barrels.

6.7 Additional examples: A cylinder in a sphere

Figure 6.8. The largest cylinder that fits inside a sphere of radius

Example 6.5 (Fitting a cylinder inside a sphere)Find the cylinder of maximal volume
that would fit inside a sphere of radiiis See Figure 6.8.

Solution:
We label Figure 6.9 and define the following:

h = height of cylinder,
r = radius of cylinder,
R = radius of sphere.
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Figure 6.9. Definition of variables and geometry to consider

Then R is assumed a given fixed positive constant, arethd i are dimensions of the
cylinder to be determined.

From Figure 6.9 we see that the cylinder will fit if the top ardtbm rims touch the
circle. When this occurs, the dark line in Figure 6.9 will beadius of the sphere, and so
would have lengtiR.

The connection between the variables (which will be our tant) is given from

Pythagoras’ theorem by:
h 2
2 _ .2 "
R =r"+ (2) .

We would like to maximize the volume of the cylinder,
V =mr?h

subject to the above constraint.
Eliminatingr? leads to
h2
4

We see that the problem is very similar to our previous disicuns The reader can show by
working out the steps that

V(h) = n(R? )h.

occurs at the critical point

and that this is a local maximum.

6.8 For further study: Optimal foraging
Biological background

Animals need to spend a considerable part of their time beaydor food. There is a
limited time available for this activity, since when the sgmes down, risk of becoming
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food (to a predator) increases, and chances of finding mockifems decreases. There are
also limited resources, so those who are most successfabatdiand utilizing these over
the available time will likely survive, produce offspringnd have an adaptive advantage.
It is argued by biologists that evolution tends to optiminéngal behaviour by selecting
in favour of those that are faster, more efficient, strongemore fit. In this section we
investigate how foraging behaviour is optimized.

© ~ Jo
n patches o
© o

Figure 6.10.A bird travels daily to forage in food patches. We want to datee
how long it should stay in the patch to optimize its efficiency

We will assume that animals try to maximize the efficiency afecting food. Ac-
cording to Charnov (1976), the efficiency of foraging is dedifby the following ratio:

R(t) = Total energy gained

total time spent

i.e., R, isenergy gain per unit time. This quantity will depend on the ammf timet that
is spent foraging during a day. The question we ask is whéfleee is an optimal foraging
time (i.e. a value of the time,), that maximizesk(t). As we show below, whether or
not an optimum exists depends greatly on how hard it is taekfood from a food patch.
When an optimal foraging time exists, we will see that it alepends on how much time
is wasted in transit to such foraging sites.

Notation for our model

The following notation will be useful in discussing this ptem:

e ty = travel time between nest and food patches. (This is coresidas time that is
unavoidably wasted.)

e n. = number of patches encountered on average per day,

e ¢ =residence time in patch (i.e. how long to spend foragingie atch), also called
foraging time,
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e f(t) = energy gained by foraging in a patch for time

e R(t) = efficiency of foraging, i.e. total energy gained per umit¢iover the day.

Energy gain in food patches

In some patches, it is easy to quickly load up on resourcéswtbuld be true if it is easy

to find the nectar (or hunt the prey) or spot the berries. Iriofilaces, it may take some
effort to locate the food items or process them so they caratene This is reflected by

a gain functionf(¢), that may have one of several shapes. Some examples are shown

Figure 6.11.

1)
f(t)

f(t)

(4)

(2) (3)
f(t) f(t)
t t
f(t) f(t)
t t
(5) (6)

Figure 6.11.Examples of various total energy gafiit) for a given foraging time
t. The shapes of these functions determine how hard or eastpiektract food from a food
patch. See text for details about what these functions imipbyt the given food patch.

In the examples shown in Figure 6.11 we see the followingrasemt of cases:

1. The energy gain is linearly proportional to time spenthia patch. In this case it
appears that the patch has so much food in it that it is neyaetsal. It would make
sense to stay in such a patch as long as possible, we migletctusp

2. Here the energy gain is independent of time spent. Theamjets the full quantity
as soon as it gets to the patch. (This is not very realistim faobiological perspec-

tive.)

3. Inthis case, the food is gradually depleted in a giventpdtbe total gain levels off
to some constant level asncreases). There is diminishing return for staying longer
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Here, we may expect to have some choice to make as to whervided look for
food elsewhere.

4. Inthis example, the rewards for staying longer actualljtiply: the net energy gain
has an increasing slope (or, otherwise stagd;) > 0). We will see that in this
case, there is no optimal residence time: some other syraegh as staying in just
one patch would be optimal.

5. It takes some time to begin to gain energy but later on tlie igareases rapidly.
Eventually, the patch is depleted.

6. Here we have the case where staying too long in a patchualbctlisadvantageous
in that it leads to a net loss of energy. This might happenefahimal spends more
energy looking for food that is already depleted. Here itéacthat leaving the patch
early enough is the best strategy.

The optimal residence time

We now turn to the task of finding the optimsidence time i.e. time to spend in the
patch. We will make a simplifying assumption that all thegbais are identical, making it
equally easy to utilize each one. Now suppose on averagéntleespent in a patch is
Then, the total energy gained during the day, after visitingatches is.f(¢). It takes a
time to to get from the nest to the food, and a tithim each ofn patches to feed, so that
the total time spent i + nt. Thus

_ nf()
tg+nt

R(t)

We wish to maximize this function with respect to the resimetime, i.e. find the
timet such thatR(¢) is as large as possible.
Differentiating, we find the first derivative,

nf'(t)(to +nt) —n’f(t) _ G()

R () = (to + nt)? T H®)

(For our own convenience, we have defined two functions #m@esent the numerator and
the denominator oR’(t).)

G(t) = nf'(t)(to + nt) — n>f(t),

H(t) = (to + nt)?.

We will find a later calculation easier with this notation.
To maximizeR(t) we set
R'(t)=0

which can occur only when the numerator of the above equiinero, i.e.

G(t) = 0.
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This means that
nf'(t)(to +nt) —n?f(t) =0

so that, after simplifying algebraically,

Ty nf(t)
)
f(t) = (o/m) + 1 (6.2)

A geometric argument

In practice, we would need to specify a function fit) in order to solve for the optimal
time t. However, we can also solve this problem using a geometgicraent. The last
equation equates two quantities that can be interpreteldpsss On the right is the slope
of atangentline, On the left is the slope (rise over run) ofisaight triangle whose height
is f(t) and whose base length (& /n) + ¢. In Figure 6.12, we show each slope on its
own: In the right panelf’(¢) is the slope of the tangent line to the graphf¢f). In the
central panel, we have constructed some triangle with thpety that its hypotenuse has
slope f(t)/[(to/n) + t]. On the left panel we have superimposed both, selecting & valu
of ¢ for which the slope of the triangle is the same as the slopketangent line. Notice
that in order to fit the triangle on the same diagram, we hadaoepits tip at the point
—(tp/n) along the horizontal axis. When these slopes coincide, @ma¢hat we have
satisfied equation (6.2), and we have found the desiredttiimeoptimal foraging.

We can use this observation in general to come up with theviatlg steps to solve
an optimal foraging problem:

1. Abiologist conducts some field experiments to deterntireiean number of patches
that the organism can visit daily, the mean travel time from food to nest, and
the shape of the energy gain functigtt). (This may require capturing the animal
and examining the contents of its stomach. .. an unappegtibivught; we will leave
this to task to our brave biological colleagues.)

2. We draw a sketch of (¢) as shown in rightmost panel of Figure 6.12 and extend the
t axis in the negative direction. At the point,/n we draw a line that just touches
the curvef(t) at some point (i.e. a tangent line). The slope of this ling’{g) for
some value of.

3. The value ot at the point of tangency is the optimal time to spend in thelgat

The diagram drawn in our geometric solution (right paneliguFe 6.12 is often called a
“rooted tangent”).

We have shown that the point labelemhdeed satisfies the condition that we derived
above forR’(t) = 0, and hence is a critical point.
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energy gain energy gain

f(t) f(t)

f(t)

tp/n +t to/n 0 t

Figure 6.12.The solution to the optimal foraging problem can be expregsn-
metrically in the form shown in this figure. The tangent linghee (optimal) time should
have the same slope as the hypotenuse of the right trianglershbove. The diagram on
the far right is sometimes termed the “rooted tangent” dizigr.

Checking the type of critical point

We still need to show that this solution leads to a maximunciefficy, (rather than, say a
minimum or some other critical point). We will do this by exauing R (¢).
Recall that

in terms of the notation used above. Then

i - COHY GO

But, according to our remark above, at the patch time of @sigfthe candidate for optimal
time)
G(t)=0

so that

H2(t) — H(t)
Now we substitute the derivative 6f (t), H (¢) into this ratio:

G(t) = nf'(t)(to +nt) — n>f(t)

Ry - CWHO G0

ie.
G'(t) = nf“(8) (o + nt) + 02 f'(t) — n2f'(t) = nf"(t)(to + nt)

We find that
nf"”(t)(to + nt) nf"(t)
R“(t) = s = .
(to + nt) (to + nt)
The denominator of this expression is always positive, abttie sign ofR”(¢) will be the
same as the sign gf’(¢). But in order to have a maximum efficiency at some residence
time, we need?”’(t) < 0. This tells us that the gain function has to have the propgbey
f"(t) < 0,i.e. has to be concave down at the optimal residence time.
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Going back to some of the shapes of the functjign) that we discussed in our
examples, we see that only some of these will lead to an optodation. In cases (1),
(2), (4) the functionf(t) hasno points of downwards concavity on its graph. This means
that in such cases there will be no local maximum. The opteffadiency would then be
attained by spending as much time as possible in just onb patas little time as possible
in any patch, i.e. it would be attained at the endpoints.

6.8.1 References:

1. Stephens DW, Krebs J R (1986) Foraging Theory, Princetovdisity Press, Prince-
ton, NJ.

2. Charnov EL (1976) Optimal Foraging: the marginal valueotlem; Theor. Pop.
Biol. 9: 129-136.
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Exercises

6.1. The sum of two positive number28. Find the numbers
(a) if their product is a maximum.
(b) if the sum of their squares is a minimum.
(c) if the product of the square of one and the cube of the asheemaximum.

6.2. A tram ride at Disney World departs from its startingcglat: = 0 and travels
to the end of its route and back. Its distance from the terh@héime ¢ can be
approximately described by the expression

S(t) = 4t3(10 — t)

(wheret is in minutes) < ¢ < 10, andS is distance in meters.)
(a) Find the velocity as a function of time.
(b) When is the tram moving at the fastest rate?
(c) Atwhat time does it get to the furthest point away fromnsitzrting position?

(d) Sketch the acceleration, the velocity, and the posiicthe tram on the same
set of axes.

6.3. At9A.M., carB is 25 km west of another cad. Car A then travels to the south at
30 km/h and carB travels east at0 km/h. When will they be the closest to each
other and what is this distance?

6.4. A cannonball is shot vertically upwards from the growvitth initial velocity vy =
15m/sec. It is determined that the height of the bal(in meters), as a function of
the time,t (in sec) is given by

y = vot — 4.9t>

Determine the following:
(&) The time at which the cannonball reaches its highestpoin
(b) The velocity and acceleration of the cannonbatlat0.5 s, andt = 1.5 s.
(c) The time at which the cannonball hits the ground.
6.5. (From Final Exam, Math 100, Dec 1997) A closed 3-dimamai box is to be con-
structed in such a way that its volume is 4500°cihis also specified that the length
of the base is 3 times the width of the base. Find the dimegrsibthe box which

satisfy these conditions and have the minimum possibleserérea. Justify your
answer.

6.6. A box with a square base is to be made so that its diagasaldngthl. See
Figure 6.13.
(a) What heighty would make the volume maximal?

(b) What is the maximal volume?
[Hint: A box having side lengthg, w, h has diagonal lengt® whereD? =
0?2 + w? + h% and volume/ = (wh.]
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Figure 6.13.Figure for Problem 6

6.7. Find the minimum distance from a point on the positivexis (a, 0) to the parabola
y? = 8.

6.8. The largest garden: You are building a fence to completely enclose part of your
backyard for a vegetable garden. You have already purchraagstial for a fence
of length 100 ft. What is the largest rectangular area thatféimce can enclose?

6.9. “Good Fences make Good Neighbors”A fence of length 100 ft is to be used to
enclose two gardens. One garden is to have a circular shagehea other to be
square. Find out how the fence should be cut so that the sune afreas inside both
gardens is as large as possible.

6.10. Arectangular piece of cardboard with dimensidrcm by24 cm is to be made into
an open box (i.e., no lid) by cutting out squares from the emsrand then turning
up the sides. Find the size of the squares that should be tiittba volume of the
box is to be a maximum.

6.11. Find the shortest path that would take a milk-maid fiwen house at10, 10) to
fetch water at the river located along thexis and then to the thirsty cow €, 5).

6.12. Water and ice: Why does ice float on water? Because the density of ice is lower
In fact, water is the only common liquid whose maximal dgnsitcurs above its
freezing temperature. (This phenomenon favors the surefvaquatic life by pre-
venting ice from forming at the bottoms of lakes.) Accordinghe Handbook of
Chemistry and Physicge mass of water that occupies one litel0&€C occupies a
volume (in liters) of

V=—aT?+bT?—cT +1

at7°C where0 < T < 30 and where the coefficients are
a=6.79%x10"8 b=851x1075 ¢=6.42x107°.

Find the temperature betwe®hC and30°C at which the density of water is the
greatest. (Hint: maximizing the density is equivalent tonimizing the volume.
Why is this?)

6.13. Drug doses and sensitivity:The ReactionR(x) of a patient to a drug dose of size
x depends on the type of drug. For a certain drug, it was deteuinthat a good
description of the relationship is:

R(z) = Az*(B — 1)
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6.14.

6.15.

6.16.

where A and B are positive constants. Ttgensitivityof the patient’s body to the
drug is defined to b&’(x).

(a) For what value of: is the reaction a maximum, and what is that maximum
reaction value?

(b) For what value ofr is the sensitivity a maximum? What is the maximum
sensitivity?

Thermoregulation in a swarm of bees:: In the winter, honeybees sometimes es-
cape the hive and form a tight swarm in a tree, where, by shigethey can produce
heat and keep the swarm temperature elevated. Heat endogy tkrough the sur-
face of the swarm at a rate proportional to the surface dre® \Wherek; > 0 is
a constant). Heat energy is produced inside the swarm a¢ @raportional to the
mass of the swarm (which you may take to be a constant timegatene). We
will assume that the heat productiorkis\” whereks > 0 is constant. Swarms that
are not large enough may lose more heat than they can proghutéhen they will
die. The heat depletion rate is the loss rate minus the ptmduate. Assume that
the swarm is spherical. Find the size of the swarm for whietrétte of depletion of
heat energy is greatest.

Arightcircular cone is circumscribed about a sphéradius5. Find the dimension
of this cone if its volume is to be a minimum. (Remark: this imther challenging
geometric problem.)
Optimal Reproductive Strategy: Animals that can produce many healthy babies
that survive to the next generation are at an evolutionavgatdge over other, com-
peting, species. However, too many young produce a headehwn the parents
(who must feed and care for them). If this causes the parextiet the advantage is
lost. Also, competition of the young with one another ford@nd parental attention
jeopardizes the survival of these babies. Suppose thavtietienaryAdvantage
A to the parents of having litter sizeis

A(x) = ax — b
Suppose that th€ost C' to the parents of having litter sizeis
C(z) = mz +e.
TheNet Reproductive GainG is defined as
G=A-C.

(a) Explain the expressions far, C' andG.

(b) Atwhat litter size is the advantagé, greatest?

(c) Atwhat litter size is there least cost to the parents?

(d) Atwhat litter size is the Net Reproductive Gain greatest

6.17. Behavioural Ecology:: Social animals that live in groups can spend less time scan-

ning for predators than solitary individuals. Howevertli® waste time fighting



Exercises 113

6.18.

6.19.

6.20.

with the other group members over the available food. Thesmme group size
at which the net benefit is greatest because the animals $pastdiime on these
unproductive activities, and thus can spend time on feediraging, etc.

Assume that for a group of size the fraction of time spent scanning for predators

IS

1

and the fraction of time spent fighting with other animalsrdeed is
F(z) = B(z +1)?

where A, B are constants. Find the size of the group for which the timgte@ghon
scanning and fighting is smallest.

Logistic growth: Consider a fish population whose density (individuals pét un
area) isN. The rate of growthR of this population is found to satisfy

R(N)=rN(1 — N/K)

wherer and K are positive constants. This type of growth rate is cdlbggistic (or
density dependent) growth.

(a) Sketchrk and a function ofV.
(b) For what density of fish is the growth rate maximal?

Logistic growth with harvesting: Consider a fish population of density growing
logistically, i.e. with rate of growttR(N) = »N(1 — N/K) wherer and K are
positive constants. The rate of harvesting (i.e. removi@h®population is

h(N) = qEN

whereF, the effort of the fishermen, and the catchability of this type of fish, are
positive constants.

At what density of fish does the growth rate exactly balaneehidwrvesting rate ?
(This density is called the maximal sustainable yield: MSY.

Conservation of a harvested population:Conservationists insist that the density
of fish should never be allowed to go below a level at which ghorate of the
fish exactly balances with the harvesting rate. (At thisllede harvesting is at its
maximal sustainable yield. If more fish are taken, the pdmravill keep dropping
and the fish will eventually go extinct.) What level of fishieffiort should be used to
lead to the greatest harvest at this maximal sustainabld?/[&emark: you should
first do the previous problem.]



114 Chapter 6. Optimization




Chapter 7

The Chain Rule, Related
Rates, and Implicit
Differentiation

7.1 Function composition

Figure 7.1. Function composition

Shown in the diagram above is an example of function comiposiAn independent
variable,z, is used to evaluate a function, and the resul; f(x) then acts as an inputto a
second functiong. The resulty = g(u) = ¢g(f(z)) can be related to the original variable,
and we are interested in understanding how changes in tigatarvariable affect the final
outcome: That is, we want to know haychanges when we changeThe chain rule will
apply to this situation.

7.2 The chain rule

Thechain rule of differentiation helps to calculate the result of this ichaf effects. Ba-
sically, this rule states that the changeyimvith respect tar is a product of two rates of
change: (1) the rate of changeyWith respect to its immediate input and (2) the rate of
change ofu with respect to its inputy.

If y = g(u) andu = f(x) are both differentiable functions (meaning that their
derivatives exist everywhere), and we consider the cortpésictiony = g(f(x)) then
the chain rule says that
dy dydu

dr ~ dudz

It is common to use the notatiofydz as shown here when stating the chain rule,
simply because this notation helps to remember the rulehofifjh the derivative is not

115
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merely a quotient, we can recall that it is arrived at from atognt through a process of
shrinking an interval. If we write

Ay Ay Au

Az AuAz
then it is apparent that the “cancellation” of terfs in numerator and denominator lead
to the correct fraction on the left. The proof of the chairer(dptional) uses this essential
idea, but care is taken to ensure that the quantiiyis nonzero, to avoid the embarrassment
of dealing with the nonsensical ratig0.

The most important aspect of the chain rule to students efdburse is an under-
standing of why it is needed, and how to use it in practicahgyas. The following intu-
itive examples may help to motivate why the chain rule is das®ea product of two rates
of change. Later in this chapter, we discuss examples ofcgtioins of this rule.

Example 7.1 (Pollution level in a lake) A species of fish is sensitive to pollutants in its
lake. As humans settle and populate the area adjoining kiee ¢eme may see a decline in
the population of these fish due to increased levels of potiuQuantify the rate at which
the pollution level changes with time based on the pollupooduced per human and the
rate of increase of the human populationli

Solution: The rate of decline of the fish would depend on the rate of chanthe human
population around the lake, and the rate of change in thetmil created by each person.
If either of these factors increases, one would expect arase in the effect on the fish
population and their possible extinction. The chain rulesghat the net effect is a product
of the two interdependent rates. To be more specific, we dhind of time¢ in years,

x = f(t) as the number of people living at the lake in yeaandp = g(x) as the pollution
created byr people. Then the rate of change of the pollutipaver the years will be a
product in the rate of change of pollution per human, and #te of increase of humans
over time:

dp dpdx

dt ~ dr dt

Example 7.2 (Population of carnivores, prey, and vegetati) The population of large

carnivores,C, on the African Savannah depends on the population of gavzétlat are

prey,P. The population of these gazelles, in turn, depends on thedsnce of vegetation
V, and this depends on the amount of rain in a given yeaQuantify the rate of change
of the carnivore population with respect to the rainfallll

Solution: We can express these dependencies through functions;dfanite, we could
write V. = g(r), P = f(V) andC = h(P), where we understand that f, h are some
functions (resulting from measurement or data collectioth@ savanna).

As one specific example, shown in Figure 7.2, consider the thed

C=nP)=F, P=[f(V)=2V, V=yg(r)=r""

If there is a drought, and the rainfall changes, then thetkebsia change in the
vegetation. This will result in a change in the gazelle papah, which will eventually
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C P \Y

p Vv r

Figure 7.2. An example in which the population of carnivorés,= h(P) =
P? depends on prey’, while the prey depend on vegetatith= (V) = 2V, and the
vegetation depends on rainfall = g(r) = /2.

affect the population of carnivores on the savanna. We wiikegdto compute the rate of
change in the carnivores population with respect to thdatjnlC'/dr.
According to the chain rule,

dC  dC dP AV

dr ~ dPdV dr’
The derivatives we need are
av. 1, dP ac
ar 20 av T ap
so that dC dC dP dV 1 2P
2 _ 2R R 212 _
o~ dpavar 3 P =5

We can simplify this result by using the fact tiat= r'/? and P = 2V. Plugging these

in, we obtain
dC _ 2P _ 2(2V) 4
- V. vV 7
This example is simple enough that we can also express théerof carnivores
explicitly in terms of rainfall, by using the fact thét = h(P) = h(f(V)) = h(f(g(r))).
We can eliminate all the intermediate variables and expeissterms ofr directly:

C=P?=(2V)> =4V = 4(r'/?)? = 4r.

(This may be much more cumbersome in more complicated exampiVe can compute
the desired derivative in the simple old way, i.e.

ac
dr

We can see that our two answers agree.

4.

Example 7.3 (Budget for coffee)The budget spent on coffee depends on the number of
cups consumed per day and on the price per cup. The total bonilgiet change if the price
goes up or if the consumption goes up (e.g. during late nigitgparing for midterm ex-
ams). Quantify the rate at which your budget for coffee walldnge if both consumption
and price change.
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Solution: The total rate of change of the coffee budget is a productettiange in the
price and the change in the consumption. (In this examplenigat think of timet in days
as the independent variable = f(¢) as the number of cups of coffee consumed oniday
andy = g(x) as the price for: cups of coffee.)

dy dydz
dt  dxdt

7.3 Applications of the chain rule to “related rates”

Volume of sphere

Vv
Surface area of sphere S = iwrQ
Area of circle A=mr?
Perimeter of circle P =2nr
Volume of cylinder V =7rh
Volume of cone V = zmr’h
Area of rectangle A=uxy
Perimeter of rectangle | P =2z + 2y
Volume of box V =uayz

Sides of Pythagorean trianglec® = a? + b?

Table 7.1.Common relationships on which problems about related rateoften based.

In most of the applications given below, we are interestquatesses that take place
over time. We ask how the relationships between certain gé&iar{or physical) variables
affects that rates at which they change over time. Many afdlexamples are given as word
problems, and we are called on to assemble the required geomreother relationships
in solving the problem.

A few relationships that we will find useful are concentrabedrable 7.1 shown
below

Example 7.4 (Tumor growth:) A tumor grows so that its radius expands at a constant
rate,k. Determine the rate of growth of the volume of the tumor whenradius is one
centimeter. Assume that the shape of the tumor is well apmated by a sphere. B

Solution: The volume of a sphere of radiusis V' = (4/3)mr. Here bothr andV are
changing with time so that

V() = 3rlr (o)
Thus J L4
a (t) = g”&[r(t)];
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Figure 7.3. Growth of a spherical tumor

But we are told that the radius expands at a constant/ass, that

dr

E =
Hence
av
E = 471'7’2/{.
We see that the rate of growth of the volume actually goes esduare of the radius.
(Indeed a more astute observation is that the volume growasrate proportional to the
surface area, since the quantityr? is precisely the surface area of the sphere.

In particular, forr = 1 cm we have

av

— =drk.

a
Example 7.5 (A spider’s thread:) A spider moves horizontally across the ground at a
constant ratek, pulling a thin silk thread with it. One end of the thread ithezed to a
vertical wall at height, above ground and does not move. The other end moves with the
spider. Determine the rate of elongation of the threadll

Figure 7.4. The length of a spider’s thread

Solution: We use the Pythagorean Theorem to relate the height of thertgointh, the
position of the spidet,, and the length of the thredd

02 = h? + 22
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We note that is constant, and that, ¢ are changing so that
(€)= h* + [z(t))*.

Differentiating with respect té leads to

d 2\ _ i 2 2
g (OP) = 2 (0% + [2(0)]?)
dl dx
Thus
dt_2ede
dt 20 dt’
Simplifying and using the fact that
dr _
dt

leads to

dt  R2+a2

Example 7.6 (A conical cup:) Water is leaking out of a conical cup of heigtitand radius
R. Find the rate of change of the height of water in the cup airtbint that the cup is
full, if the volume is decreasing at a constant rate, B

d@_:vk i T

| R

Figure 7.5. The geometry of a conical cup

Solution: Let us defingy andr as the height and radius of water inside the cone. Then we
know that the volume of this (conically shaped) water in theecis



7.4. Implicit differentiation 121

We are told that
awv

dt ’
where the negative sign indicates that volume is decreasing
By similar triangles, we note that

r_R
h  H
so that we can substitute
i h
r=—=
H
and get the volume in terms of the height alone:
1 [R]? 5

We can now use the chain rule to conclude that

Vv 1 [R ydh
dt 3

2
™ ﬁ] 8lh(t) =

Now using the fact that volume decreases at a constant ratgetv

RV .dh
—k=m [E} (RO —
or
dh  —kH?
dt  mwR2h2’

The rate computed above holds at any time as the water leak$ e container. At
the instant that the cup is full, we haét) = H andr(t) = R, and then

dh _ —kH 2 —k
dt wR?H? wR2
For example, for a cone of height = 4 and radiusk = 3,
dh  —k
dt 9’
Itis important to remember to plug in the information abdwg specific instant at the very
end of the calculation, after the derivatives are computed.

7.4 Implicit differentiation

Often we would like to find the slope of a tangent line to a cuvhese equation is not easily
expressed in a form wheggis a function ofz. In such casesmplicit differentiation is a
useful tool to use.
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y x.y) y tangent line
)
X
W Ei> ZOOM
X
(@) (b)

Figure 7.6. The curve in (a) cannot be described by a single functiorcésthere
are values ofr that have more than one corresponding valueg)ofHence it can only be
described implicitly. However, if we zoom in to a point in, (v can define the derivative
as the slope of the tangent line to the curve at the point efést.

Shown in Figure 7.6 is a curve in they plane. By inspection, we see that it is
unlikely that the relationship of the variables can be esgee by a single formula in which
y is written explicitly as a function of, such agy = f(z). We have trouble doing so
because this curve evidently is not a function: it does ntisfyahe vertical line property.
Nevertheless, we can reasonably ask what the slope of artaiagihe curve would be at
some point along this curve, such as the one shown in the zdbmslope will still be in
the formAy/Az, and the slope of the tangent line will dg/dxz. We now show how to
compute this slope in several examples where is is incoemgror impossible to isolatg
as a function ofe.

Example 7.7 (Tangent to a circle:) In the first example, we find the slope of the tangent
line to a circle. This example can be done in a number of diffeways, but here we focus
on the method of implicit differentiation.

(a) Find the slope of the tangent line to the paint 1/2 in the first quadrant on a circle
of radius 1 and center at the origin.

(b) Find the second derivativEy/dx? at the above point.
[ |
ﬁy\

Figure 7.7. Tangent line to a circle by implicit differentiation

Solution:
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(&) The equation of a circle with radius 1 and center at thgirors

2?47 =1.

Whenz = 1/2we havey = +/1 — (1/2)2 = +./1 — (1/4) = +/3/2. However
only one of these two values is in the first quadrant, ye= ++/3/2, so we are
concerned with the behaviour close to this point.

In the original equation of the circle, we see that the twdaldes are linked in a
symmetric relationship: although we could solve igrwe would not be able to
express the relationship as a single function. Indeed,dpeot the circle can be

expressed as
y=hie)=v1-a?

y=fo(z) =—v1-2a%
However, this makes the work of differentiation more comgied than it needs be.

Here is how we can handle the issue conveniently: We willkloiin: as the indepen-
dent variable ang as the dependent variable. That is, we will think of the behav

close to the point of interest as a small portion of the uppergf the circle, in which

y varies locally as: varies. Then the equation of the circle would look like this:

and the bottom as

2 + Jy(@)]? = 1.
Now differentiate each side of the above with respeat:to

& DR = =0 = (% * %Mm)ﬁ) =0,

We now apply the chain rule to the second term, and obtain

dy
2 2 — =0
2+ 2ly(a)| -
Thus J J 5
0™ _ 9, dy _ 2@ _ @

dx = dx__Q_y_ Y

Here the slot of the tangent line to the circle is expressedrato of the coordinates
of the point of the circle. We could, in this case, simplify to

()= w2

Cde V127

(This will not always be possible. In many cases we will notéhan easy way to
expresg as a function of: in the final equation).

The point of interest is: = 1/2 (and hergy = v/3/2). Thus

, dy 12 -1 =3

Vo4 T VB2 V3 3
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(b) The second derivative can be computed by differentiatin

iy _ T
Y= e Y
We use the quotient rule:
d?y o d x
de?  dx Yy
Py ly—azy y—x=rF oy 1
dx2 — Y2 - Y2 - 3 - y3

Substitutingy = v/3/2 from part (a) yields

d?y 1 8

da® " (V3j2r  33/2)

We have used the equation of the circle, and our previoustfesuhe first deriva-
tive in simplifying the above. We can see from this last egpien that the second
derivative is negative fay > 0, i.e. for the top semi-circle, indicating that this part of
the curve is concave down (as expected). Similarlyyfer 0, the second derivative
is positive, and this agrees with the concave up propertygaifpiortion of the circle.

As in the case of simple functions, the second derivativeticas help identify con-
cavity of curves.

7.5 The power rule for fractional powers

Implicit differentiation can help in determining the deatives of a number of new func-
tions. In this case, we use what we know about the integer potealetermine the deriva-
tive for a fractional power such dg2. A similar idea will recur several times later on in
this course, when we encounter a new type of function andvesse function.

Example 7.8 (Derivative of,/z:) Consider the function

y=vu

Use implicit differentiation to compute the derivative bf¢ function. Nl

Solution: We can re-express this function in the form

Yy = /2
In this example, we will show that the power rule applies ia #ame way to fractional
powers: That is, we show that

1
() = 5o
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We rewrite the functioy = /x in the form
y' =z

but we will continue to think of; as the dependent variable, i.e. when we differentiate, we
will remember that

y(@)]? =2
Taking derivatives of both sides leads to

L (@) = <)

2ly(a)) 52 =1

dy 1
der 2y’
We now use the original relationship to eliminatei.e. we substitutg = /z. We find
that
dy 1 _ 1 ap
dr 2z 2 '
This verifies the power law for the above example.
A similar procedure can be applied to a power function witttfional power. When

we apply similar steps, we find that

Derivative of fractional-power function: The derivative of

This is left as an exercise for the reader.
Example 7.9 Compute the derivative of the function

y = f(x) = Va2 +a?, wherea is some positive real number

Solution: This function can be considered as the composition(af = \/u andu(x) =
22 +a?, Thatis, we can writg (z) = g(h(z)) We rewriteg in the form of a power function
and then use the chain rule to compute the derivative. Werobta

dy 1 2 2\—1/2 < <
A d2)"1V2 9y = =
dr 9 ($ + ) x (x2 + d2)1/2 /22 ¥ d2
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Example 7.10 Compute the derivative of the function

T

y = f(x) = ——=——=, whered is some positive real number
x? 4 d?

Solution: We use both the quotient rule and the chain rule for this ¢aticun.
dy  [z]- Vi +d? — Va2 +d?] - o
dx (Va2 + d?)2
Here the denotes differentiation. Then
dy LvVa2+d—[L 22 (22 +d*) V2
dx (22 + d?)

We simplify algebraically by multiplying top and bottom y> + d?)'/? and canceling
factors of 2 to obtain

dy 22+ d? — a2 - d?

dr (22 + d2)1/2(22 + d2) B (x2 4 d2)3/2
Example 7.11 (The astroid:) The curve

2213 1y 2/3 — 9213

has the shape of astroid. It describes the shape generated by a ball of ra§iimiling
inside a ball of radius 2. Find the slope of the tangent lina pmint on the astroid. B

Solution: We use implicit differentiation as follows:

d ( a3 2/3) _d o
dx (x ty B dx2
2 s dgsdy
— —_ —_— = O
3I * dy(y )dx
2 a3 2 apdy
— — —_— = O
37 T3V T w
d
13 4 y—1/3_y —0
dx
We can rearrange into the form:
dy z~1/3
dr Ty

We can see from this form that the derivative fails to exisb@th z = 0 (wherez—'/3
would be undefined) and gt= 0 (wherey—'/3 would be undefined. This stems from the
sharp points that the curve has at these places.

In the next example we put the second derivative to work imgplicit differentiation
problem. The goal is as follows:
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Example 7.12 (Horizontal tangent and concavity on a rotateellipse:) Find the highest
point on the (rotated) ellipse
2+ 3y —ay =1

Solution: The highest point on the ellipse will have a horizontal taridgiee, so we should
look for the point on this curve at whiafy /dxz = 0. We proceed as follows:

1. Finding the slope of the tangent line:By implicit differentiation,

d ., 9 _d

d(z?)  dBy?) d(zy)
dz * de  dx =0

We must use the product rule to compute the derivative ofakietérm on the LHS:
dy dy dx

2x+6y£—xa—ay:0

dy dy
2 2= —1y=
T+ 6yd:v Id:v y=20
Grouping terms, we have
dy

(6y—x)£+(2x—y):0

Thus
dy _ (y—2x)
dr  (6y —=z)
We can also use the notation
(y — 2z)
(6y —x)
to denote the derivative. Settinly/dz = 0, we obtainy — 2z = 0 so thaty = 2z

at the point of interest. However, we still need to find therdamates of the point
satisfying this condition.

y'(z) =

2. Determining the coordinates of the point we want:To do so, we look for a point
that satisfies the equation of the curve as well as the condit= 2. Plugging into
the original equation of the ellipse, we get:

2+ 3y —ay=1
2? +3(27)? — z(27) = 1.
After simplifying, this equation becomasdz? = 1, leading to the two possibilities
1 2
+— y=t—.
V11 Y vant

xr =
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Figure 7.8. A rotated ellipse

We need to figure out which one of these two points is the topid@ntly, the other
point would also have a horizontal tangent, but would be at“dottom” of the
ellipse.)

3. Finding which point is the one at the top: The top point on the ellipse will be lo-
cated at a portion of the curve that is concave down. We carméie the concavity
close to the point of interest by using the second derivatidegch we will compute
(from the first derivative) using the quotient rule:

Py [y —22](6y — ) — [6y — 2] (y — 22)

y”(I) = @ = (6y — .I')2
" y —2](6y —z) — [6y — 1 — 2z
oy =A== oy =)

In the above, we have used the “prime” notation (°) to denadervative.

4. Plugging in information about the point: Now that we have set down the form
of this derivative, we make some important observationsiatiee specific point of
interest: (Note that this is done as a final step, only aftededivatives have been
calculated!)

e We are only concerned with the sign of this derivative. Theateinator is always
positive (since it is squared) and so will not affect the si@ihis possible to work
with the sign of the numerator alone, though, in the inteoégiroviding detailed
steps, we go through the entire calculation below.)

e At the point of interest (top of ellipse) = 0, simplifying some of the terms above.

e Atthe pointin questiony = 2z so the term(y — 2z) = 0.
We can thus simplify the above to obtain

S () = [-2)(6y — ) — [-2](0) _ [-2](6y —x) -2
(6y — )2 (6y — )2 (6y — )
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Using again the fact that = 2, we get the final form

-2 -2
" _ -
V@)= Gan —o) " 1
We see directly from this result that the second derivatvedgative (implying concave
down curve) whenever is positive. This tells us that at the point with positiveralue,
x = 1/4/11, we are at the top of the ellipse. A graph of this curve is shiowFigure 7.8.

7.6 Food choice and attention

The example described in this section is taken from acteébgical research. It has several
noteworthy features: First, we do put the chain rule to uséhénproblem. Second, we
encounter a surprise in some of our elementary calculatibnisd, we find that not every

problem has an elegant or analytically simple solution. afjn we see that some very
general observations can provide insight that we do not geatasily from the specific

cases. The problem is taken from the study of animal behaviou

Paying attention

Behavioural ecologist Reuven Dukas (McMaster U) studiesctivices that animals make
when deciding which food to look for. His work has resultedwoth theoretical and ex-

perimental conclusions about choices and strategies tivagés follow. The example de-

scribed below is based on his work with blue jays describezbireral publications. (See
references.)

Many types of food areryptic, i.e. hidden in the environment, and require time
and attention to find. Some types of food are more easy to ttax other types, and
some foods provide more nourishment than other types. Igl¢lae animal that succeeds
in gaining the greatest nourishment during a typical day kdve a greater chance of
surviving and out-competing others. Thus, it makes senseahimals should chose to
divide their time and attention between food types in sucltag &s to maximize the total
gain over the given time period available for foraging.

Setting up a model

Suppose that there are two types of food available in ther@mvient. We will define a
variable that represents the attention that an animal castelé finding a given food type.

e Letz = attention devoted to finding food of some type. Assume(hatr < 1, with
x = 0 representing no attention at all to that type of food and 1 full attention
devoted to finding that item.

e Let P(x) denote the probability of finding the food given that attenti is devoted
to the task. The < P < 1, as is commonly assumed for a probabilify. = 0
means that the food is never found, afd= 1 means that the food is always found.

e Consider foods that have the propefy0) = 0, P(1) = 1. This means that if no
attention is payedy = 0) then there is no probability of finding the foo# (= 0),
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whereas if full attention is given to the task = 1 then there is always success
(P =1).

e Suppose that there is more than one food type in the aninraliscement. Then we
will assume that the attentions paid to finding these foods)dy sum up to 1: i.e.
since attention is limited; 4y = 1, or, simply,y = 1 — x.

In figure 7.9, we show typical examples of the success versestion curves for
four different types of food labeled 1 through 4. On the haomial axis, we show the
attention0 < z < 1, and on the vertical axis, we show the probability of suce¢$mding
food,0 < P < 1. We observe that all the curves share in common the featuzgsawe
described: Full success for full attention, and no sucamssd attention.

However the four curves shown here differ in their values&trmediate levels of
attention.

0 attention, x 1

Figure 7.9. The probability,P, of finding a food depends on the level of attention
2 devoted to finding that food. We show possible curves fortjgas of foods, some easier
to find than others.

Questions:

1. What is the difference between foods of type 1 and 4?
2. Which food is easier to find, type 3 or type 47

3. Whatrole is played by the concavity of the curve?

You will have observed that some curves, notably those a@awn, such as curves
3 and 4 rise rapidly, indicating that the probability of findifood increases a lot just by
increasing the attention by a little: These represent foloasare relatively easy to find. In
other cases, where the function is concave up, (curves 1)ame2nust devote much more
attention to the task before we get an appreciable increatieei probability of success:
these represent foods that are harder to find, or more cryffémow explore what happens
when the attention is subdivided between several food types
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Suppose that two foods available in the environment carribome relative levels of
nutrition 1 and N per unit. We wish to determine for what swision of the attention,
would the total nutritional value gained be as large as pssi

Suppose thaP; () and P> (y) are probabilities of finding food of type 1 or 2 given
that we spend attentionor y in looking for that type.

Let 2 = the attention devoted to finding food of type 1. Then atangi= 1 — x can
be devoted to finding food of type 2.

Suppose that the relative nutritional values of the foodslaandV.

Then the total value gained by splitting up the attentiomdeen the two foods is:

V(z) = Pi(x) + N P»(1 —x).

Example 7.13 (P, and P, as power function with integer powers:) Consider the case that
the probability of finding the food types is given by the simpbwer functions,

Pi(z) =2 Pyy) =y’

Find the optimal food valu& (x) that can be attained. l

Solution: We note that these functions satigR(0) = 0, P(1) = 1, in accordance with
the sketches shown in Figure 7.9. Further, suppose thatfbotis are equally nutritious.
ThenN = 1, and the total value is

V(z) = Pi(z) + N Py(1 —z) = 2® + (1 — )3
We look for a maximum value df : SettingV’(x) = 0 we get (using the Chain Rule:)
V'(z) =22+ 3(1 —z)*(~1) = 0.
We obsgerve that a negative facier1) comes from applying the chain rule to the factor
e x‘lzh'e above equation can be expanded into a simple quadrattieq;
—32°+82—-3=0

whose solutions are

R i?)‘ﬁ ~ 0.4514,2.21.
Since the attention must take on a valu@ it = < 1, we must reject the second of the two
solutions. It would appear that the animal may benefit mostggnding a fraction 0.4514
of its attention on food type 1 and the rest on type 2.
However, to confirm our speculation, we must check whethectitical point is a
maximum. To do so, consider the second derivative,
d
V" (z) = o (22 -3(1—2)*) =2-32)1—2)(-1) =2+6(1 — z).
(The factor(—1) that appears in the computation is due to the Chain Ruleepfui 1 — z)
as before.)
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Observing the result, and recalling that< 1, we note that the second derivative
is positivefor all values ofz! This is unfortunate, as it signifieslacal minimunh The
animal gains least by splitting up its attention betweerfdlogls in this case. Indeed, from
Figure 7.10, we see that the most gain occurs at either) (only food of type 2 sought)
orx = 1 (only food of type 1 sought). Again we observe the importaofcehecking for
the type of critical point before drawing hasty conclusions

V1(x) V2(x)

(@) (b)

Figure 7.10.(a) Figure for Example 7.13 and (b) for Example 7.14

Example 7.14 (Fractional-power functions forP;, P»:) As a second example, consider
the case that the probability of finding the food types is gilig the concave down power
functions,

Pi(z) =2'?, P(y) =y'/®

and both foods are equally nutritiou§ (= 1). Find the optimal food valug'(z) N

Solution: These functions also satisf#(0) = 0, P(1) = 1, in accordance with the
sketches shown in Figure 7.9. Then

V(z)=Pi(x)+ P(1—2)= VT + (1— x)(1/3)
_ 1 1
T2z 3(L0-x)@/3)
1 2
T 420G T 9(1.0 - 2)6/3)

Calculations to actually determine the critical point amther ugly, and best handled nu-
merically. We state without details the fact that a critjsaint occurs at: = 0.61977 (and
y = 1—2a = 0.38022.) within the interval of interest. A plotting program is ukt® display
the Value obtained by splitting up the attention in this wafFigure??. Itis clear from this

V/(x)

V//(x) —
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figure that a maximum occurs in the middle of the intervalfareattention split between
finding both foods. We further see froW(’(z) that the second derivative is negative for all
values ofz in the interval, indicating that we have obtained a local imasm, as expected.

Epilogue

While the conclusions drawn above were disappointing inspeeific case, it is not always
true that concentrating all one’s attention on one type igntgd. We can examine the
problem in more generality to find when the opposite conolusnight be satisfied. In the
general case, the value gained is

V(z) = Pi(x) + N P2(1 —x).
A critical point occurs when

d
V'(z) = E[Pl(x) + N Py(1—2x)] = P/(x)+ NP)(1 —z)(—1) =0
(By now you realize where the extra teim 1) comes from - yes, from the Chain Rule!)
Suppose we have found a valuexfn 0 < 2 < 1 at which this is satisfied. We then
examine the second derivative:

d d

Vi (z) = —[V'(@)] = Z[PI(2)=NPy(1=2)] = P (@) =N Py (1-2)(-1) = P “(@) +N Py (1-).

dx
The concavity of the functiolr” is thus related to the concavity of the two functidhgz)
andP» (1 — x). If these are concave down (e.g. as in food types 3 or 4 in EigL), then
V"(x) < 0 and a local maximum will occur at any critical point found byralifferentia-
tion.

Another way of stating this observation is: if both food tg@e relatively easy to
find, one can gain most benefit by splitting up the attentidwben the two. Otherwise, if
both are hard to find, then it is best to look for only one at atim

7.7 Shortest path from food to nest

Ants are good mathematicians! They are able to find the stoxdate that connects their
nest to a food source, to be as efficient as possible in bigrthe food back home.

But how do they do it? It transpires that each ant secretegmiclalpheromone
that other ants like to follow. This marks up the trail thagyhuse, and recruits nest-
mates to food sources. Tpbaeromone(chemical message for marking a route) evaporates
after a while, so that, for a given number of foraging antyragér trail will have a less
concentrated chemical marking than a shorter trail. Thiameghat whenever a shorter
route is found, the ants will favour it. After some time, tléads to selection of the shortest
possible trail.

Shown in the figure below is a common laboratory test scepafiere ants at a nest
are offered two equivalent food sources to utilize. We wieuthe chain rule and other
results of this chapter to determine the shortest path thia¢nverge after the ants explore
for some time.
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Food d Food Food d Food Food d Food
X
D D
Nest Nest Nest
)] (b) (c)

Figure 7.11. Three ways to connect the ants’ nest to two food sources,isgow
(a) a V-shaped, (b) T-shaped, and (c) Y-shaped paths.

Example 7.15 (Minimizing the total path length for the ants) Use the diagram to deter-
mine the length of the shortest path that connects the ndxittofood sources. Assume
thatd << D. 1

Solution: We consider two possibilities before doing any calculuse Tibst is that the
shortest path has the shape of the leftavhereas the second is that it has the shape of a
letterV. Then for a T-shaped path, the total lengttDist 2d whereas for a V-shaped path
itis 21/ D2 + d2. Now we consider a third possibility, namely that the path the shape
of the letterY. This means that the ants start to walk straight ahead and/#®r off to the
food after a while.

It turns out to simplify our calculations if we label the diste from the nest to the
Y-junction asD — x. Thenz is the remaining distance shown in the diagram. The length
of the Y-shaped path is then given by

L=L(x) = (D —z)+2Vd? + 22 (7.1)

Now we observe that when = 0, thenL, = D + 2d, which corresponds exactly to the
T-shaped path, whereas when= D thenLy = 2v/d? + D? which is the length of the
V-shaped path. Thus in this problem, we hé@ve = < D as the appropriate domain, and
we have determined the valuesioft the two domain endpoints.

To find the minimal path length, we look for critical points thfe functionZ(z).
Differentiating, we obtain (using results of Example 7.9)

fﬁf 1+2L
T odr /22 £ d2

Critical points occur af.’(z) = 0, which corresponds to

L'(x)

T

—14+2——==0
Va2 +d?
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We simplify this algebraically to obtain
V2+d2 =22 = 224+d°=42> = 3*=d* = zr=—.

To determine the kind of critical point, we find the second\agive (See Example 7.10).
Then
_d’L 5 d?
Todx? (xQ + d2)*3/2
Thus the second derivative is positive and the critical pisia local maximum.

To determine the actual length of the path, we substituted/+/3 into the function
L(x) and obtain (after simplification, see Exercise 7.28)

L' (z) >0

L=L(x)=D+V3d

d 4.4

4.3 1

x=d/sqrt(3)

424

4.1

() (b)

Figure 7.12. (a) In the configuration for the shortest path we found that
d//3. (b) The total length of the path(z) as a function of: for D = 2,d = 1. The
minimal path occurs whem = 1/v/3 ~ 0.577. The length of the shortest path is then
L=D++3d=2++3~3.73.

7.8 Optional: Proof of the chain rule

First note that if a function is differentiable, then it isalcontinuous. This means that
whenz changes a very littley, can change only by a little. (There are no abrupt jumps).
ThenAz — 0 means that\u — 0.

Now consider the definition of the derivatidg /du:

dy . Ay
_— = m —-
du  Au—0 Au
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This means that for any (finite)u,

Ay dy
Au  du

wheree — 0 asAu — 0. Then
d
Ay = Y Au + eAu
du

Now divide both sides by some (nonzerd): Then

Ay  dyAu n Au
Az duAx eA:v
TakingAxz — 0 we getAu — 0, (by continuity) and hence also— 0 so that as desired,
dy  dydu
dr  dudx

e Dukas R, Kamil A C(2001) Limited attention: The constrainderlying search im-
age. Behavioral Ecology. 12(2): 192-199.

e Dukas R; Kamil A C (2000) The cost of limited attention in bljags. Behavioral
Ecology 11(5): 502-506.

e Dukas R, Ellner S, (1993) Information processing and pretead®mn. Ecology.
74(5): 1337-1346.
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Exercises

7.1

7.2.

7.3.

7.4.

7.5.

7.6.

For each of the following, find the derivativegvith respect tac.
(@ yb+3y—22—T23=0
(b) e¥ + 22y =3
(©) y = e
Consider the growth of a cell, assumed spherical inesh8pppose that the radius

of the cell increases at a constant rate per unit time. (Baltonstant, and assume
thatk > 0.)

(a) Atwhat rate would the volumé/, increase ?
(b) At what rate would the surface ares,increase ?

(c) At what rate would the ratio of surface area to volu§y@ change? Would
this ratio increase or decrease as the cell grows? [Remaik:that the an-
swers you give will be expressed in terms of the radius of &l ¢

Growth of a circular fungal colony: A fungal colony grows on a flat surface start-
ing with a single spore. The shape of the colony edge is @rdwlith the initial site
of the spore at the center of the circle.) Suppose the raditreaolony increases
at a constant rate per unit time. (Call this constant

(a) Atwhat rate does the area covered by the colony change ?

(b) The biomass of the colony is proportional to the area d@upies (factor of
proportionalityc). At what rate does the biomass increase?

Limb development: During early development, the limb of a fetus increasesze,si
but has a constant proportion. Suppose that the limb is tgwgbircular cylinder
with radiusr and length in proportion

ljr==C

where( is a positive constant. Itis noted that during the initiahpd of growth, the
radius increases at an approximately constant rate, ae. th

dr/dt = a.

At what rate does the mass of the limb change during this tifNe%: assume that
the density of the limb is 1 gm/chand recall that the volume of a cylinder is

V=A

whereA is the base area (in this case of a circle) arsdength.]

A rectangular trough B meter long0.5 meter across the top andneter deep. At
what rate must water be poured into the trough such that ththae the water is
increasing al m/min when the depth of the water@s7 m?

Gas is being pumped into a spherical balloon at the fatexm?/s.
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7.7.

7.8.

7.9.

7.10.

7.11.

7.12.

7.13.

(a) How fast is the radius increasing when the radiusism?

(b) Without using the result from (a), find the rate at whicé furface area of the
balloon is increasing when the radiusiizcm.

. 1,5,
A point moves along the parabgja= -2 in such a way that at = 2 the z-

coordinate is increasing at the ratefo€m/s. Find the rate of change gfat this
instant.

Boyle’s Law: In chemistry, Boyle’s law describes the behaviour of an lidees:
This law relates the volume occupied by the gas to the teryperand the pressure
as follows:

PV =nRT
wheren, R are positive constants.

(a) Suppose that the pressure is kept fixed, by allowing tee@axpand as the
temperature is increased. Relate the rate of change of eotarthe rate of
change of temperature.

(b) Suppose that the temperature is held fixed and the peesstecreased gradu-
ally. Relate the rate of change of the volume to the rate ofighaf pressure.

Spread of a population: In 1905 a Bohemian farmer accidentally allowed several
muskrats to escape an enclosure. Their population grew @, occupying
increasingly larger areas throughout Europe. In a clalsgaaer in ecology, it was
shown by the scientist Skellam (1951) that the square rodh@foccupied area
increased at a constant rate, Determine the rate of change of the distance (from
the site of release) that the muskrats had spread. For sityplfou may assume
that the expanding area of occupation is circular.

A spherical piece of ice melts so that its surface ageesdses at a rate of 1 &min.
Find the rate that the diameter decreases when the diara&en.

A Convex lens: A particular convex lens has a focal length of= 10 cm. The
distancep between an object and the lens, the distapnbetween its image and the
lens and the focal lengtf are related by the equation:

1 1 1

f p q

If an object is 30 cm away from the lens and moving away at 4 ecfsow fast is
its image moving and in which direction?

A conical cup: Water is leaking out of a small hole at the tip of a conical pajup

at the rate of 1 cfimin. The cup has height 8 cm and radius 6 cm, and is initially
full up to the top. Find the rate of change of the height of watéhe cup when the
cup just begins to leak. [Remark: the volume of a corlé is (7/3)r2h.]

Conical tank: Water is leaking out of the bottom of an inverted conical tahthe

1 . . . .
rate ofﬁ m?/min, and at the same time is being pumped in the top at a constant
rate ofk m?/min. The tank has height m and the radius at the top %m. De-

. . S 1
termine the constarit if the water level is rising at the rate %f m/min when the
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7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

height of the water i& m. Recall that the volume of a cone of radiuand height
is

1
V = gﬂ"l’Qh.

The gravel pile: Gravel is being dumped from a conveyor belt at the ra®gft® /min
in such a way that the gravel forms a conical pile whose bammelier and height
are always equal. How fast is the height of the pile increg@sihen the height is

. . . . 1
10 ft? (Hint: the volume of a cone of radiusand height: is V' = §7r7°2h.)

The sand pile: Sand is piled onto a conical pile at the rate16fn®/min. The
sand keeps spilling to the base of the cone so that the shapgsahas the same
proportions: that is, the height of the cone is equal to tlikusaof the base. Find
the rate at which the height of the sandpile increases wheehelght is 5 m. Note:
The volume of a cone with heightand radius is

v=2rh
Water is flowing into a conical reservoir at a rate af? /min. The reservoir i$ m
in radius and 2 m deep.

(a) How fast is the radius of the water surface increasingnithe depth of the
water is8§ m?

(b) In (a), how fast is the surface rising?

A ladderl0 meters long leans against a vertical wall. The foot of theéadtarts to
slide away from the wall at a rate 8fm/s.

(a) Find the rate at which the top of the ladder is moving doamtlwhen its foot
is 8 meters away from the wall.

(b) In (a), find the rate of change of the slope of the ladder.

Sliding ladder: A ladder 5 m long rests against a vertical wall. If the bottdithe
ladder slides away from the wall at the rate of 0.5 meter/now Fast is the top of
the ladder sliding down the wall when the base of the ladd&msaway from the
wall ?

Ecologists are often interested in the relationskigvben the area of a regiod)
and the number of different speci§shat can inhabit that region. Hopkins (1955)
suggested a relationship of the form

S =aln(l+bA)

wherea andb are positive constants. Find the rate of change of the number
species with respect to the area. Does this function havexamaan?

The burning candle: A candle is placed a distanéefrom a thin block of wood of
heightH. The block is a distandg from a wall as shown in Figure 7.13. The candle
burns down so that the height of the flame decreases at the rate€&m/hr. Find
the rate at which the length of the shadgwast by the block on the wall increases.
(Note: your answer will be in terms of the constahtandi,. Remark: This is a
challenging problem.)
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l4 ol
Figure 7.13.Figure for Problem 20

7.21. Use implicit differentiation to show that the derivatof the function

y = /3

y' = (1/3)a°.
First write the relationship in the forg® = z, and then findiy /dx.

7.22. Generalizing the Power Law:
(a) Use implicit differentiation to calculate the deriwegtiof the function

y=f@) ="/

wherem andn are integers. (Hint: rewrite the equation in the foyith = 2"
first.)
(b) Use your result to derive the formulas for the derivatieéthe functiong =
Jr andy = z~1/3,
7.23. The equation of a circle with radiugnd center at the origin is

2y =12
(a) Use implicit differentiation to find the slope of a tangéne to the circle at
some poin{z, y).
(b) Use this result to find the equations of the tangent lirfeth® circle at the
points whoser coordinate isc = r/\/ﬁ.

(c) Use the same result to show that the tangent line at amt paithe circle is
perpendicular to the radial line drawn from that point to¢kater of the circle

Note: Two lines are perpendicular if their slopes are negativiprecals.
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7.24. The equation of a circle with radigsnd center atl, 1) is
(=1 +(y—1)* =25

(a) Find the slope of the tangent line to this curve at thetpdird).
(b) Find the equation of the tangent line.
7.25. Tangent to a hyperbola: The curve

T —y2:1

is a hyperbola. Use implicit differentiation to show that fargex andy values, the
slopedy/dzx of the curve is approximatell.

7.26. An ellipse: Use implicit differentiation to find the points on the ellgs

22 g2
I
4+9

at which the slope is -1/2.

7.27. Motion of a cell: In the study of cell motility, biologists often investigadeype of
cell called a keratocyte, an epidermal cell that is founchim $cales of fish. This
flat, elliptical cell crawls on a flat surface, and is known ®ilmportant in healing
wounds. The 2D outline of the cell can be approximated by Hliyese

2%/100 + y?/25 = 1

wherex andy are distances ip (Note: 1 micron isl0—® meters). When the motion
of the cell is filmed, it is seen that points on the “leading&dgop arc of the ellipse)
move in a direction perpendicular to the edge. Determinelifeztion of motion of
the point(z,, y,) on the leading edge.

7.28. Shortest path from nest to food sources:

(a) Use the first derivative test to verify that the vatlue: <% is a local minimum

V3
of the functionL(x) given by Eqn (7.1)
(b) Show that the shortest pathlis= D + v/3d.
(c) In Section 7.7 we assumed thak < D, so that the food sources were close

together relative to the distance from the nest. Now supfieseD = d/2.
How would this change the solution to the problem?

7.29. Geometry of the shortest ants’ path:Use the results of Section 7.7 to show that in
the shortest path, the angles between the branches of thepéd path are all 120
You may find it helpful to recall thatin(30) = 1/2, sin(60) = v/3/2.

7.30. The Folium of Descartes:A famous curve (see Figure 7.14) that was studied his-
torically by many mathematicians (including Descartes) is

2% + 9 = 3axy

You may assume thatis a positive constant.
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1.5a,1.5a)

Figure 7.14.The Folium of Descartes in Problem 30

(a) Explain why this curve cannot be described by a functimhsasy = f(z)
over the domain-oo < x < oc.

(b) Use implicit differentiation to find the slope of this eerat a poin{x, y).
(c) Determine whether the curve has a horizontal tangem#éinywhere, and if so,
find thex coordinate of the points at which this occurs.

(d) Does implicit differentiation allow you to find the slopé this curve at the
point (0,0) ?

7.31. Isotherms in the Van-der Waal's equation: In thermodynamics, the Van der

7.32.

7.33.

Waal's equation relates the mean presspref a substance to its molar volume
v at some temperatufg as follows:

a
(p+ 0—2)(11 —b)=RT
whereaq, b, R are constants. Chemists are interested in the curves deddy this
equation when the temperature is held fixed. (These curessadled isotherms).

(a) Find the slopejp/dv, of the isotherms at a given poift, p).

(b) Determine where points occur on the isotherms at whietstbpe is horizon-
tal.

The circle and parabola: A circle of radius 1 is made to fit inside the parabola
y = z? as shown in figure 7.15. Find the coordinates of the centemisfdircle,
i.e. find the value of the unknown constan{Hint: Set up conditions on the points
of intersection of the circle and the parabola which arelkbé:, b) in the figure.
What must be true about the tangent lines at these points?]

Consider the curve whose equation is

2+ y3 4+ 22y =4, y = 1 whenz = 1.
(a) Find the equation of the tangent line to the curve when1.
(b) Findy"” atz = 1.

(c) Isthe graph ofy = f(x) concave up or concave down neas 17
Hint: Differentiate the equation® + y* + 2zy = 4 twice with respect ta.
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(00

(ab)

Figure 7.15.Figure for Problem 32
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Chapter 8
Exponential functions

8.1 The Andromeda Strain

"The mathematics of uncontrolled growth are frighteningsiAgle cell of the bacterium E.
coliwould, under ideal circumstances, divide every twanityutes. That is not particularly
disturbing until you think about it, but the fact is that bexga multiply geometrically: one
becomes two, two become four, four become eight, and so d@hislway it can be shown
that in a single day, one cell of E. coli could produce a supaieny equal in size and
weight to the entire planet Earth.”

Michael Crichton (1969) The Andromeda Strain, Dell, N.Y4{32

8.2 Powers of 2

Note that2'® ~ 1000 = 103. This is a useful approximation in converting binary nunsber
(powers of 2) to decimal numbers (powers of 10).

8.3 Growth of E. coli
e Mass of 1 E. coli cell : 1 nanogram®—?gm =10""2kg.
e Mass of Planet Earth6 - 10%* kg

e Size of E. coli colony equal in mass to Planet Earth:

6-10%

— 36

In a period of 24 hours, there are many 20-minute generatiimbe exact, there are
24 x 3 = 72 generations, with each one producing a doubling. This meetshere would
be, after 1 day, a number of cells equal to

272,

145
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128
256
512
1024

Blo|wm|~|jo| o s w| N = o] 2
w
N

Table 8.1. Powers of 2 including both negative and positive integergreHwe
show2™ for —4 < n < 10. Note tha2'® ~ 1000 = 103.

We can estimate it using the approximate decimal form asvisli
272 =922.270 — 4. (210" ~ 4. (10%)7 = 4. 10%%.

The actual value is found to 7 - 102!, so the approximation is relatively good.
Apparently, the estimate made by Crichton is not quite sateurHowever it can be

shown that it takes less than 2 days to produce a number facese of the desired size.

(The exact number of generations is left as an exercise éorgder.. but we will return to

this in due time.)

8.4 The function 2%

From previous familiarity with power functions such@s= x2 (not to be confused with

27), we know the value of
V2 = /2~ 1.41421 ...

We can use this value to compute
23/2 _ (\/5)3
95/2 _ (V2)°

and all other fractional exponents that are multiples &f. We can add these to the graph
of our previous powers of 2 to fill in additional points. Thésshown on Figure 8.1(a).
In this way, we could also calculate exponents that are pieftiof1/4 since

9l/4 _ M
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(@) (b)

Figure 8.1. (a) Values of the functiog” for z = 0,0.5,1,1.5, etc. (b) The
function2? is shown extended to negative values:@nd connected smoothly to form a
continuous curve.

is a value that we can obtain. We show how adding these vadags lto an even finer set
of points. By continuing in the same way, we fill in the graphtted emerging function.
Connecting the dots smoothly allows us to define a value fpreaz, of the new function,

y=flz)=2°

This function is shown in Figure 8.1(b) as the smooth cungesimposed on the points we
have gathered.

We can generalize this idea to defining an exponential fanotvith an arbitrary
base. Given some positive constantve will define the new functiorf(z) = a* as the
exponential function with base Shown in Figure 8.2 are the functiops= 2%, y = 3%,

y = 4% andy = 10",

8.5 Derivative of an exponential function

In this section we show how to compute the derivative of the eeponential function just
defined. We first consider an arbitrary positive constatitat will be used for the base of
the function. Then for > 0 let

y=flz)=a"
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107x

4] 37%

Figure 8.2. The functiony = f(x) = a* is shown here for a variety of bases=
2,3,4,and 10.

Then
dm x+h x
a = lim (a a)
dx h—0 h
i (azah——am)
=50 h
T m(ah_ )
= "
. [, ah —-1}
=a” | lim
h—0

Notice that the variable appears only in the form af”. Everything inside the limit does
not depend om: at all, but does depend on the base we used.

Example 8.1 (Derivative of2*) Compute the derivative for the base= 2 using the
above result. N

Solution: For base: = 2, we have

d2® oh 1
— =27 (1hn, )

dx
Let
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We can calculate this quantity, or at least find a good estinigt taking small values df
i.e. by the approximation
2k 1
h
Example 8.2 (The value ofC’;) ComputeC, for h = 1,0.1,0.01, etc. Does this value

approach a fixed real number? Use your calculation to find énizative of the function
y = 2%. How would this result change if we computed the derivativg &= 10°? 1

CQ (h) ~

Solution: We find thath = 1 leadstoC; = 1.0, A = 0.1 leads toCy = 0.7177, h = 0.001
leads toC> = 0.6934, h = 0.00001 to Cy = 0.6931. Using this result, we see that

Cy — 0.6931, so that
dz2*
— = (%27 = (0.6931) - 2%.
dx 2 ( )
Example 8.3 (The base 10 and the derivative af0”) Determine the derivative of =

flzy=10. W

Solution: If we had chosen base 10 for our exponential function, we whbale

10" -1
Cio(h) = P
We find, by similar approximation, that
Cho = 2.3026,
so that 2107
—— = C1010” = (2.3026) - 10”.

Thus, different bases come with different constant muéiglwhen derivatives are com-
puted.

8.5.1 A convenient base for the exponential function

These are rather messy constants, and hard to rememberkWaether we can find some
more convenient base (call it “e”) such that the constaniie and simple, e.gC. = 1.
Such a base would have to have the property that

eh — 1

C. = lim =1

i.e. that, for smalh

This means that

h—1xh = erxn+1 = ex(A+n)V
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More specifically,

e = lim(1+h)¥/"
h—0

We can find an approximate value for this interesting new bgsalculating the expression
shown above for some very small (but finite valuehpé.g.~ = 0.00001. Using this value,
we find that

e &~ (1.00001)*0%%0 ~ 2.71826

To summarize, we have found that for this special baseg have the following property:

The derivative of the function e® is the same functione®. ‘

Remark: In the above computation, we came up with a littleifre” for calculating
the value of the base The recipe involves shrinking some vali@nd computing a limit.
We can restate this recipe in another way. het 1/h. Then ash shrinks,n will be a
growing number, i.é» — 0 impliesn — oo. We find that

1
= lim (1 + )"
e im ( —i—n)

n—r00

8.6 Properties of the function e*

We list below some of the key features of this function:
1. e%e® = 2t as with all similar exponent manipulations.
2. (e2)® = e’ also stems from simple rules for manipulating exponents
3. e” is a function that is defined, continuous, and differengdbt all real numbers.
4. ¢* > 0 for all values ofz.
5. e =1,ande! =e.
6. e* — 0 for increasing negative values of
7. e — oo for increasing positive values of
8. The derivative 0é” is e”.

9. By parts 3. and 6. above, the slope of the tangenttatz = 0 is e°, which is 1.
This is shown in Figure 8.3
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e

13
tarrgentme

]

Figure 8.3. The functiony = ¢ has the property that its tangent line at= 0
has slope 1. (Note that the horizontal scale on this graphds< = < 4.)

8.7 An interesting observation

We have seen that the function
y=flz)=¢€"
satisfies the relationship
W P =) =y

in other words, when differentiating, we get the same fuorchack again.

The functiony = f(z) = €* is equal to its own derivative and hence, it satisfies| the
equation
dy
i
An equation of this type, linking a function and its derivai(s) is called aifferential
equation.

Y.

This is a new type of equation, unlike ones seen before incthisse. We will see
later in this course that such equations have importantegijans..

8.8 The natural logarithm, an inverse function for e’
We have defined a new functign= f(z) = €*.



152 Chapter 8. Exponential functions

Here is it's inverse function, shown on Figure 8.4. We willl¢his function the
logarithm (base), and write it as

y=f"(2) = In(a).

erx

In(x)

Yrx

Figure 8.4. The function; = ¢* is shown here with its inverse functian= In x.

We have the following connection: = e¢® impliesz = In(y).
The fact that the functions are inverses also implies that

e =2 and In(e®) = z.

Properties of the logarithm stem directly from propertiethe exponential function,
and include the following:

1. In(ab) = In(a) + In(b)
2. In(a®) = bIn(a)
3. In(1/a) =In(a~!) = —In(a)
The inverse function can be quite helpful in changing frore base to another.

Example 8.4 Rewritey = 2% in terms of base. N

Solution:
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eln(y) _ emln(?) = y= emln(?)
We find (using a calculator) thai(2) = 0.6931.. so we have
y =€ where k=1In(2)=0.6931..

Example 8.5 Find the derivative of = ¢**. 1

Solution: The simple chain rule withk = kx leads to

dy _ dydu
dr ~ dudzx
but J J
U Yy u kx
— =k —= ="k = ke,
ar SO ar e e

This is a useful result, which we highlight for future use:

The derivative ofy = f(z) = ek is f/(z) = kek

Example 8.6 Find the derivative ofy = 2. NI

Solution: We have expressed this function in the alternate form
Y= 2T — ekz
with £ = In(2). From example 2 we have

d
d—z = keF* = ln(2)eln(2)w = 1n(2)2"
Thus we now see that the constant obtained by computingéhigadive from the definition

is actuallyCy = In(2).

8.9 How many bacteria

We can now return to our Andromeda strain and answer a quesgédad left unanswered:
How long will it take for the population to attain a size®f 1036 cells, i.e. to grow to an
Earth-sized colony.

We recall that the doubling time for the bacteri2ismin, so that one generation (or
one doubling occurs for every multiple 6f20). However, it is not necessarily true that all
cells will split in a synchronized way. This means that afteminutes, we expect that the
number,B(t) of bacteria would be roughly given by the smooth function:

B(t) = 21/%,

(Note that this function agrees with our previous table arapl for powers of 2 at all
integer multiples of the generation time, i.e. foe 20, 40, 60, 80.. minutes.)
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Example 8.7 How long will it take to reach siz& = 6-10%? N

Solution: We can compute this as follows:

6-10% =220 = 1In(6-10°%) = In(2"/2°)

In(6) + 36 In(10) = % In(2)

SO
In(6) + 36 In(10) 1.79 + 36(2.3)
t =20 =20 = 2441.27
In(2) 0.693

This is the time in minutes. In hours, it would take 2441.2#610.68 hours for the colony
to grow to such a size.

Example 8.8 (Using base) Express the number of bacteria can in terms of hafer
practice with base conversions).ll

Solution: We would do this as follows:
t

B(t) =2Y* = In(B) = 55 In(2)

In(2)

20

The constant will be referred to as the growth rate of the bacteria. We nlesthat this
constant can be written as:

eMB®) = ez 02 = B(t) = ekt where k=

)
~ doubling time’
We will see the usefulness of this approach very soon.

8.10 Derivative of the natural logarithm

Here we use Implicit differentiation to find the derivativethe newly defined function,
y = In(x) as follows: First, restate the relationship in the invesa, but considey as
the dependent variable:

d d
= Y = —eY = —
y=In(z) = e’ =2z = p e
Here we apply the chain rule:
de? dy vy dy 1 1
—_— = i 1 _— = — = —
dy dz - dx = de e¥ =w

We have thus shown the following:

The derivative oin(z) is 1/x:

din(z)
dx

1
T
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8.11 Additional problems

8.11.1 Chemical reactions

According to the collision theory of bimolecular gas reant, a reaction between two
molecules occurs when the molecules collide with energwatgrethan some activation
energy,F,, referred to as the Arrhenius activation energy. We wiluass thatZ, > 0

is constant for the given substance. The fraction of bimd#gcreactions in which this

collision energy is achieved is
F — e_(Ea/RT)

whereT is temperature (in degrees Kelvin) aRd> 0 is the gas constant.

Example 8.9 Suppose that the temperatdfeincreases at some constant rateper unit
time. Determine the rate of change of the fractionf collisions that result in a successful
reaction. N

Solution: We are given
F — o~ (Ea/RT)

and
dr
dt
Letu = —FE,/RT thenF = ¢*, We use the chain rule to calculate:

dF  dF du dT

dt  dudT dt
Further, we have
ar
% =€
du  E,
dl ~ RT?

Assembling these parts, we have

dF B,
=e

dt RT?2

Eo o _
O =031 2, (Ea/RT)
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Exercises

8.1. Graph the following functions:
@) f(z) =a%e®
(b) f(x) =In(2? + 3)
(© f(z)=1In(e*)
8.2. Express the following in terms of base
(@) y=23"
(b) y = =
(c) y =157+
Express the following in terms of base 2:

(d) y=9"
(e) y=28"
() y=—e""
Express the following in terms of base 10:
(@) y=217
(h) y = 1000~ 10=
(i) y=50""""

8.3. Compare the values of each pair of numbers (i.e. ingliwhich is larger):

(a) 50.75 50.65
(b) 0.470-2,0.4%-2
(c) 1.0012,1.0013
(d) 0.999%-5,0.999%3
8.4. Rewrite each of the following equations in logarithricion:

(a) 3¢ =81
(0 372=}
(c) 2773 = %

8.5. Solve the following equations fat
(8 Inzx =2Ilna+3Inb
(b) log, x = log, b — % log,, c

8.6. Reflections and transformations: What is the relationship between the graph of

y = 3% and the graph of each of the following functions?
@y=-3" (b)y=3" (Jy=3""
(d)y=3" (e)y=2-3" (e)y=logzx
8.7. Solve the following equations fat
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8.8.

8.9.

8.10.

8.11.

8.12.

(@ e* 2 =5

(b) In(3z—1) =4

(¢) In(In(x)) =2

(d) e® = Ce’*, wherea # b andC > 0.
Find the first derivative for each of the following fuicts:
(@ y=1In(2z +3)3

(b) y = In*(2z + 3)

() y = In(cos )

(d) y = log, (x* — 22) (Hint : dd (log, x) = L )

dx " zlna
(€) y=e"
(f) y=a 2"
(@ y=2a 27
(h) y=e
t —t

Find the maximum and minimum points as well as all inftecpoints of the fol-
lowing functions:

() fl@)=e? —e®
Shown in Figure 10 is the graphypf= Ce** for some constants, k, and a tangent
line. Use data from the graph to determi@ndk.
Consider the two functions

(@) yi(t) = 10e~ ",
(b) ya(t) = 10e%1,

Which one is decreasing and which one is increasing? In easdh €ind the value

of the function at = 0. Find the time at which the increasing function has doubled
from this initial value. Find the time at which the decreasianction has fallen to
half of its initial value. [Remark: these valuestdadre called, the doubling time, and
the half-life, respectively]

Shannon Entropy: In a recent application of information theory to the field of
genomics, a function called the Shannon entrdpywas considered. A given gene
is represented as a binary device: it can be either “on” df (@&. being expressed
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8.13.

8.14.
8.15.

@, ox

Figure 8.5. Figure for Problem 10

or not). If z is the probability that the gene is “on” apds the probability that it is
“off”, the Shannon entropy function for the gene is defined as

H = —zlog(x) — ylog(y)

[Remark: the fact that andy are probabilities, just means that they satisfy » <
1,and0 < y < 1.] The gene can only be in one of these two states; $oy = 1.
Use these facts to show that the Shannon entropy for the gegreatest when the
two states are equally probable, i.e. for= y = 0.5.

A threshold function: The response of a regulatory gene to inputs that affect it is
not simply linear. Often, the following so called “squaghfanction” or “threshold
function” is used to link the input to the outputy of the gene.

1
y=flx)= 11 elaxtb)
whereaq, b are constants.

(a) Showthad <y < 1.
(b) Forb = 0 anda = 1 sketch the shape of this function.
(c) How does the shape of the graph change iasreases?

Sketch the graph of the functign= ¢~ sin =t.
The Mexican Hat: Find the critical points of the function

y=flo)=2e"" —e "3

and determine the value gfat those critical points. Use these results and the fact
that for very larger, f — 0 to draw a rough sketch of the graph of this function.
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Comment on why this function might be called “a Mexican Hgtlote: The sec-
ond derivative is not very informative here, and we will nekagou to use it for
determining concavity in this example. However, you mayhwis calculate it just
for practice with the chain rule.)

8.16. The Ricker Equation: In studying salmon populations, a model often used is the
Ricker equation which relates the size of a fish populaticyéar,x to the expected
size next yeay. (Note that these populations do not change continuouslyg sll
the parents die before the eggs are hatched.) The Ricketi@gisa

y = aze PT

wherea, 8 > 0. Find the value of the current population which maximizes th

salmon population next year according to this model.

8.17. Spacing in a fish schoolLife in a social group has advantages and disadvantages:
protection from predators is one advantage. Disadvantaglesie competition with
others for food or resources. Spacing of individuals in astbf fish or a flock of
birds is determined by the mutual attraction and repulsioneighbors from one
another: each individual does not want to stray too far frahers, nor get too
close.

Suppose that when two fish are at distance 0 from one another, they are attracted
with “force” F,, and repelled with “force’F,. given by:

F, = Ae™%/@

F. = Re™®/"

where A, R, a,r are positive constants4, R are related to the magnitudes of the
forces, andi, r to the spatial range of these effects.

(a) Show that at the distanae= « the first function has fallen tfl /e) times its
value at the origin. (Recall ~ 2.7.) For what value ofr does the second
function fall to (1/¢) times its value at the origin? Note that this is the reason
why a, r are called spatial ranges of the forces.

(b) It is generally assumed th#& > A andr < a. Interpret what this mean
about the comparative effects of the forces and sketch egtapving the two
functions on the same set of axes.

(c) Find the distance at which the forces exactly balancés iBtralled the com-
fortable distance for the two individuals.

(d) If either A or R changes so that the rati®/ A decreases, does the comfortable
distance increase or decrease? (Give reason.)

(e) Similarly comment on what happens to the comfortabladte ifa increases
or r decreases.

8.18. Seed distribution: The density of seeds at a distancérom a parent tree is ob-
served to be

D(z) = Doefmz/az,
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wherea > 0, Dy > 0 are positive constants. Insects that eat these seeds tend to
congregate near the tree so that the fraction of seeds theatgn is

F(x) = e/

whereb > 0. (Remark: These functions are called Gaussian or Normizilaisons.
The parametersa, b are related to the “width” of these bell-shaped curves.) The
number of seeds that survive (i.e. are produced and not bgt@sects) is

S(x) = D(x)(1 - F(z))

Determine the distancefrom the tree at which the greatest number of seeds survive.
8.19. Euler's “¢": In 1748, Euler wrote a classic book on calculus (“Introdmdti
Analysin Infinitorum”) in which he showed that the functiefi could be written
in an expanded form similar to an (infinitely long) polynoinia
2 x3

T
mzl I
e +:17—|—1.2—|—1.2.3

+ ..

Use as many terms as necessary to find an approximate valtrefoumbee and
for 1/e to 5 decimal places. Remark: we will see later that such esipas, called
power series, are central to approximations of many funstio
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Exponential Growth and
Decay: Differential
Equations

9.1 Observations about the exponential function

In a previous chapter we made an observation about a specjany of the exponential
function

y=f(z)=¢"

namely, that
dy "
— = e =
dx Y

so that this function satisfies the relationship

dy
de

We call this adifferential equation because it connects one (or more) derivatives of
a function with the function itself.

In this chapter we will study the implications of the abovesetvation. Since most
of the applications that we examine will be time-dependeot@sses, we will here uge
(for time) as the independent variable.

Then we can make the following observations:

Y.

1. Lety be the function of time:

y=f(t)=¢e
Then
@:et:
dt

With this slight change of notation, we see that the funcijos ¢! satisfies the
differential equation

dy

a Y

161
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. Now consider

y = ekt

Then, using the chain rule, and setting- k¢, andy = ¢* we find that
dy dydu . o
il k= ke = ky.

So we see that the function= e** satisfies the differential equation

dy
2y
ac Y

. If instead we had the function

I

we could similarly show that the differential equation itisties is

dy

.
dt Y

. Now suppose we had a constant in front, e.g. we were inéet@sthe function

y = 5eMt.

Then, by simple differentiation and rearrangement we have

dy . d p Rty _ kty _
i 5dte = 5(ke™) = k(5e"™") = ky.
So we see that this function with the constant in fralso satisfies the differential
equation
dy B

- k.
ac Y

. The conclusion we reached in the previous step did notrakgaeall on the constant

out front. Indeed, if we had started with a function of thenfior
y= Cekt

whereC' is any constant, we would still have a function that satigfiessame differ-
ential equation.

. While we will not prove this here, it turns out that these tireonly functions that

satisfy this equation.

The differential equation
dy B
dt
has as its solution, the function

ky (9.1)

y = CeM (9.2)
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(@) (b)

Figure 9.1. Functions of the forny = Ce** (a) for k > 0 these represent expo-
nentially growing solutions, whereas (b) for< 0 they represent exponentially decaying
solutions.

A few comments are worth making: First, unlikégebraicequations, (whose solu-
tions are numbersilifferential equations have solutions that afenctions We have seen
above that depending on the constantve get either functions with a positive or with a
negative exponent (assuming that time 0). This leads to the two distinct types of be-
haviour,exponential growthor exponential decaghown in Figures 9.1(a) and (b). In each
of these figures we sedamily of curves, each of which represents a function that satisfies
one of the differential equations we have discussed.

9.2 The solution to a differential equation

Definition 9.1 (Solution to a differential equation). By asolution to a differential equa-
tion, we mean a function that satisfies that equation.

In the previous section we have seen a collection of solstioeach of the differen-
tial equations we discussed. For example, each of the cehagn in Figure 9.1(a) share
the property that they satisfy the equation

dy
i ky.
We now ask: what distinguishes one from the other? More fpalty, how could we
specify one particular member of this family as the one adri@st to us? As we saw above,
the differential equation does not distinguish these: wedreome additional information.
For example, if we had some coordinates, &ay) that the function of interest should go
through, this would select one function out of the colleatilt is common practice (though
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not essential) to specify the starting valuerutial value of the function i.e. its value at
timet = 0.

Definition 9.2 (Initial value). Aninitial value is the value at time¢ = 0 of the desired
solution of a differential equation.

Example 9.3 Suppose we are given the differential equation (9.1) anéhitial value
y(0) =yo

whereyg is some (known) fixed value. Find the value of the constri the solution
9.2. 1

Solution: We proceed as follows:
y(t) =Cet, so y(0)=Cer'=Ce’=C-1=C
but, by the initial conditiony(0) = yo. So then,
C=yo

and we have established that
y(t) = yoe*,
wherey; is the initial value.

9.3 Where do differential equations come from?

Figure 9.2 shows how differential equations arise in sdiemvestigations. The process of
going from initial vague observations about a system of@ge(such as planetary motion)
to a mathematical model, often involves a great deal of dp&on, at first, about what is
happening, what causes the motion or the changes that tage, gind what assumptions
might be fruitful in trying to analyze and understand thetsys

Once the cloud of doubt and vague ideas settles somewhatreedthe right sim-
plifying assumptions are made, we often find that the mathieadanodel leads to a differ-
ential equation. In most scientific applications, it mayrtie a huge struggle to figure out
which functions would be the appropriate class of solutimnthat differential equation,
but if we can find those functions, we are in position to makamjiative predictions about
the system of interest.

In our case, we have stumbled on a simple differential equadity noticing a property
of functions that we were already familiar with. This is aky@accident, and we will exploit
it in an application shortly.

In many cases, the process of modelling hardly stops whenawe found the link
between the differential equation and solutions. Usuall/would then compare the pre-
dictions to observations that may help us to refine the moejelct incorrect or inaccurate
assumptions, or determine to what extent the model hasaliioits.

A simple example of population growth modelling is given astiwation for some of
the ideas seen in this discussion.
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Facts, _ "Laws of Nature"
observations, or

assumptions,

Scientific
problem

N

statements about
hypotheses rates of change

or
system

Predictions Mathematical
about the Model
system
behaviour L
Solutions Differential
to the —| equation(s)
differential describing the
equations system

Figure 9.2. A “flow chart” showing how differential equations originafeom
scientific problems.

9.4 Population growth

In this section we will examine the way that a simple différ@requation arises when we
study the phenomenon of population growth.

We will let N(¢) be the number of individuals in a population at timeThe pop-
ulation will change with time. Indeed the rate of change\ofvill be due to births (that
increasaV) and deaths (that decrease it).

Rate of change of N= Rate of births— Rate of deaths

We will assume that all individuals are identical in the plapion, and that the av-
erageper capita birth rate, r, and averageer capita mortality rate , m are some fixed
positive constants. That is

number births per year
population size ’

r = per capita birth rate=

number deaths per year
population size

We will refer to such constants @arameters In general, for a given population, these
would have certain numerical values that one could obtaiexperiment, by observation,

m = per capita mortality rate-
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or by simple assumptions. In the next section, we will show laoset of assumptions
would lead to such values.

Then the total number of births into the population in yeiar- N, and the total num-
ber of deaths out of the population in yeas mN. The rate of change of the population
as a whole is given by the derivatidév/dt. Thus we have arrived at:

E = TN — mN
This is a differential equation: it links the derivative &f(¢) to the functionN (¢).
By solving the equation (i.e. identifying its solution), wl be able to make a projection
about how fast the world population is growing.
We can first simplify the above by noting that
dt
where
k= (r—m).

This means that we have shown that the population satisfiéfeeedtial equation of the
form N
— = kN
dt '
providedk is the so-called “net growth rate”, i.e birth rate minus rabty rate. This leads
us to the following conclusions:

e The function that describes population over time is (by jmes results) simply
N(t) = Noe*.

(The result is identical to what we saw previously, but wikhrather thany as the
time-dependent function.)

e We are no longer interested in negative valued' afince it now represents a quantity
that has to be positive to have biological relevance, i.@utation size.

e The population will grow provide# > 0 which happens when—m > 0 i.e. when
the per capita birth rate,exceeds the per capita mortality rate

e If k < 0, or equivalentlyy < m then more people die on average than are born, so
that the population will shrink and (eventually) go extinct

9.5 Human population growth: a simple model

We have seen how a statement about changes that take placgnowecan lead to the
formulation of a differential equation. In this section, wél estimate the values of the
parameters for the birth rate and the mortality raten.

To do so, we must make some simplifying assumptions:
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Assumptions:

e The age distribution of the population is “flat”, i.e. theme @as many 10 year-olds
as 70 year olds. (This is quite inaccurate, but will be a goledeto start, as it
will be easy to estimate some of the quantities we need.) rEiguB shows such a
distribution.

number
of people

age
0 80

Figure 9.3. We assume a “flat” age distribution to make it easy to detesrihe
fraction of people who give birth or die.

e The sex ratio is roughly 50%. This means that half of the pafmm is female and
half male.

e \Women are fertile and can have babies only during part of lives: We will assume
that the fertile years are between age 15 and age 55, as shdviguire 9.4.

number

tE O

#

—~ age
0 15 55 80

Figure 9.4. Only fertile women (between the ages of 15 and 55 years ol@) gi
birth. This sketch shows that half of all women are betweesdfages.

e A lifetime lasts 80 years. This means that for half of thateingiven woman can
contribute to the birth rate, or that (55-15)/80=50% of wonadéive at any time are
able to give birth.

e During a woman'’s fertile years, we’ll assume that on averalye has one baby every
10 years. (This is also a suspect assumption, since in theekilesorld, a woman
has on average 2-2.3 children over her lifetime, while inDiegeloping nations, the
number of children per woman is much higher. )

Based on the above assumptions, we can estimate the paramstillows:
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number women years fertile number babies per woman
population  years of life number of years

Thus we compute that
1 1 1
r=—+ =+« —
2 2 10
Thus, we have arrived at an approximate value for human ppétadairth rate.

We can now estimate the mortality.

= 0.025 babies per person per year

e We also assume that deaths occur only from old age (i.e. warégdisease, war,
famine, and child mortality.)

e \We assume that everyone lives precisely to age 80, and tlesrirditantly. (Not an
assumption our grandparents would happily live with!)

number

of people - mortality

/' occurs here

B

age
0 80

Figure 9.5. We assume that the people in the age bracket 79-80 yearslalc:al
each year, and that those are the only deaths.

But, with the flat age distribution shown in Figure 9.3, thewauld be a fraction of
1/80 of the population who are precisely removed by moytahtery year (i.e. only those
of age 80.) In this case, we can estimate that the per capitlityis:

1
m = 50— 0.0125
Putting our results together, we have the net growth kate » — m = 0.025 —
0.0125 = 0.0125 per person per year. In the context of such growth problenasywilt
often refer to the constastas therate constant, or thegrowth rate of the population.

Example 9.4 Using the results of this section, find a prediction for th@ulation size
N(t) as a function of time. W

Solution: We have found that our population satisfies the equation

an =0.0125N
dt

so that
N(t) _ N060.0125t

where N, is the starting population size. Figure 9.6 illustrates Hlois function behaves,
using a starting value a¥ (0) = Ny = 6 billion.
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Figure 9.6. Projected world population over the next 100 years or so.

9.6 Growth and doubling

We ask how long it would take for a population to double giveat it is growing exponen-
tially, with growth ratek, as described above. That is, we ask at what tirevould be
true thatn reaches twice its starting value, i.8[(t) = 2Ny. We determine this time as
follows:

N(t) = 2N,
but
N(t) = Noe*t

so the population has doubled whiegatisfies
2Ny = Noekt, = 2=¢F
Taking the natural log of both sides leads to
In(2) = In(e®) = kt.
Thus, thedoubling time, which we'll call 7 is:
_In@)
e

Example 9.5 (Human population doubling time) Determine the doubling time for the
human population based on the results of our approximatetgnmodel. N

Solution: We have found a growth rate of roughty= 0.0125 for the human population.
Based on this, it would take

~ In(2)

~0.0125

T = 55.45 years

for the population to double.
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In general, an equation of the form

dy

—k
ar Y

that represents an exponential growth will have a doubling bf

Figure 9.7. Doubling time for exponential growth.

This is shown in Figure 9.7. The interesting thing that wecoi®red is that the
population doublesvery 55 yeallsSo that, for example, after 110 years there have been
two doublings, or a quadrupling of the population.

Example 9.6 (Human population in 100 years)Determine what the population growth
model predicts will be the human population level in 100 g@ar |

Solution: Suppose that currentlyf (0) = 6 billion. Then in billions,
N(t) _ 660'0125t
so that whert = 100 we would have
N(100) = 620125100 — G125 — 6. 3.49 = 20.94

Thus, with population around the 6 billion now, we should abeut 21 billion people on
Earth in 100 years.

Example 9.7 (A ten year doubling time) Suppose we are told that some animal popula-
tion doubles every 10 years. What growth rate would lead ¢h sutrend? B

Solution: Rearranging
In(2)
k

ty =
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we obtain
In(2)  0.6931

ta 10
Thus, we may say that a growth rate of 7% leads to doublinghigueyery 10 years.

k= ~ 0.07.

9.6.1 A critique

Before leaving our population model, we should remembeiahiaprojections hold only so
long as some rather restrictive assumptions are made. Véerhadle many simplifications,
and ignored many features that would seriously affect thesalts.

These include variations in the birth and mortality ratest #tem from competition
for the Earth’s resources, epidemics that take hold whewdir@ occurs, uneven distri-
butions of resources or space, and other factors. We haveastsimed that the age dis-
tribution is uniform (flat), but that is clearly wrong: the pdation grows only by adding
new infants, and this would skew the distribution even iftétrss out uniform. All these
factors would lead us to be skeptical, and to eventuallykthlbout more advanced ways of
describing the population growth.

9.7 Exponential decay and radioactivity

A radioactive material consists of atoms that undergo a tsp@ous change. Every so
often, an atom will emit a particle, and change to anothenfoWe call this a process of
radioactive decay

For any one atom, it is impossible to predict when this evemild/occur. However,
if we have very many atoms, on average some fractiomill undergo this decay during
any given unit time. (This fraction will depend on the maji This means thaty of the
amount will be lost per unit time.

We will definey(t) to be the amount of radioactivity remaining at timérhis quan-
tity can be measured with Geiger counters, and will depentthos In the decay process,
radioactivity will be continually lost. Thus

dy

[rate of change ofly= —[amount lost per unit time = = —ky.

We see again, a (by now) familiar differential equation.

Suppose that initially, there was an amoygt Then the initial condition that comes
with this differential equation is

y(0) = wo.
From familiarity with the differential equation, we knowaththe function that satisfies it
will be
y(t) = Ce™™

and using the initial condition will specify that

y(t) = yoefkt.

For k > 0 a constant, this is a decreasing function of time that wer tefas exponential
decay.
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9.7.1 The half life

Given a process of exponential decay, we can ask how longutdmake for half of the
original amount to remain. That is, we look fosuch that

v
y(t) =3

We wiill refer to the value of that satisfies this as thalf life.

Example 9.8 (Half life) Determine the half life in the exponential decay descrillsala

|
Solution: We compute:
Yo —kt 1 —kt
- = = _ =
g — e 2~ ©
Now taking reciprocals:
1 kt
2= E =e .

Thus we find the same result as in our calculation for doulilmgs, namely,
In(2) = In(e") = kt

so that the half life is

This is shown in Figure 9.8.

y
Yo

Yo/ 2

Figure 9.8. Half-life in an exponentially decreasing process.

Example 9.9 (Chernobyl: April 1986) In 1986 the Chernobyl nuclear power plant ex-
ploded, and scattered radioactive material over Europepaitfcular note were the two
radioactive elements iodine-131{l) whose half-life is 8 days and cesium-137 (&3
whose half life is 30 years. Use the model for radioactiveagigo predict how much of
this material would remain over time. il
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Solution: We first determine the decay constants for each of these ewoegits, by noting

that
In(2)

-
and recalling thaln(2) ~ 0.693. Then for 3! we have

k=

m(2) In(2
= ) :%:o.%%perday.
T

This means that far measured in days, the amount &t'l left at timet would be

yr (t) _ y06_0'0866t.
For C837 2
k= I;(O) = 0.023 per year.
so that forT" in years,
Yo (t) — y0670.023T'

(We have used rather thart to emphasize that units are different in the two calculation
done in this example.

Example 9.10 (Decay td).1% of the initial level) How long it would take for 13! to de-
cay to 0.1 % of its initial level, just after the explosion dteéZnobyl? N

Solution: We must calculate the timesuch thaty; = 0.001yo:

—0.0866¢

0.001yo = yoe = 0.001 = ¢ 90866"  —  15(0.001) = —0.0866¢.

Therefore,
. _ In(0001) 6.9

 —0.0866  —0.0866

Thus it would take about 80 days for the level of lodine-13decay to 0.1 % of its initial
level.

= 79.7days

9.8 Checking (analytic) solutions to a differential

equation
By analytic solution, we mean a “formula” in the formm= f(z). We have seen a number
of examples of simple differential equations in this chgpied our main purpose was to

show how these arise in the context of a physical or bioldgiazcess of growth or decay.
Most of these examples led to the differential equation

dy
dat

and therefore, by our observations, to its analytic solytibe exponential function

ky

y = f(t) = CeM,
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However, as we will see, there can be many distinct typesftdrdntial equations,
and it may not always be clear which function is a solutiomditg the correct solution
can be quite challenging, even to professional matheraasciWe mention two ideas that
are sometimes helpful.

In some cases, we encounter a new differential equationyarate given a function
that is believed to satisfy that equation. We can alwayskched verify that this claim is
correct (or find it incorrect) by simple differentiation.

Newtons Law of Cooling

Newton’s Law of Cooling states that the rate of change of émepterature of an objedt,

is proportional to the difference between the ambient f@mnent) temperaturdy, and

the temperature of the objed. If the temperature of the environment is constant, and
the objects starts out at temperatdiginitially, then the differential equation and initial
condition describing this process is

dr

dt
The parametek is a constant that represents the properties of the mat&siame objects
conduct heat better than others, and thus cool off or heat e muickly. The reader
should be able to figure out that these types of objects hayleehivalues oft, as this
implies larger rates of change per unit time.) We study prtigeeof this equation later, but
here we show how to check which of two possible functionstarsalutions.

L(E-T), T(0)="T,. (9.3)

Example 9.11 (Candidate 1:)Consider the functioff'(t) = Toe~**. Show that this sim-
ple exponential functioms NOT usually a solution to the differential equation (9.3) for
Newton’s Law of Cooling. N

Solution: We observe, first that this function does satisfy the intt@hdition,7'(0) = Tj
by pluggingt = 0 into the function:

T(0) = Toe %0 =Ty,
Next, by simply differentiating the above “candidate fuant, we find that its derivative

is
dT

— = —Tyke k.

dt ore
To satisfy the differential equation, we must have

aTr

— =k(E-T).

praatilt )

The term on the right hand side would lead to the expression
k(E — Tye™*)
once the candidate functidi(¢) is substituted fofl”. However, in general,

dT
E = —Toke_kt # k(E — Toe_kt).
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(Only in the case thall = 0 do the two sides match, but for arbitrary ambient tempeeatur
this is not the case.) Thus the simple exponential functigt) = Toe=** is NOT a
solution to this differential equation whén # 0.

Example 9.12 (Candidate 2:) Show that the modified exponential function
T(t)=E+ (Ty — E)e "

is a solution to the differential equation and initial value ll

Solution: Note, first, that by plugging in the initial timeé,= 0, we have
TO)=E+ (Ty—E)e " =E+(Ty —E)-1=E+ (Ty — E) = Tp.

Thus the initial condition is satisfied.
Second, note that the derivative of this function is

dr d K K
E :%(E‘F(TO—E)C t) :—k(TQ—E)C t.

(This follows from the fact that' is a constant,7, — F) is constant, and from the chain rule
applied to the exponentkt.) The term on the right hand side of the differential equatio
leads to

K(E—-T)=k©FE —[E+ (Ty — E)e ™)) = —k(Ty — E)e ™.

We now observe agreement between the terms obtained fromaéahe right and left
hand sides of the differential equation, applied to the akfownction. We conclude that
the differential equation is satisfied, so that indeed thisdidate function is a solution, as
claimed.

As shown in Example 9.12, if we are told that a function is aisoh to a differential
equation, we can check the assertion and verify that it isecbior incorrect. A much
more difficult task is to find the solution of a new differemguation from first principles.
In some cases, the technique of integration, learned innsesemester calculus, can be
used. In other cases, some transformation that changesdbiem to a more familiar
one is helpful. (An example of this type is presented in CaagB). In many cases,
particularly those of so-called non-linear differentigb@ations, it requires great expertise
and familiarity with advanced mathematical methods to fimelgolution to such problems
in an analytic form, i.e. as an explicit formula. In such sasgpproximation and numerical
methods are helpful.

9.9 Finding (numerical) solutions to a differential
equation
In cases where it is difficult or impossible to find the desisetution with guesses, inte-

gration methods, or from previous experience, we can useajppation methods and nu-
merical computations to do the job. Most of these methogsarlthe fact that derivatives
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can be approximated by finite differences. For example,ssg@pe are given a differential

equation of the form

dy

a f(y)
with initial valuey(0) = yo, can be approximated by selecting a set of time paints, . . .,
which are spaced apart by time steps of €e and replacing the differential equation by

the approximaténite differenceequation

ylA_tyO _ f(yo).

This relies on the approximation
dy Ay
dat At
which is a relatively good approximation for small step siee Then by rearranging this
approximation, we find that

y1 = yo + [(yo)At.

Knowing the quantities on the right allows us to compute thlei® ofy, i.e. the value of
the approximate “solution” at the time poiit We can then continue to generate the value
at the next time point in the same way, by approximating thévdtve again as a secant
slope. This leads to

yo = y1 + f(y1)At.

The approximation so generated, leading to valyes., . . . is calledEuler's method.
We explore an application of this method to Newton'’s law dflomg in chapter 13. In lab
5, the reader is invited to try out this method on the simpfiedintial equation for expo-
nential growth that was discussed in this chapter.
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Exercises

9.1.

9.2.

9.3.

9.4.
9.5.

9.6.

A differential equation is an equation in which somection is related to its own
derivative(s). For each of the following functions, cabuel the appropriate deriva-
tive, and show that the function satisfies the indicatiéférential equation

@) f(z) =277, f'(x) = —3f(x)
(b) f(t) =Ce™, f'(t) = kf(t)
© ft)=1—e" fi(t)=1-Ff(t)

Consider the functiop = f(t) = Ce** whereC andk are constants. For what
value(s) of these constants does this function satisfydoatéon

d
(a) d_@; = _5y’

(b) & = 3y.

[Remark: an equation which involves a function and its ddive is called a differ-
ential equation.]

Find a function that satisfies each of the followtfifferential equations[Remark:
all your answers will be exponential functions, but they rhaye different depen-
dent and independent variables.]

dy B

@ o —Y,

(b) % = —0.1candc¢(0) = 20,
dx

(c) % = 3z andz(0) = 5.

If 70% of a radioactive substance remains after one year, find litditea

Carbon 14: Carbon 14 has a half-life of 5730 years. This means that &it80
years, a sample of Carbon 14, which is a radioactive isotbparbon will have lost
one half of its original radioactivity.

(a) Estimate how long it takes for the sample to fall to roygh001 of its original
level of radioactivity.

(b) Each gram of*C has an activity given here in units of 12 decays per minute.
After some time, the amount of radioactivity decreases.eikample, a sample
5730 years old has only one half the original activity level, 6 decays per
minute. If a 1 gm sample of material is found to have 45 decayshpur,
approximately how old is it? (Note!*C is used in radiocarbon dating, a
process by which the age of materials containing carbon eaestimated.
W. Libby received the Nobel prize in chemistry in 1960 for dieping this
technique.)

Strontium-90: Strontium-90 is a radioactive isotope with a half-life of P€ars.
If you begin with a sample of 800 units, how long will it taker filne amount of
radioactivity of the strontium sample to be reduced to
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(a) 400 units
(b) 200 units
(c) Lunit
9.7. More radioactivity: The half-life of a radioactive material is 1620 years.
(a) What percentage of the radioactivity will remain afté0%years?

(b) Cobalt 60 is a radioactive substance with half life 5.a&rge It is used in
medical application (radiology). How long does it take fOf8of a sample of
this substance to decay?

9.8. Assume the atmospheric pressyet a height: meters above the sea level satisfies

. d . . .
the relation™? = kz. If one day at a certain location the atmospheric pressures

X
are760 and 675 torr (unit for pressure) at sea level and1800 meters above sea
level, respectively, find the value of the atmospheric presat600 meters above
sea level.

9.9. Population growth and doubling: A population of animals has a per-capita birth
rate ofb = 0.08 per year and a per-capita death raterof= 0.01 per year. The
population densityP(t) is found to satisfy the differential equation

dP(t)

— = bP(t) = mP()

(a) If the population is initially?(0) = 1000, find how big the population will be
in 5 years.

(b) When will the population double?

9.10. Rodent population: The per capita birthrate of one species of rodent is 0.05 new-
borns per day. (This means that, on average, each membeg pbpulation will
result in 5 newborn rodents every 100 days.) Suppose thatloggeriod of 1000
days there are no deaths, and that the initial populationdémts is 250. Write a
differential equation for the population si2&(¢) at timet (in days). Write down the
initial condition that/V satisfies. Find the solution, i.e. expreésas some function
of time ¢ that satisfies your differential equation and initial cdiwdi. How many
rodents will there be after 1 year ?

9.11. Growth and extinction of microorganisms:

(a) The populatiory(t) of a certain microorganism grows continuously and fol-
lows an exponential behaviour over time. Its doubling timddund to be
0.27 hours. What differential equation would you use to dbedts growth
? (Note: you will have to find the value of the rate constantusing the
doubling time.)

(b) With exposure to ultra-violet radiation, the populatieases to grow, and the
microorganisms continuously die off. It is found that thdftiée is then 0.1
hours. What differential equation would now describe thpysation?

9.12. A bacterial population: A bacterial population grows at a rate proportional to the
population size at time Lety(¢) be the population size at timieBy experiment it
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9.13.

9.14.

9.15.

9.16

9.17.

is determined that the populationtat 10 min is 15,000 and att = 30 min it is
20, 000.

(a) What was the initial population?
(b) What will the population be at time= 60 min?

Antibiotic treatment: A colony of bacteria is treated with a mild antibiotic agemt s
that the bacteria start to die. It is observed that the dgoshliacteria as a function of
time follows the approximate relationshift) = 85¢ -5 wheret is time in hours.
Determine the time it takes for half of the bacteria to disgpQThis is called the
half life.) Find how long it takes for 99% of the bacteria to die.

Chemical breakdown: In a chemical reaction, a substance S is broken down. The
concentration of the substance is observed to change & jproydortional to the cur-
rent concentration. It was observed that 1 Mole/liter of &dased to 0.5 Molesl/liter
in 10 minutes. How long will it take until only 0.25 Moles péter remain? Until
only 1% of the original concentration remains?

Two populations: Two populations are studied. Populatibis found to obey the
differential equation

and populatior? obeys
dyg/dt = —0.3y2
wheret is time in years.
(&) Which population is growing and which is declining?

(b) Find the doubling time (respectively half-life) assateid with the given popu-
lation.

(c) If the initial levels of the two populations werg (0) = 100 andy2(0) =
10, 000, how big would each population be at tim&

(d) At what time would the two populations be exactly equal?

. The human population: The human population on Earth doubles roughly every 50

years. In October 2000 there were 6.1 billion humans on eBdtermine what the
human population would be 500 years later under the uncitedrgrowth scenario.
How many people would have to inhabit each square kilométieoplanet for this
population to fit on earth? (Take the circumference of théhgarbe 40,000 km for
the purpose of computing its surface area.)

First order chemical kinetics: When chemists say that a chemical reaction follows
“first order kinetics”, they mean that the concentrationhs teactant at timg i.e.
c(t), satisfies an equation of the foré@ = —rc wherer is a rate constant, here
assumed to be positive. Suppose the reaction mixturelipitias concentration 1M
(“1 molar”) and that after 1 hour there is half this amount.

(a) Find the “half life” of the reactant.

(b) Find the value of the rate constant

(c) Determine how much will be left after 2 hours.
(d) When will only 10% of the initial amount be left?
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9.18. Fish in two lakes: Two lakes have populations of fish, but the conditions aréequi
different in these lakes. In the first lake, the fish populat®ogrowing and satisfies

the differential equation

dy
202
dt y

wheret is time in years. Attime = 0 there were 500 fish in this lake. In the second
lake, the population is dying due to pollution. Its popudatsatisfies the differential
equation

dy

i 0.1y,
and initially there were 4000 fish in this lake. At what timdlwhe fish populations
in the two lakes be identical?

9.19. A barrel initially containg kg of salt dissolved ir20 L of water. If water flows in
the rate 0f0.4 L per minute and the well-mixed salt water solution flows ouhat
same rate. How much salt is present afeninutes?

9.20. A savings account: You deposit a sunP (“the Principal”) in a savings account
with an annualnterest rate, » and make no withdrawals over the first year. If the
interest iscompounded annually after one year the amount in this account will be

A1) =P+rP=P(l+7).

If the interest is compounded semi-annually (once everyyg&), then every 6
months half of the interest is added to your account, i.e.

A(%)zP—i—gP:P(H—g)

am=a(5) (+5)=r(+5) (5 =P (1+5)

(a) Suppose that you invest $500 in an account with intea¢st4% compounded
semi-annually. How much money would you have after 6 montA#er 1
year ? After 10 years ? Roughly how long does it take to double ynoney
in this way? How would it differ if the interest was 8% ?

(b) Interest can also be compounded more frequently, fomeie monthly (i.e.
12 times per year, each time with an increment/f2). Answer the questions
posed in part (a) in this case

(c) Isitbetter to save your money in a bank with 4% interestgounded monthly,
or 5% interest compounded annually?



Chapter 10
Trigonometric functions

In this chapter we will explore periodic and oscillatory pbenena. The trigonometric
functions will be the basis for much of what we construct, aedce, we first introduce
these and familiarize ourselves with their properties.

10.1 Introduction: angles and circles

Angles can be measured in a number of ways. One way is to ess@ne in degrees, with
the convention that one complete revolution is represedm&60°. Why 360? And what is
a degree exactly? Is this some universal measure that ailygant being (say on Mars or
elsewhere) would find appealing? Actually, 360 is a rathbit@ary convention that arose
historically, and has no particular meaning. We could aflyehave had mathematical
ancestors that decided to divide circles into 1000 “equetgs” or 240 or some other
subdivision. It turns out that this measure is not partidyleonvenient, and we will replace
it by a more universal quantity.

The universal quantity stems from the fact that circles b$iaes have one common
geometric feature: they have the same ratio of circumferémciameter, no matter what
their size (or where in the universe they occur). We call thab 7, that is

Circumference of circle

Diameter of circle

The diameteiD of a circle is just
D =2r

so this naturally leads to the familiar relationship of aintference(”, to radiusy,
C =2mr

(But we should not forget that this is merelydefinition of the constantr. The more
interesting conclusion that develops from this definitierthat the area of the circle is
A = mr?, but we shall see the reason for this later, in the contextedsaand integration.)

181
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Figure 10.1. The anglg) in radians is related in a simple way to the radiftsof
the circle, and the length of the aftshown.

From Figure 10.1 we see that there is a correspondence bethveangle €) sub-
tended in a circle of given radius and the length of arc aléwgetdge of the circle. For a
circle of radius R and angkewe will define the arclengthy by the relation

S =R0O

wheref is measured in a convenient unit that we will now select. We consider a circle
of radiusR = 1 (called aunit circle) and denote by a length of arc around the perimeter
of this unit circle. In this case, the arc length is

S=R0=10

We note that whert' = 2, the arc consists of the entire perimeter of the circle. This
leads us to define the unit calledadian: we will identify an angle oRr radians with one
complete revolution around the circle. In other words, we te length of the arc in the
unit circle to assign a numerical value to the angle thatbteds.

We can now use this choice of unit for angles to assign valuesy fraction of a
revolution, and thus, to any angle. For example, an angd@dforresponds to one quarter
of a revolution around the perimeter of a unit circle, so weniify the angler/2 radians
with it. One degree id /360 of a revolution, corresponding tor /360 radians, and so on.

To summarize our choice of units we have the following twanpsi

1. The length of an arc along the perimeter of a circle of radiusRk subtended by an
angled is S = R6 where§ is measured in radians.

2. One complete revolution, or one full cycle corresponds to aangle of2x radians.

It is easy to convert between degrees and radians if we reeretinat360° corre-
sponds t@r radians. For examplég0° then corresponds toradians90° to 7 /2 radians,
etc.
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10.2 Defining the basic trigonometric functions

Figure 10.2. Shown above is the circle of radius 42 + y? = 1. The radius
vector that ends at the poirftr, y) subtends an angle (radians) with thex axis. The
triangle is also shown enlarged to the right, where the lasgif all three sides is labeled.
The trigonometric functions are just ratios of two sideshif triangle.

S
e £ sine = opp/hy
Q (@)
N) 0 S co® =adjhyr
o
adjacent tan 6 =opp/ad|

Figure 10.3. Review of the relation between ratios of side lengths (inghtri
triangle) and trigonometric functions of the associatedlan

Consider a pointz, y) on a circle of radius 1, and letbe some angle (measured
in radians) formed by the axis and the radius vector to the poipnt, y) as shown in
Figure 10.2.

We will define two new functions, sine and cosine (abbredate andcos) as fol-
lows:

. Y T

sin(t) = (=Y cos(t) = =
That is, the function sine tracks thecoordinate of the point as it moves around the unit
circle, and the function cosine tracks itxoordinate. (Remark: this agrees with previous
definitions of these trigonometric quantities as shown guFe 10.3 as the opposite over
hypotenuse and adjacent over hypotenuse in a right anglegta that you may have en-
countered in high school. The hypotenuse in our diagranmiplgithe radius of the circle,
which is 1 by assumption.)
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degrees| radians| sin(¢) | cos(t) | tan(t)
0 0 0 1 0
o |z | s | %5
s | 5 | 2| 2|0
60 | 5 | 2| 3
90 7 1 0 00

Table 10.1.Values of the sines, cosines, and tangent for the standagigan

10.3 Properties of the trigonometric functions

We now explore the consequences of these definitions:

Values of sine and cosine

e The radius of the circle is 1. This means that theoordinate cannot be larger
than 1 or smaller than -1. Same holds for theoordinate. Thus the functions
sin(¢) andcos(t) are always swinging between -1 and 1( < sin(¢) < 1 and
—1 < cos(t) < 1forall t). The peak (maximum) value of each function is 1, the
minimum is -1, and the average value is 0.

e When the radius vector points along theaxis, the angle i = 0 and we have
y = 0,2 = 1. This means thatos(0) = 1, sin(0) = 0.

e When the radius vector points up theaxis, the angle isr/2 (corresponding to
one quarter of a complete revolution), and here= 0,y = 1 so thatcos(r/2) =
0,sin(7/2) = 1.

e Using simple geometry, we can also determine the length$ siflas, and hence the
ratios of the sides in a few particularly simple trianglesmely triangles (in which
all angles aré&0°), and right triangles with two equal angles43®. These types of
calculations (omitted here) lead to some easily determuadaes for the sine and
cosine of such special angles. These values are shown iratie T0.1.

Connection between sine and cosine

e The two functions, sine and cosine depict the same undgriyiotion, viewed from
two perspectives:os(t) represents the projection of the circularly moving poirtoon
thex axis, whilesin(¢) is the projection of that point onto theaxis. In this sense, the
functions are a pair of twins, and we can expect many relghips to hold between
them.

e The cosine has its largest value at the beginning of the cydient = 0 (since
cos(0) = 1), while the other the sine its peak value a little latein(r/2) = 1).
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Figure 10.4. The functionssin(t) and cos(t) are periodic, that is, they have a
basic pattern that repeats. The two functions are also eglasince one is just a copy of
the other, shifted along the axis.

Throughout their circular race, the sine functiorri& radians ahead of the cosine
ie.

cos(t) = sin(t + E).
e The point(z, y) is on a circle of radius 1, and, thus, its coordinates satisfy

22+ y2 -1
This implies that
sin?(t) + cos?(t) = 1

forany angle. Thisis an important relation, (also calledidentitybetween the two
trigonometric functions, and one that we will use quite ofte

Periodicity: the pattern repeats

e A function is said to beperiodic if its graph is repeated over and over again. For

example, if the basic shape of the graph occurs in an inteifviength T on thet
axis, and this shape is repeated, then it would be true that

Ft) = f(t+T).
periodic.

In this case we call” the period of the function. All the trigonometric functions are

e The point(z,y) in Figure 10.2 will repeat its trajectory every time a revan

around the circle is complete. This happens when the ang@ampletes one full
cycle of27 radians. Thus, as expected, the trigonometric functiompariodic, that
is

sin(t) = sin(t + 2m),
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cos(t) = cos(t + 2m).
We say that the period 58 = 27 radians.

We can make other observations about the same two functiBos.example, by
noting the symmetry of the functions relative to the origir, can see thain(¢) is an odd
function and thecos(t) is an even function. This follows from the fact that for a niaga
angle (i.e. an angle clockwise from the x axis) the sine fligs #/hile the cosine does not.

y=sin (t)
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0 t
2 W2 2 5m2 3m
_1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
period, T
y=cos (t)

period, T

Figure 10.5. Periodicity of the sine and cosine. Note that the two curregust
shifted versions of one another.

10.4 Phase, amplitude, and frequency

We have already learned how the appearance of functiongyesamhen we shift their
graph in one direction or another, scale one of the axes,@od.sThus it will be easy to
follow the basic changes in shape of a typical trigonoméamction.
A function of the form
y = f(t) = Asin(wt)

has both itg andy axes scaled. The consta#fif referred to as thamplitudeof the graph,
scales they axis so that the oscillation swings between a low value dfand a high value
of A. The constant, called thefrequency, scales the axis. This results in crowding
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y=s|n(t)
YEAsIn(t,

\

(@) (b)

TRHT] TTERED

EECEICREIRE
FENER VR VIE NS

(c) (d)

Figure 10.6.Graphs of the functions (&) = sin(¢), (b) y = Asin(t) for A > 1,
(€)y = Asin(wt) forw > 1, (d)y = Asin(w(t — a)).

together of the peaks and valleys if > 1) or stretching them out (> < 1). One full
cycle is completed when

wt = 27
and this occurs at time
27
t=".
w

We will use the symbdl’, to denote this special time, and we refefltas theperiod We
note the connection between frequency and period:

2T
W= —
T7
-
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If we examine a graph of function
y = f(t) = Asin(w(t - a))

we find that the graph has been shifted in the positidigection bya. We note that at time
t = a, the value of the function is

y= f(t) = Asin(w(a — a)) = Asin(0) = 0.

This tells us that the cycle “starts” with a delay, i.e. th&uesofy goes through zero when
whent = a.
Another common variant of the same function can be writtethéform

y = f(t) = Asin(wt — ¢).

Here¢ is called thephase shifbf the oscillation. Comparing the above two related forms,

we see that they are the same if we identifyith wa. The phase shiftp is considered

to be a quantity without units, whereas the quantityas units of time, same as When

¢ = 2w, (which is the same as the case that 27/w, the graph has been moved over to

the right by one full period. (Naturally, when the graph isxsoved, it looks the same as it

did originally, since each cycle is the same as the one bedocksame as the one after.)
Some of the scaled, shifted, sine functions described hiershewn in Figure 10.6.

10.5 Rhythmic processes

Many natural phenomena are cyclic. It is often conveniemefresent such phenomena
with one or another simple periodic functions, and sine amsine can be adapted for
the purpose. The idea is to pick the right function , the riigaguency (or period), the
amplitude, and possibly the phase shift, so as to represenlgsired behaviour.

To select one or another of these functions, it helps to relpeeithat cosine starts a
cycle (att = 0) at its peak value, while sine starts the cyclé ate., at its average value. A
function that starts at the lowest point of the cycle-igos(¢). In most cases, the choice of
function to use is somewhat arbitrary, since a phase shiftoarect for the phase at which
the oscillation starts.

Next, we pick a constant such that the trigonometric functisin(wt) (or cos(wt))
has the correct period. Given a period for the oscillatibnrecall that the corresponding
frequency is simplyw = QT’T We then select the amplitude, and horizontal and vertical
shifts to complete the mission. The examples below illdsttiais process.

Example 10.1 (Daylight hours:) In Vancouver, the shortest day (8 hours of light) occurs
around December 22, and the longest day (16 hours of liglatpignd June 21. Approxi-
mate the cyclic changes of daylight through the season tisngine function. W

Solution: On Sept 21 and March 21 the lengths of day and night are equihthen there
are 12 hours of daylight. (Each of these days is calledé@mnoy. Suppose we call
identify March 21 as the beginning of a yearly day-night lgngycle. Lett be time in
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days beginning on March 21. One full cycle takes a year, 66 days. The period of the
function we want is thus
T = 365

and its frequency is
w = 27/365.

Daylight shifts between the two extremes of 8 and 16 howes12+ 4 hours. This means
that the amplitude of the cycle is 4 hours. The oscillatike falace about the average value
of 12 hours. We have decided to start a cycle on a day for wihiemtimber of daylight
hours is the average value (12). This means that the sinelvb@uinost appropriate, so the
function that best describes the number of hours of dayhgkiifferent times of the year
is:

. 27
D(t) =12+ 4sin (%t)
wheret is time in days and) the number of hours of light.

Example 10.2 (Hormone levels:)The level of a certain hormone in the bloodstream fluc-
tuates between undetectable concentration at 7:00 andgl60 at 19:00 hours. Approxi-
mate the cyclic variations in this hormone level with the mppiate periodic trigonometric
function. Lett represent time in hours from 0:00 hrs through the dayl

Solution: We first note that it takes one day (24 hours) to complete aecythis means
that the period of oscillation is 24 hours, so that the freopyes

_ 2 2 ™

T 24 12

The variation in the level of hormone is between 0 and 100 hgimich can be expressed
as 50+ 50 ng/ml. (The trigonometric functions are symmetric cgcland we are here
finding both the average value about which cycles occur améihplitude of the cycles.)
We could consider the time midway between the low and hightsphamely 13:00 hours
as the point corresponding to the upswing at the start of B @fche sine function. (See
Figure 10.7 for the sketch.) Thus, if we use a sine to reptakeroscillation, we should
shift it by 13 hrs to the left.

Assembling these observations, we obtain the level of haeyid at timet in hours:

H(t) = 50 + 50 sin (f—z(t - 13)) .

In the expression above, the number 13 represents a shify #ie time axis, and carries
units of time. We can express this same function in the form

t 13
H(t) = 50 + 50 sin (”— - —”) .

In this version, the quantity
_ 137

¢ 12
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period: T= 24 hrs

0 1 7 13 19 24
12 hrs
6 hrs

Figure 10.7. Hormonal cycles. The full cycle is 24 hrs. The le¥&lt) swings
between 0 and 100 ng. From the given information, we seelleaterage level is 50 ng,
and that the origin of a representative sine curve shouldtie-a 13 (i.e. 1/4 of the cycle
which is 6 hrs past the time point= 7) to depict this cycle.

is what we have referred to as a phase shift. (This repreien{soint on ther cycle at
which the function begins when we plugtn= 0.)

In selecting the periodic function to use for this example,asuld have made other
choices. For example, the same periodic can be representuytof the functions listed
below: -

H(t) = 50 — 50sin (E(t - 1)) ,

H(t) = 50 + 50 cos (%(t - 19)) :

m
H(t) = 50 — 50 cos (1—2(t - 7)) .
All these functions have the same values, the same amditade the same periods.

Example 10.3 (Phases of the moon:p cycle of waxing and waning moon takes 29.5
days approximately. Construct a periodic function to diesahe changing phases, starting
with a “new moon” (totally dark) and ending one cycle laterll

Solution: The period of the cycle i’ = 29.5 days, so

T 295

For this example, we will use the cosine function, for preetiLet P(¢) be the fraction

of the moon showing on dayin the cycle. Then we should construct the function so that
0 < P < 1, with P = 1 in mid cycle (see Figure 10.8). The cosine function swings
between the values -1 and 1. To obtain a positive functioherdiesired range faP(¢), we

will add a constant and scale the cosine as follows:

- 2 2

%[1 + cos(wt)].
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q O D

Figure 10.8.Periodic moon phases

This is not quite right, though becausetat 0 this function takes the value 1, rather than
0, as shown in Figure 10.8. To correct this we can either dhtce a phase shift, i.e. set

1
P(t) = 5[1 + cos(wt + m)].
(Then when. = 0, we getP(t) = 0.5[1 + cos 7] = 0.5[1 — 1] = 0.) or we can write

P(t) = =[1 — cos(wt 4+ )],

N~

which achieves the same result.

10.6 Other trigonometric functions

Although we shall mostly be concerned with the two basic fioms described above, sev-
eral others are historically important and are encountéeggliently in integral calculus.
These include the following:

 sin(t) 1
tan(t) = cos(t)’ cot(t) = tan(t)’
1 1
sec(t) = cos@)’ cse(t) = )

The identity
sin?(t) + cos?(t) = 1

then leads to two others of similar form. Dividing each sifithe above relation byos?(t)
yields
tan?(t) + 1 = sec?(t)

whereas division byin?(t) gives us
1+ cot?(t) = csc?(t).

These will be important for simplifying expressions inviolg the trigonometric functions,
as we shall see.
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Law of cosines

This law relates the cosine of an angle to the lengths of dimfesed in a triangle. (See
figure 10.9.)
= a® + b* — 2abcos(h)

where the side of lengthis opposite the angle.

a

Figure 10.9.Law of cosines states that = a2 + b — 2abcos(6).

Here are other important relations between the trigondmttnctions that should
be remembered. These are called trigonometric identities:

Angle sum identities

The trigonometric functions are nonlinear. This means, tfeatexample, the sine of the
sum of two angles isotjust the sum of the two sines. One can use the law of cosines and
other geometric ideas to establish the following two relahips:

sin(A + B) = sin(A) cos(B) + sin(B) cos(A)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

These two identities appear in many calculations, and wilinbportant for comput-
ing derivatives of the basic trigonometric formulae.

Related identities

The identities for the sum of angles can be used to derive dauof related formulae.
For example, by replacing by — B we get the angle difference identities:

sin(A — B) = sin(A) cos(B) — sin(B) cos(A)
cos(A — B) = cos(A) cos(B) + sin(A) sin(B)

By settingd = A = B in these we find the subsidiary double angle formulae:



10.7. Limits involving the trigonometric functions 193

sin(260) = 2 sin(0) cos(d)
cos(20) = cos?(0) — sin?(6)
and these can also be written in the form
2cos?(0) = 1 + cos(260)

25in%(0) = 1 — cos(26).

(The latter four are quite useful in integration methods.)

10.7 Limits involving the trigonometric functions

Before we compute derivatives of the sine and cosine funstising the definition of the
derivative, we will need to specify two limits that will be eged in those calculations.

If we zoom in on the graph of the sine function close to theiorige will see a curve
resembling a straight line with slope 1, i.e. the functios: sin(¢) will look quite similar
to the graph of) = t close tot = 0. This is shown in the sequence of graphs in Figure 3.2.
This means that, for small

sin(t) ~ t.
We can restate this as
sin(h) ~ h
or as
sin(h)
~ 1.
h
It turns out that this approximation becomes finehakecreases, i.e
<] h
lim S8 _
h—0 h

This is a very important limit, and will be used in many apations.
A similar analysis of the graph of the cosine function, shawfrigure 10.10, will
lead us to conclude that the related limit is

lim cos(h) —1 _

h—0 h 0-

We can now apply these to computing derivatives.

10.7.1 Derivatives of the trigonometric functions

Lety = f(x) = sin(z) be the function to differentiate, wheteis now the independent
variable (previously callet). Below, we use the definition of the derivative to compute th
derivative of this function.

Example 10.4 (Derivative ofsin(x):) Compute the derivative of = sin(z) using the
definition of the derivative. Wl
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(a) (b) (©)
Figure 10.10.Zooming in on the graph af = cos(z) atz = 0.

Solution:

Fe) =ty LD = @)

h—0 h

dsin(x) — lim sin(x + h) — sin(z)
dx h—0
— lim sin(x) cos(h) + sin(h) cos(x) — sin(x)
h—0 h

Iy . cos(h) — 1 sin(h)
= }lll_% (sm(x)ih + cos(x) Y
. . cos(h)—1 ) . sin(h)
= sin(x) <}111L% #) + cos(x) (Ali% Y >
= cos(z)

Observe that the limits described in the preceding sectemrewsed in getting to our
final result.

A similar calculation using the functiafos(z) leads to the result

d cos(z)
dx

= —sin(x).

(The same two limits appear in this calculation as well.)

We can now calculate the derivative of the any of the othgotrometric functions
using the quotient rule.

Example 10.5 (Derivative of the functiontan(x):) Compute the derivative of = tan(z).
|



10.8. Trigonometric related rates 195

y = flz) f'(@)
(z)

cos(x)

cos(x) — sin(x)
tan(x) sec?(x)
csc(z) | —cse(z) cot(x)
sec(x) sec(z) tan(x)
cot(z) —csc?(x)

Table 10.2.Derivatives of the trigonometric functions

Solution:
dtan(x)  [sin(x)]’ cos(z) — [cos(x)] sin(x)

dx cos?(z)

Using the recently found derivatives for the sine and cqsieehave

dtan(z)  sin®(z) + cos?(z)

dr cos?(x)

But the numerator of the above can be simplified using themagnetric identity, leading

to dtan(z) )
tan(z) 9
dr  cos?(z) soc”().

The derivatives of the six trigpnometric functions are give the table below. The
reader may wish to practice the use of the quotient rule bifyieg one or more of the
derivatives of the relativessc(z) or sec(z). In practice, the most important functions are
the first three, and their derivatives should be remembeaethey are frequently encoun-
tered in practical applications.

10.8 Trigonometric related rates

The examples in this section will allow us to practice chaiterapplications using the
trigonometric functions. We will discuss a number of prabse and show how the basic
facts described in this chapter appear in various comlgingtio arrive at desired results.

Example 10.6 (A point on a circle:) A point moves around the rim of a circle of radius 1
so that the anglé subtended by the radius vector to that point changes at dscumate,

0 = wt,

wheret is time. Determine the rate of change of thandy coordinates of that point. li

Solution: We haved(t), z(t¢), andy(t) all functions oft. The fact that is proportional to

t means that
do

E—W
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Thex andy coordinates of the point are related to the angle by
x(t) = cos(6(t)) = cos(wt),

y(t) = sin(0(t)) = sin(wt).
This implies (by the chain rule) that

dx  dcos(0) df

dt g at’
dy  dsin(0) do
dt— df dt’
Performing the required calculations, we have
d
d_gtc = —sin(f)w,
d
d—:g = cos(f)w.

We will see some interesting consequences of this in a lattios.

Example 10.7 (Runners on a circular track:) Two runners start at the same position (call
it x = 0) on a circular race track of length 400 meters. Joe Runnestak sec, while
Michael Johnson takes 43.18 sec to complete the 400 meter E2etermine the rate of
change of the angle formed between the two runners and theradrthe track, assuming
that the runners are running at a constant ratdl

Solution: The track is 400 meters in length (total). Joe completes guke @round the
track @7 radians) in 50 sec, while Michael completes a cycle in 43el8 §This means
that Joe has period @f = 50 sec, and a frequency of = 27/T = 27 /50 radians per sec.
Similarly, Michael's period i = 43.18 sec and his frequencyis = 27/T = 27/43.18
radians per sec. From this, we find that

db’J 21 .
om0 0.125 radians per sec
doy, 2
WM = FZS = 0.145 radians per sec
Thus the angle between the runnérg, — 0 ; changes at the rate
d(GM — 6‘])

7 = 0.145 — 0.125 = 0.02 radians per sec
Example 10.8 (Simple law of cosines:Consider the triangle as shown in Figure 10.9.
Suppose that the angleincreases at a constant rate, idd,/dt = k. If the sidesa = 3,

b = 4, are of constant length, determine the rate of change ofethgthc opposite this
angle at the instant that=5. W
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Solution: Leta, b, ¢ be the lengths of the three sides, witthe length of the side opposite
angled. The law of cosines states that

¢ = a® + b* — 2abcos(h).
We identify the changing quantities by writing this relatio the form
A(t) = a® +b* — 2abcos(0(t))

so it is evident that only andd will vary with time, while a, b remain constant. We are
also told that

do
— =k.
dt
Differentiating and using the chain rule leads to:
de d cos(0) d
20% = —2ab a0 %

Butdcos(f)/df = —sin(#) so that

dc ab ) do ab, .

i —?(— sm(@))% = ?k sin(0).
We now note that at the instant in questians= 3,b = 4,¢ = 5, forming a Pythagorean
triangle in which the angle oppositels § = 7/2. We can see this fact using the law of
cosines, and noting that

2 =a®+b* —2abcos(), 25=9+ 16— 24cos(h).

This implies that) = —24 cos(0), cos(f) = 0 so that! = /2. Substituting these into our
result for the rate of change of the lengtleads to

de _ab, 34,
dt c 5
Example 10.9 (Clocks:) Find the rate of change of the angle between the minute hahd an
hour hand on a clock. l

Solution: We will call #; the angle that the minute hand subtends with:itlagis (horizon-
tal direction) and), the angle that the hour hand makes with the same axis.

If our clock is working properly, each hand will move aroundaaconstant rate.
The hour hand will trace out one complete revolutién ¢(adians) every 12 hours, while
the minute hand will complete a revolution every hour. Bo#imthis move in a clockwise
direction, which (by convention) is towards negative arglehis means that

an,
dt

d92 2w .
P radians per hour.

= —27 radians per hour,
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(@) (b)

Figure 10.11.Figure for Examples 10.9 and 10.10.

The angle between the two hands is the difference of the tgteani.e.

0=0,— 06,
Thus, ) ) )
d o d o d 1 d 2 2T
AT T L T
Thus, we find that the rate of change of the angle between thashia
o 11 11
a - 12 "6

Example 10.10 (Clocks, continued:)Suppose that the length of the minute hand is 4 cm
and the length of the hour hand is 3 cm. At what rate isdiségancebetween the hands
changing when it is 3:00 o’clock? H

Solution: We use the law of cosines to give us the rate of change of theededistance.
We have the triangle shown in figure 10.11 in which side lesgtiea = 3, b = 4, andc(t)
opposite the anglé(t). From the previous example, we have

de ab . db
7l sm(@)a.

At precisely 3:00 o’clock, the angle in questiorgis= 7/2 and it can also be seen that the
Pythagorean trianglebc leads to

A=+ =32+42=9+16=25

so thatc = 5. We found from our previous analysis th#t/dt = 1—6171'. Using this informa-

tion leads to: p 3.4 1 99
d—j = T sin(w/2)(—g7r) = — - cm per hr

The negative sign indicates that at this time, the distaet@den the two hands is decreas-
ing.
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Example 10.11 (Visual angles:)in the triangle shown in Figure 10.12, an object of height
s is moving towards an observer. Its distance from the obsetveome instant is labeled
x(t) and it approaches at some constant speeDetermine the rate of change of the angle
6(t)and how it depends on speed, size, and distance of the oBjiten 0 is called a visual
angle, since it represents the angle that an image subtentie oetina of the observer. A
more detailed example of this type is discussed in the nexiten. W

n

N 6
X

Figure 10.12.A visual angle.

Solution: We are given the information that the object approachesmesmnstant speed,

v. This means that
dx

— = —.
dt

(The minus sign means that the distamds decreasing.) Using the trigonometric relations,

we see that

tan(f) =

8w

If the size,s, of the object is constant, then the changes with time inpdy t

OB

We differentiate both sides of this equation with respect samnd obtain

dtan(0) d0  d ( s )

tan(0(t)) =

do dt — dt \z(t)
do 1 dx
200 _ L ax
sec”(0) o SI2 p
so that
db 1 1 dx

dt _Ssec2(0) 22 dt
We can use the trigonometric identity
sec?(0) = 1 4 tan?(f)

to express our answer in terms only of the sizethe distance of the object, and the
speed:

3)2 22 + 52
22

sec’(f) =1+ (

T
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SO
do x? 1 dx S

— = = .
dt 2 4 52 22 dt z2 4 52

(Two minus signs cancelled above.) Thus, the rate of chafte isual angle isv/ (x2+
s2). This calculation has some interesting implications focteas to visual stimuli. We
will explore some of these implications later on.

10.9 Trigonometric functions and differential
equations

In this section, we will show the following relationship beten trigonometric functions
and differential equations:

The functions
x(t) = cos(wt), y(t) = sin(wt)

satisfy a pair of differential equations,

dx dy
= —wy, — =wr.

dat dt

The functions
x(t) = cos(wt), y(t) = sin(wt)

also satisfy a related differential equation with a secoerivdtive

d*z 9
— = —wx.
dt?

To show that these statements are true, we return to an exaxplored in the previous
section: we considered a point moving around a unit circleainstant angular rate, so

that
o

% = W
We then considered theandy coordinates of the point,

x(t) = cos(6(t)) = cos(wt), y(t) =sin(0(t)) = sin(wt),
and showed (using the chain rule) that these satisfy

dx

il sin(f)w,
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These relationships can also be written in the form

dr__,
dt_ ya
@—wx
a7

where we have used the definitions of sine and cosine in tefmswndy.

The above pair of equations describe the fact that the diemvaf each of these trig
functions,«(t) andy(t), is related to the other function. These two equations fedl &
class we have already explored, namely differential equoati

We have just shown that the function&) = cos(wt) andy(t) = sin(wt) also have
a special connection to differential equations. In facytaee linked by the pair of inter-
connected equations displayed here as our result. Eacti@yirevolves the derivative of
one or the other of the trig functions, and says that thissdévie is just a constant multiple
of the other function. (In a way, we already knew this reliagioip holds, since our table of
derivatives illustrates the connection betweenandcos. However, we here see the idea in
a setting that reminds us of similar observations made fpoegntial functions. (Such in-
terdependent differential equations are also referred tset of coupled equations, since
each one contains variables that appear in the other.)

By differentiating both sides of the first equation, we findtth

dz _ dy
a2 dt’

and now using the second equation, we simplify to

d’z
i —w(wx),
finally obtaining
d*x 9
W = xX.

The reader can show thatsatisfies the same type of equation, namely that

d?y 9
This means that each of the above trigonometric functiotisfga new type of dif-
ferential equation containing a second derivative.
Students of physics will here recognize the equation the¢gws the behaviour of a
harmonic oscillator, and will see the connection between the circular motionunfpmint
on the circle, and the differential equation for periodictio.

10.10 Additional examples

This section is dedicated to practicing implicit differiaion in the context of trigonomet-
ric functions.
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A surface that looks like an “egg carton” can be describedbyftinction
z = sin(x) cos(y)

See Figure 10.13(a) for the shape of this surface.

—

(@) (b)

Figure 10.13. (a) The surfacasin(z) cos(y) = 3 (b) One level curve for this
surface. Note that the scales are not the same for parts (@)lan

Suppose we slice though the surface at various levels. Wedtloen see a collection
of circular contours, as found on a topographical map of antean range. Such contours
are called “level curves”, and some of these can be seen imd-i0.13. We will here be
interested in the contours formed at some specific heigit,ad.height: = 1/2. Thisset
of curves can be described by the equation:

sin(x) cos(y) = %

Let us look at one of these, e.g. the curve shown in Figure3(B)1 This is just
one of the contours, namely the one located in the portioh@fraph for—1 < y < 1,
0 < z < 3. We practice implicit differentiation for this curve, i.ave find the slope of
tangent lines to this curve.

Example 10.12 (Implicit differentiation:) Find the slope of the tangent line to a point on
the curve shown in Figure 10.13(b). B

Solution: Differentiating, we obtain:

. d (1
o (sin(x) cos(y)) = . (-)
dsidr;(:v) cos(y) + Sin(:c)dcfli(y) =0
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cos(x) cos(y) + sin(x)(— sin(y));l—gyc =0
dy _ cos(z) cos(y) dy _ 1
dx  sin(z)sin(y) dr  tan(z)tan(y)

We can now determine the slope of the tangent lines to thee@trpoints of interest.

Example 10.13Find the slope of the tangent line to the same level curve efpthint
xr=2Z. 1

2

Solution: At this point,sin(xz) = sin(r/2) = 1 which means that the corresponding
coordinate of a point on the graph satisfies(y) = 1/2 so one value of; isy = /3.
(There are other values, for example-at/3 and a2zn + /3, but we will not consider
these here.) Then we find that

@ B 1
dr  tan(m/2)tan(m/3)’

But tan(7/2) = oo so that the ratio above Ieadsgg = 0. The tangent line is horizontal
as it goes though the poifit /2, 7/3) on the graph.

Example 10.14Find the slope of the tangent line to the same level curve etpttint

_ T

Solution: Here we havein(z) = sin(7/4) = v/2/2, and we find that the y coordinate
satisfies

ﬁ cos(y) = 1
g ‘W5
This means thatos(y) = % = 2 so thaty = /4. Thus
dy 1 1

dr ~ tan(r/Dtan(a/d) 1

so that the tangent line at the poinat/4, 7 /4) has slope 1.
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Exercises

10.1. Calculate the first derivative for the following fuiocts.
(@) y = sinz?

(b) y = sin’z

(€) y = cot® {/x

(d) y = sec(z — 32?)

(e) y =2z3tanx

(f) Y= cowsz
(9) y = xcosx
(h) y=e 50"z

(i) y= (2tan3z + 3 cosx)?
() v = cos(sinz) + coszsinz
10.2. Take the derivative of the following functions.
@) f(x) = cos(In(z* + 522 + 3))
(b) f(z) = sin(y/cos?(z) + 3)
(©) f(z) =22 +logs(z)
(d) f(z) = (22€” + tan(3z))*

(€) f(x) = 2 /sin*(x) + cos? (x)
10.3. Convert the following expressions in radians to degjre
(@) 7 (b) 57/3 (c) 217/23 (d) 247
Convert the following expressions in degrees to radians:
(e) 100° (f) 8° (g) 450° (h) 90°
Using a Pythagorean triangle, evaluate each of the follgwin
(i) cos(7/3) (j) sin(m/4) (k) tan(7/6)
10.4. Graph the following functions over the indicated resig
(@) y = xsin(z) for =27 < & < 27
(b) y = e*cos(z) for 0 < x < 4m.
10.5. Sketch the graph for each of the following functions:

@ y= %sin?)(x - %)

(b) y=2—sinx
(c) y = 3cos2x
1 s
dy=2 - —
(d) y cos(zx + 4)
10.6. The Radianis an important unit associated with an@les revolution about a circle

is equivalent t@60 degrees o2x radians. Convert the following angles (in degrees)
to angles in radians. (Express these as multiples abt as decimal expansions):
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(a) 45 degrees
(b) 30 degrees
(c) 60 degrees
(d) 270 degrees.

Find the sine and the cosine of each of these angles.

10.7. A point is moving on the perimeter of a circle of radiuatthe rate of 0.1 radians
per second. How fast is its coordinate changing when= 0.5? How fast is itsy
coordinate changing at that time?

10.8. The derivatives of the two important trig functiong &in(x)]’ = cos(z) and
[cos(x)]” = —sin(x). Use these derivatives to answer the following questions.
Let f(z) = sin(x) 4+ cos(z), 0 <z <27

(a) Find all intervals wher¢ () is increasing.
(b) Find all intervals wherg () is concave up.

(c) Locate all inflection points.
(d) Graphf(x).

10.9. Find the appropriate trigonometric function to démethe following rhythmic pro-
cesses:

(a) Dally variations in the body temperatufgt) of an individual over a single
day, with the maximum 087.5°C at 8:00 am and a minimum 86.7° C 12
hours later.

(b) Sleep-wake cycles with peak wakefulneBs & 1) at 8:00 am and 8:00pm
and peak sleepinesB{ = 0) at 2:00pm and 2:00 am.

(For parts (a) and (b) expresas time in hours witht = 0 taken at 0:00 am.)

10.10. Find the appropriate trigonometric function to diescthe following rhythmic pro-
cesses:

(@) The displacemeri cm of a block on a spring from its equilibrium position,

with a maximum displacemerst cm and minimum displacement3 cm, a
H 27
period Ofﬁ and att =0, .S = 3.

(b) The vertical displacementof a boat that is rocking up and down on a lake.
was measured relative to the bottom of the lake. It has a maxidlisplace-
ment of 12 meters and a minimum dof meters, a period o seconds, and
an initial displacement of1 meters when measurement was first started (i.e.,
t=0).

10.11. Find all points on the graph 9= tan(2x), — % <z < %, where the slope of the
tangent line ist.

10.12. A*“V" shaped formation of birds forms a symmetric sture in which the distance
from the leader to the last birds in the \iis= 10m, the distance between those trail-
ing birds isD = 6m and the angle formed by the V 65 as shown in Figure 10.14
below. Suppose that the shape is gradually changing: thegrairds start to get
closer so that their distance apart shrinks at a constemt fatdt = —0.2m/min
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while maintaining the same distance from the leader. (Asstirat the structure is
always in the shape of a V as the other birds adjust theiripasito stay aligned in
the flock.) What is the rate of change of the angfte

Flying bird
formation

Figure 10.14.Figure for Problem 12

10.13. A hot air balloon on the ground280 meters away from an observer. It starts rising
vertically at a rate 060 meters per minute. Find the rate of change of the angle of
elevation of the observer when the balloo2(¥ meters above the ground.

10.14. Match the differential equations given in partsJiwith the functions in (a-f) which

are solutions for them. (Note: each differential equaticayrhave more than one
solution)

Differential equations:
(i) d*y/dt* =4y
(i) d?y/dt?* = —4y

(iii) dy/dt =4y

(iv) dy/dt = —4y
Solutions:

() y(t) = 4cos(t)

(b) y(t) = 2cos(2t)

(©) y(t) = 4e~

(d) y(t) = 5e*

(e) y(t) = sin(2t) — cos(2t),

() y(t) =2~

10.15. Jack and Jill have an on-again off-again love affEire sum of their love for one
another is given by the functiay(t) = sin(2t) + cos(2t).

(a) Find the times when their total love is at a maximum.

(b) Find the times when they dislike each other the most.
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10.16. A ladder of lengtiL is leaning against a wall so that its point of contact with the
ground is a distance from the wall, and its point of contact with the wall is at
heighty. The ladder slips away from the wall at a constant tate

(a) Find an expression for the rate of change of the hejght

(b) Find an expression for the rate of change of the afigt@med between the
ladder and the wall.
10.17. A cannon-ball fired by a cannon at ground level at afigiethe horizon( < 6 <
m/2) will travel a horizontal distance (called thiange, R) given by the formula
below:

1
R= Ev%sin@cos&.

Herewvy > 0, the initial velocity of the cannon-ball, is a fixed constamd air
resistance is neglected. (See Figure 10.15.) What is thémoax possible range?

8

Figure 10.15.Figure for problem 17

10.18. A wheel of radius meter rolls on a flat surface without slipping. The wheel nsove
from left to right, rotating clockwise at a constant rate2akvolutions per second.
Stuck to the rim of the wheel is a piece of gum, (labef@d as the wheel rolls
along, the gum follows a path shown by the wide arc (calledyaltdd curve”) in
Figure 10.16. Théz, y) coordinates of the gunty) are related to the wheel’s angle
of rotationd by the formulae
r =0 —sinb,

y=1—cosb,

where0 < 6 < 2x. How fast is the gum moving horizontally at the instant that i
reaches its highest point? How fast is it moving verticatljhat same instant?
10.19. In Figure 10.17, the point P is connected to the poiby@ rod 3 cm long. The
wheel rotates around O in the clockwise direction at a comnstpeed, making 5
revolutions per second. The point Q, which is connectedegtiint P by a rod 5
cm long, moves along the horizontal line through O. How fastia what direction
is Q moving when P lies directly above O? (Remember the lanosines:c? =
a® + b% — 2abcosé.)
10.20. A ship sails away from a harbor at a constant speéthe total height of the ship
including its mast ig.. See Figure 10.18.
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Figure 10.16.Figure for Problem 18

o

Figure 10.17.Figure for Problem 19

(a) Atwhat distance away will the ship disappear below thézioo?

(b) At what rate does the top of the mast appear to drop towsardhorizon just
before this? (Note: In ancient times this effect lead petpleonjecture that
the earth is round (radiug), a fact which you need to take into account in
solving the problem.)

Figure 10.18.Figure for Problem 20

10.21. Findj—i’ using implicit differentiation.
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(@) y =2tan(2z +y)
(b) siny = —2cosx
(c) xsiny +ysinz =1
10.22. Use implicit differentiation to find the equation béttangent line to the following
curve at the poinfl, 1):

rsin(zy —y?) =22 — 1
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Chapter 11

Inverse Trigonometric
functions

In this chapter, we investigate inverse trigonometric fiors. As in other examples, the
inverse of a given function leads to exchange of the roleseflependent and independent
variables, as well as the the roles of the domain and rangem@ically, an inverse
function is obtained by reflecting the original function abthe liney = x. However,
we must take care that the resulting graph represents aunetidn, i.e. satisfies all the
properties required of a function.

The domains ofin(z) andcos(z) are both—co < = < oo while their ranges are
—1 < y < 1. In the case of the functiotan(x), the domain excludes valuesr/2 as
well as angle2nz + 7/2 at which the function is undefined. The rangetafi(x) is
—o0 <y < o0.

There is one difficulty in defining inverses for trigonometiunctions: the fact that
these functions repeat their values in a cyclic pattern m#aat a giveny value is obtained
from many possible values of For example, all of the values= = /2,57/2, 77 /2, etc
all have identical sine valuesn(z) = 1. We say that these functions are oie-to-one
Geometrically, this is just saying that the graphs of thg functions intersect a horizontal
line in numerous places. When these graphs are reflected tiediney = «, they would
intersect avertical line in many places, and would fail to be functions: the fimtivould
have multipley values corresponding to the same value:pfvhich is not allowed. The
reader may recall that a similar difficulty was encounteredn earlier chapter with the
inverse function fory = 2.

We can avoid this difficulty by restricting the domains of tigonometric functions
to a portion of their graphs that does not repeat. To do so,elextsan interval over
which the given trigonometric function is one-to -one, i@er which there is a unique
correspondence between valuesxoéind values ofy. (This just mean that we keep a
portion of the graph of the function in which the y values avenepeated.) We then define
the corresponding inverse function, as described below.

211
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Y=Sin() /

y=sin(x)

y=Sin(x)

/Farcsin(x)
y=x

(@) (b)

Figure 11.1. (a) The original trigonometric functiorsin(x), in black, as well as
the portion restricted to a smaller domaifijn(x), in red. The red curve is shown again
in part b. (b) Relationship between the functidfis(x), defined on-7/2 < 2 < /2 (in
red) andarcsin(x) defined on-1 < = < 1 (in blue). Note that one is the reflection of the
other about the lings = z. The graphs in parts (a) and (b) are not on the same scale.

Arcsine is the inverse of sine

The functiony = sin(z) is one-to-one on the intervalr /2 < = < 7/2. We will define
the associated functian= Sin(x) (shown in red on Figures 11.1(a) and (b) by restricting
the domain of the sine function tex/2 < z < x/2. On the given interval, we have
—1 < Sin(z) < 1. We define the inverse function, called arcsine

y=arcsin(z) —1l<ax<l

in the usual way, by reflection &fin(x) through the lingy = = as shown in Figure 11.6(a).

To interpret this function, we note thatcsin(x) is “the angle whose sine ig’. In
Figure 11.2, we show a triangle in whiéh= arcsin(z). This follows from the observation
that the sine of theta, opposite over hypotenuse,/iswhich is simplyz. The length of
the other side of the triangle is thefl — 22 by the Pythagorean theorem.

For examplearcsin(v/2/2) is the angle whose sine ig2/2, namelyr/4. (We see
this by checking the values of trig functions of standardiesghown in Table 1.) A few
other inter-conversions are given by the examples below.

The functionsin(z) andarcsin(x), reverse (or “invert”) each other’s effect, that is:

arcsin(sin(z)) =z for —7/2<x<7/2,

sin(arcsin(z)) =« for —1<ax<1.

There is a subtle point that the allowable values tfat can be “plugged in” are not exactly
the same for the two cases. In the first casis,an angle whose sine we compute first, and
then reverse the procedure. In the second casea number whose arc-sine is an angle.
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1—x2

Figure 11.2. This triangle has been constructed so thas an angle whose sine
isz/1 = x. This means that = arcsin(x)

We can evaluatercsin(sin(x)) for any value ofr, but the result may not agree with
the original value ofr unless we restrict attention to the intervak /2 < = < x/2. For
example, ifr = 7, thensin(z) = 0 andarcsin(sin(x)) = arcsin(0) = 0, which is not the
same ag = 7. For the other case, i.e. fem(arcsin(x)), we cannot plug in any value of
z outside of—1 < z < 1, sincearcsin(z) is simply not define at all, outside this interval.
This demonstrates that care must be taken in handling tleesextrigonometric functions.

Inverse cosine

y=Cos(x)

=arccos(x)

o

53

y=cos(x)

Y=x

(@) (b)

Figure 11.3.(a) The original functiortos(z), is shown in black; the restricted do-
main version(Cos(z) is shown in red. The same red curve appears in part (b) on atjig
different scale. (b) Relationship between the functi®ns(x) (in red) andarccos(x) (in
blue). Note that one is the reflection of the other about the}i= x.

We cannot use the same interval to restrict the cosine famchecause it has the
same y values to the right and left of the origin. If we pick theerval0 < x < m, this
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difficulty is avoided, since we arrive at a one-to-one fumcti We will call the restricted-
domain version of cosine by the name= Cos(z) = cos(z) for0 < = < w. (See red
curve in Figure 11.3(a). On the intervial< = < 7, we havel > Cos(xz) > —1 and we
define the corresponding inverse function

y =arccos(z) —l<az<l

as shown in blue in Figure 11.3(b).

We understand the meaning of the expressjor- arccos(xz) as ” the angle (in
radians) whose cosine is For examplearccos(0.5) = =/3 becauser/3 is an angle
whose cosine is 1/2. In Figure 11.4, we show a triangle coottd specifically so that
0 = arccos(z). Again, this follows from the fact thaios(6) is adjacent over hypotenuse.
The length of the third side of the triangle is obtained ushegPythagorian theorem.

Figure 11.4.This triangle has been constructed so tha an angle whose cosine
isz/1 = x. This means that = arccos(z)

The inverse relationship between the functions mean that
arccos(cos(z)) =z for 0<z<m,

cos(arccos(z)) = for —1<az<l

The same subtleties apply as in the previous case discussartisine.

Inverse tangent

The functiony = tan(x) is one-to -one on an interval/2 < = < /2, which is similar
to the case folSin(x). We therefore restrict the domain 192 < = < x/2, that is, we
define,

y=Tan(z) =tan(z) /2 <z <7/2.

Unlike sine, asz approaches either endpoint of this interval, the valudafi(z) ap-
proachestoo, i.e. —oo < Tan(xz) < oco. This means that the domain of the inverse
function will be from—oo to oo, i.e. will be defined for all values of . We define the
inverse tan function:

y =arctan(r) —oo <z < o0.

as before, we can understand the meaning of the inverse natidn, by constructing a
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y=Tan(x)

y=Tdn(x)
y=tan(x)
y=arctan(x)

y=x

(@) (b)

Figure 11.5.(a) The functiortan(z), is shown in black, an@’an(z) in red. The
same red curve is repeated in part b (b) Relationship betwsefunctiong an(z) (in red)
andarctan(z) (in blue). Note that one is the reflection of the other aboatlihey = z.

x arcsin(z) | arccos(z)

-1 —7/2 T
—3/2 | -n/3 5m/6
—/2/2 —r/4 3m/4

—1/2 —m/6 27/3
0 0 /2
1/2 /6 /3

V2/2 /4 /4
V3/2 /3 7/6
1 /2 0

Table 11.1.Standard values of the inverse trigopnometric functions.

triangle in whichd = arctan(z), shown in Figure 11.7.
The inverse tangent “inverts” the effect of the tangent @nrtHevant interval:

arctan(tan(z)) =z for —7w/2 <z <m/2

tan(arctan(z)) =« for —oo <z < oo

The same comments hold in this case.

Some of the standard angles allow us to define precise vatugbd inverse trig

functions. For other values af, one has to calculate the decimal approximation of the
function using a scientific calculator.
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y=Sin(x) /
y=sin(x)
y=Sin(x)
| %/:arcsin(x)
(@) (b)
y=Cos(x)
y=rccos(x)
y=cos(x)
>§ V=Chsix)
y=x
| (€) (d)
y=Tan(x)
y=Tan(x)
y=tan(x)
y=arctan(x)
y=x
|
(e) ®

Figure 11.6. A summary of the trigonometric functions and their inversgg
Sin(x) (b) arcsin(x), (b) Cos(z) (d) arccos(z), (€)Tan(x) (f) arctan(x). The red curves
are the restricted domain portions of the original trig fuioms. The blue curves are the
inverse functions.



11.1. Derivatives of the inverse trigonometric functions 217

1+x2

Figure 11.7.This triangle has been constructed so thas an angle whose tan is
x/1 = x. This means that = arctan(x)

Example 11.1 Simplify the following expressions: (a)csin(sin(7/4), (b) arccos(sin(—m/6))
|

Solution: (a)arcsin(sin(w/4) = /4 since the functions are simple inverses of one another
on the domain-r/2 < z < 7/2.

(b) We evaluate this expression piece by piece: First, fatesin(—7/6) = —1/2.
Thenarccos(sin(—m/6)) = arccos(—1/2) = 27/3. The last equality is obtained from the
table of values prepared above.

Example 11.2 Simplify the expressions: (ajn(arcsin(z), (b)cos(arctan(z)). N

Solution: (a) Consider first the expressiarcsin(z), and note that this represents an angle
(callit #) whose sine ig;, i.e.sin(f) = z. Refer to Figure 11.2 for a sketch of a triangle in
which this relationship holds. Now note that(6) in this same triangle is the ratio of the
opposite side to the adjacent side, i.e.

tan(arcsin(z)) = S
V1= a2
(b) Figure 11.7 shows a triangle that captures the reldtipnan(d) = = or 6 =
arctan(z). The cosine of this angle is the ratio of the adjacent sid@edypotenuse, so
that
1

2+ 1

cos(arctan(z)) =

11.1 Derivatives of the inverse trigonometric
functions

Implicit differentiation can be used to determine all datives of the new functions we
have just defined. As an example, we demonstrate how to centhaetderivative of
arctan(z). To do so, we will need to recall that the derivative of thedtion tan(x) is
sec?(x). We will also use the identityan?(z) + 1 = sec?(z).
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y=[f(x) f’gfv)

arcsin(z) A=

1—x2
arccos(z) | — ﬁ

arctan(x) AR

Table 11.2.Derivatives of the inverse trigonometric functions.

Let
y = arctan(x).

Then on the appropriate interval, we can replace this oelatiip with the equivalent one:
tan(y) = .

Differentiating implicitly with respect ta: on both sides, we obtain
a2 A
sec”(y) .

y 11
dr  sec2(y) tan®(y)+ 1

Now using again the relationshipn(y) = «, we obtain

darctan(xz) 1
dx o241

This will form an important expression used frequently itegral calculus.
The derivatives of the important inverse trigonometricdiions are shown in the
table below.

11.2 The zebra danio and its escape response

In this section, we investigate an application of the trigmetric, and inverse trigonometric
functions. This example is motivated by a problem in biolostydied by Larry Dill, a
biologist at Simon Fraser University in Burnaby, BC.

The Zebra danio is a small tropical fish, which has many poeddlarger fish) eager
to have it for dinner. Surviving through the day means beinlg &0 sense danger quickly
enough to escape from a hungry pair of jaws. However, theodzarinot spend all its time
escaping. It too, must find food, mates, and carry on aawithat sustain it. Thus, a
finely tuned mechanism which allows it to react to danger botdover-reacting would
be advantageous.

We investigate the visual basis of an escape response, basetypothesis formu-
lated by Dill.
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predator

Figure 11.8. A cartoon showing the visual angle(t) and how it changes as a
predator approaches its prey, the zebra danio.

n
%
D

X

Figure 11.9.The geometry of the escape response problem.

Figure 11.9 shows the relation between the angle subtertidbd ®anio’s eye and
the sizeS of an approaching predator, currently located at distareeay. We will assume
that the predator has a profile of sigand that it is approaching the prey at a constant speed
v. This means that the distancesatisfies

dx

dt
If we consider the top half of the triangle shown in Figure9live find a Pythagorean
triangle similar to the one we have seen before in our disonss visual angles in Chapter
10. The connection between our previous calculatighisa/2, s = S/2 andx identical
in both pictures. Thus, the trigonometric relation thatdsdk:

ton (a) (5/2)

2
We can restate this relationship using the inverse trigataofunctionarctan as follows:

T

a
— = arctan(=—).
2 2z

Our experience with the derivative of this function will bseful below. Since both the
anglea and the distance from the predatochange with time, we indicate so by writing

a(t) = 2arctan (TS@) .
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We apply the chain rule to this expression to calculate tteeachange of the anglewith
respect to time. Letting = S/2x and using the derivative of the inverse trigonometric
function,

d arctan(u) 1

du w241

and the chain rule, we would find, similarly that

da(t)  darctan(u) du dx 1 S

dt du de dt — u?+ 1(_2172(15)(_1})'
By simplifying, we arrive at the same result, namely that

do Sv

dt a2+ (S2/4)

This result should not be too surprising. Indeed, we haweadly derived it using
implicit differentiation in a previous section. Recall andar result derived for the rate of
change of a visual anglé,in Chapter 10.

do SV

dt a2+ 82

In order to show this relation, we had to use the fact that () /df = sec?(6) and the
trigonometric identitytan®(#) + 1 = sec?(6). By substituting the relation8 = «/2,
s = S/2 into the equation for the rate of changefoive find that

do Sv

dt  a? + (S2/4)

This is the rate of change of the visual angle. Now we congigeimplications of this
result.

We first observe thata/dt depends on the size of the predatyijts speedy, and
its distance away at the given instant. In fact, we can pletvtlay that this expression
depends on the distaneeby noting the following:

e Whenz = 0, i.e., when the predator has reached its prey,

do __ Sv M
dt — 0+ (5%/4)  S°

e Forz — oo, when the predator is very far away, we have a large vafum the

denominator, so

do
— 0.
a

A rough sketch of the way that the rate of change of the visngleadepends on the
current distance to the predator is shown in the curve onr€igji.10.
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11.2.1 Linking the visual angle to the escape response

What sort of visual input should the danio respond to, if ibide efficient at avoiding the
predator? In principle, we would like to consider a respdhathas the following features

e Ifthe predator is too far away, if it is moving slowly, or ifig moving in the opposite
direction, it should appear harmless and should not causdeeupanic and inappro-
priate escape response, since this uses up the prey’s dnargyood purpose.

e If the predator is coming quickly towards the danio, and apphing directly, it
should be perceived as a threat and should trigger the esesppense.

In keeping with these reasonable expectations, the hypistipeoposed by Dill is
that:

The escape response is triggered when the predator approaet so quickly, that
the rate of change of the visual angle is greater than some tigal value.

We will call that critical valueK ;. This constant would depend on how “skittish”
the Danio is given factors such as perceived risks of itsrenment. This means that the
escape response is triggered in the Danio when

da
E = Kcrit
i.e. when s
v
Kogit= ———+—.
crit IQ + (S2/4)

Figure 11.10(a) illustrates geometrically a solution tes tbquation. We show the line
y = Keit and the curvey = Sv/(2? + (S?/4)) superimposed on the same coordinate
system. The value af, labeledz et Will be the distance of the predator at the instant that
the Danio realizes that it is under threat and should esd&pecan determine the value of
this distance, referred to as theaction distancegby solving forz.

However, before doing so, we notice that another possislitown in Figure 11.10(b)
has no intersection and will result in no distance for whicl, = Sv /(2% +(S52%/4)). This
may happen if either the Danio has a very high threshold of,ae that it fails to react to
threats, or if the curve depictingry/dt is too low. That happens either § is very large
(big predator) or ifv is small (slow moving predator “sneaking up” on its prey)offarthis
scenario, we find that in some situations, the fate of the @aiuld be sealed in the jaws
of its pursuer.

To determine how far away the predator is detected in theibappenario of Fig-
ure 11.10(a), we solve for the reaction distanGgci

Sw Sv S2
Tr =

2 2
4+ (5°/4) = = - =
( / ) Kcrit Kcrit 4
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da /dt

(@) (b)

Figure 11.10. The rate of change of the visual angle/dt in two cases, when
the quantityv/S is above (a) and below (b) some critical value.

It is clear that the reaction distance of the Danio with rieacthresholdi i would
be greatest for certain sizes of predators. In Figure 1Wéblot the reaction distanaguact
(on the vertical axis) versus the predator skzéhorizontal axis). We see that very small
predatorsS ~ 0 or large predator$ ~ 4v/Kc the distance at which escape response
is triggered is very small. This means that the Danio may ma@gcing such predators
until they are too close for a comfortable escape, resuitimglamity. Some predators will
be detected when they are very far away (largg:). (We can find the most detectable
size by finding the value o$ corresponding to a maximalese: The reader may show as
an exercise that this occurs for sise= 2v/K¢ir.) At sizesS > 4v/ K, the reaction
distance is not defined at all: we have already seen this ffact Figure 11.10(b): when
Keit > 4v/S, the straight line and the curve fail to intersect, and there solution.

Figure 11.11(b) illustrates the dependence of the readigiancer,e,c:0n the speed
v of the predator. We find that for small valueswfi.e. v < KitS/4, ZreactiS Not defined:
the Danio would not notice the threat posed by predatorsstia very slowly.
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(@) (b)

Figure 11.11.(a) The reaction distanceact (0N the vertical axis) is shown for

various predator size§ (on the horizontal axis). (b) The reaction distance is shawma
function of the velocity of the predator.
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Exercises

11.1.

11.2.

11.3.

11.4.

11.5.

The functiory = arcsin(ax) is a so-callednverse trigonometric functionlt ex-
presses the same relationship as does the equatioa sin(y). (However, this
function is defined only for values aof betweenl /a and—1/a.) Use implicit dif-
ferentiation to findy’.

The inverse trigonometric functi@mctan(z) (also writtenarctan(z)) means the
angled where—7/2 < 6 < w/2whose tan is:. Thuscos(arctan(x) (or cos(arctan(z))
is the cosine of that same angle. By using a right trianglesglgides have length
1,2 andv/1 + 22 we can verify that

cos(arctan(z)) = 1/v/1 + 2.

Use a similar geometric argument to arrive at a simplificatibthe following func-
tions:

(a) sin(arcsin(x)),

(b) tan(arcsin(z),

(c) sin(arccos(zx).

Find the first derivative of the following functions.
(a) y = arcsin ]

(b) y = (arcsinx)%

(c) 6 = arctan(2r + 1)

(d) y = z arcseg

(e)y= %\/QQ — 22 —arcsin 7, a > 0.

2t
1+t2

Your room has a window whose height is 1.5 meters. Thetncedge of the win-
dow is 10 cm above your eye level. (See Figure 11.12.) Howayarom the
window should you stand to get the best view? (“Best view” nethe largest vi-
sual angle, i.e. angle between the lines of sight to the bo#nd to the top of the
window.)

You are directly below English Bay during a summer fodks event and looking
straight up. A single fireworks explosion occurs directlyedwad at a height of
500 meters. (See Figure 11.13.) The rate of change of thesadithe flare is 100
meters/sec. Assuming that the flare is a circular disk paltalithe ground, (with its
center right overhead) what is the rate of change of the vagle at the eye of an
observer on the ground at the instant that the radius of sleigsii- = 100 meters?
(Note: the visual angle will be the angle between the vdrdaction and the line
between the edge of the disk and the observer).

() y = arccos
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I I 1.5 Wwindow

0.1

Figure 11.12.Figure for Problem 4

fireworks

500

@)

Figure 11.13.Figure for Problem 5
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Chapter 12
Approximation methods

12.1 Introduction

In this chapter we explore a few techniques for finding apjpnate solutions to problems
of great practical significance. The techniques here desgrare linked by a number of
common features; most notably, all are based on exploitiegdct that a tangent line is
a good (local) approximation to the behaviour of a functianl¢ast close to the point of
tangency).

The first method, that of linear approximation has been dsed before, and is a
direct application of the tangent line as such an approxanaiVe will illustrate how this
approximation can lead to simple one-step computationwdosalues that a function of
interest takes.

A second technique described hexewton’s method is used to find precise deci-
mal approximations to zeros of a function: recall these &aegs where a function crosses
the z-axis, i.e. wheref(z) = 0. The method gives an important example ofitama-
tion schemethat is, a recipe that is repeated (several times) to gemsuecessively finer
approximations.

A third technique is applied to calculating numerical siwins of a differential equa-
tion. This method, calle@uler's method, uses the initial condition and the differential
equation to compute approximate values of the solutionlsyegiep, starting with the ini-
tial time and incrementally computing the solution valuedach of many small time steps.

While some of these techniques have been superseded byvietbfgraphics) cal-
culators, or mathematical software, the concepts behmdttthods are still fundamental.
Also important is understanding the limitations of such Imoels, since each relies on cer-
tain assumptions and underlying concepts.

12.2 Linear approximation

We have already encountered the idea that the tangent Ilprexdamates the behaviour of a
function. In this technique, the approximation is used teegate rough values of a function
close to some point at which the value of the function andflé@rivative are known, or

227
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easy to calculate.
Below we illustrate the idea dihear approximation to the function

y=[flz) =V

The exact value of this function is well known at a number a@figiously chosen values
ofz, e.9. V1 = 1,V/4 = 2,1/9 = 3, etc. Suppose we want to approximate the value of
the square root of 6. This is easily done with a scientificakor, of course, but we can
also use a rough approximation which uses only simple “krioatues of the square root
function and some elementary manipulations.

We use the following facts:

1. We know the value of the function at an adjoining point, aer = 4, sincef(4) =

Vi =2,

2. We also know that the tangent line can approximate thevi@lveof a function close
to the point of tangency

3. The derivative of) = f(z) = /z = '/ isdy/dz = (1/2)z~'/2, i.e. the slope of
the tangent line to the curve= f(x) = x is
1
f(e) =
2/(w)
In particular, atr = 4, the derivative isf’(4) = 1/(2v/4) = 1/4 = 0.25

4. The equation of the tangent line to a curve at a p@ipt f (z¢)) is

y — f(zo)

r — X

= f'(wo0)

or simply
y = f(xo) + (o) (z — 20),
as we have seen earlier, when we first introduced the ideaaoiggeht line to a curve.

5. According to thidinear approximation
f(@) = f(xo) + f'(z0)(z — 20).

The approximation is exact at= x, and holds well provided is close tar,. (The
expression on the right hand side is precisely the valug @f the tangent line at
Tr = X

Putting these facts together, we find that the equation ofigetat line to the curve
y = f(z) = /z atthe pointv = 4 is

y=rA)+ @)z -4

i.e. that
y=2+0.25(z—4).
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In Figure 12.1(a), we show the original curve with tangené Isuperimposed. In
Figure 12.1(b) we show a zoomed portion of the same graph,tochvthe true value of
V6 (black dot) is compared to the value on the tangent line, vajgproximates it (red
dot) i.e. to

Yapprox= 2 + 0.25(6 — 4) = 2.5

Itis evident from this picture that there is some error indpproximation, since the values
are clearly different. However, if we do not stray too famfréhe point of tangency(= 4),
the error will not be too large.

n

qrt(6) |~

/ approx valt /
lineqr approx af x=4 /
acjual value

y=sqrt(x)

(a) (b)
Figure 12.1.Linear approximation based at= 4 to the functiory = f(x) = \f(m).

In Table 12.1, we collect true exact values of the functfén) = /= (computed by
the spreadsheet), values of its derivatifg;x), (note in particular the value at= 4 which
forms the slope of the tangent line of interest) and valuethertangent line through the
point (4, 2). (The third column corresponds to the linear approximatmoes that we are
focusing on in this section.) At = 4, the values of the function and of its approximation
are identical (naturally - since we “rigged it” so). Closeth = 4, the values of the
approximation are fairly close to the values of the functiéurther away, however, the
difference between these gets bigger, and the approximiatiwo longer very good at all.

These remarks illustrate two features: (1) the method igteasse, and involves only
determination of a derivative, and elementary arithme®¢.The method has limitations,
and work well only close to the point at which the tangent Isbased.
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v | fl@) = V@) | F'@)=1/2V@) [ y=fxo) + f'(z0) (@ — o)
(exact value) (approx value)
0.0000 0.0000 oo 1.0000
2.0000 1.4142 0.3536 1.5000
4.0000 2.0000 0.2500 2.0000
6.0000 2.4495 0.2041 2.5000
8.0000 2.8284 0.1768 3.0000
10.0000 3.1623 0.1581 3.5000
12.0000 3.4641 0.1443 4.0000
14.0000 3.7417 0.1336 4.5000
16.0000 4.0000 0.1250 5.0000

Table 12.1.Linear approximation tq/.

12.3 Newton’s method

Newton’s method is a technique for finding approximate valioe roots of an algebraic
equation of the form
f(z) =0.

(These values are also calledrosof the functionf(x).) While this seems like a fairly
restricted type of problem, actually, there are numerop$iegtions in which this technique
is useful, and many problems in applied and basic sciendeléhd to such equations.
We have seen that finding critical points of some functitix), is equivalent to solving
G'(z) = 0. (i.e. if define the function of interest to kfgx) = G’(z), then we are solving
precisely an equation of the form shown above.

We first distinguish between cases that do and do not reqewadh’'s method, and
then show how Newton’s method is derived and how it is used.

12.3.1 When Newton’s method is not needed
Example 12.1 Find the value of: that satisfies

flz)=0
wheref(z) =22 +4x+3. 1

Solution: We are asked to solve the equation
2?2+ 4z +3=0.

This is a simple quadratic equation, and we have an exactiflafthe quadratic formula)
for the roots, i.e.

A\ /42-4(3) —4+V4
= 5 = 5 =
In this case, we do not need Newton'’s formula.

3,1.
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Example 12.2 Find values ofy for whichsin(z) =1. 1

Solution: If we setf(z) = sin(z) — 1, then the problem of solving our equation reduces
to the problem of solving (z) = 0. (Many example of this sort occur.) However, we need
no fancy techniques to solve this equation, since we knowiathat the functiorsin(x)
takes on the value 1 when= = /2, and all other values that correspond to this angle, to
which multiples of27 have been added (i.e/2 + 2n7 wheren is an integer).

Example 12.3 Find critical points of the function

y=g(r) =22 —92% + 122+ 1

Solution: We would first compute the derivativé(z) = 622 — 18z + 12, and then set
it equal zero. The problem reduces to solving an equatiohefarm f(z) = 0 where
f(x) = 62% — 18z + 12 is just the derivative ofi(x). Since this, too, is a quadratic, the
solution can be found easily using the quadratic formuta, i.

L_3EVI-8 341
e

1,3

So far, most problems encountered in this course could beddbly such elementary
algebraic simplification and rearrangement. However, faymomials of degree higher
than 3, this technique can lead to equations that are notteasylve with elementary
methods. In such cases, Newton’s method can be indispensabl

12.3.2 Derivation of the recipe for Newton’s method

y tangent line

Figure 12.2.Sketch showing the idea behing Newton’s method.
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Consider the functiop = f(z) shown in Figure 12.2. We want to find the value
such that

f(x)=0.

In Figure 12.2, the desired point is indicated with the riotat:*. Usually, the decimal
expansion for the coordinaté is not known in advance: that is what we are trying to
find. We will see that by applying Newton’s method severaktimwe can generate such a
decimal expansion to any desired level of accuracy.

Suppose we have some very rough idea of some initial guedbdoralue of this
root. (how to find this initial guess will be discussed Igtédewton’s method is a recipe
for getting better and better approximations of the true@at*.

In the diagram shown in Figure 12.2¢ represents an initial starting guess. We
observe that a tangent line to the graplf of) at the point:y gives a rough indication of the
behaviour of the function near that point. We will use thegamt line as an approximation
of the actual function. We look for the point at which the tangline intersects the
axis. Letx; denote that point of intersection. Then as shown in Figur2,12 is a better
approximation of the root we want to find, i.e; is closer tox* than our initial guess. If
we can findz; and repeat the same idea over and over again, we hope to funebvlat
get closer and closer to the raot.

Our task is now to figure out a formula for the point. We will use the following
facts:

e The point on the graph of the function corresponding to tliteairguess is(xo, yo)
whereyy = f (o).

e The slope of the tangent line at the paigtis m = f'(x).
e The equation of a line through the poinf, yo) with slopem is

Yy—Y% _
T — 2o

m

e Using the above facts, and substitutimg= f’(z¢) andyy = f(z0) leads to the
following equation for the tangent line shown in Figure 12.2

y — f(zo
Y T0) _ g1y,
T — X9
e \We are interested in the place where the tangent line irdesrfiger axis, i.e. in the
point(z1,0). We want to findx;, since this will be the more accurate approximation
for the root atz*. so we have

0— f(x
f(o) = f'(x0)
r1 — Xo
e Solving forxz; we have
Tr1 — To 1
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f(zo) f(zo)
= X1 =2 — .
f (o) T Pl
This gives a recipe for obtaining an improved valugfrom the initial guess.

1 — Ty = —

We have found that the initial guess,, and Newton’s method lead to the recipe for
the improved guess

1 = Xy — f(xO) .
I (x0)
We can repeat this procedure to get a better value
o f(ffl)
BTN @)
_ f(a)

T3 = X9 f’((EQ)'

In general, we can refine the approximation using as many stgjit takes to get the ac-
curacy we want. (We will see in upcoming examples how to raczegwhen this accuracy

is attained.) In the step + 1 we find a value that improves on the approximation made in
stepk as follows:

f(zx)

TR f(wg)

Example 12.4 Apply Newton’s method to the same problem tackled earl@mely deter-
mine the square root of 6.

Solution: 1t is first necessary to restate the problem in the form “Findiae ofx such
that a certain functiorf(z) = 0.” Clearly, a function that would accomplish this is
flz)=2"-6

since the value aof for which f(z) = 0 is indeedv? — 6 = 0, i.e.z = /6. (We could also
find other functions that have the same property, £(@) = »* — 36, but the above is one
of the simplest such functions.

We compute the derivative for this function:

fx) =2z
Thus the iteration for Newton’s method is

f(zo)

T ()

that is
a:% —6

2560

Xr1 =g —
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Newton’s method f(x)=x"246 Newton’s method f(x)=x"246

(@) (b)

Figure 12.3.Newton’s method applied to solving= f(z) = 2% — 6 = 0.

T flo) | fl(er) | 2rep

1.00 -5.00 2.00 3.5

3.5 6.250 7.00 | 2.6071
2.6071| 0.7972| 5.2143| 2.4543
2.4543| 0.0234| 4.9085| 2.4495
2.4495| 0.000 | 4.8990| 2.4495

Table 12.2.Newton’s method applied to Example 12.4.

Suppose we start with the initial guess = 1 (which is actually not very close to the value
of the root) and see how well Newton’s method perform: Thshiswn in Figure 12.3. In
Figure 12.3(a) we see the graph of the function, the posafoour initial guesst,, and
the result of the improved Newton’s method approximatign In 12.3(b), we see how
the value ofz; is then used to obtain, by applying a second iteration (i.e repeating the
calculation with the new value used as initial guess.)

A spreadsheet is ideal for setting up the rather repetitaleutations involved, as
shown in the table. For example, we compute the following$galues using our spread-
sheet. Observe that the fourth column contains the comgiitedton’s method) values,
x1, T2, etc. These values are then copied onto the first column to de as new “initial
guesses”. We also observe that after several repetitibasjumbers calculatezbnverge
(i.e. get closer and closer) to 2.4495, and no longer chang®t level of accuracy. This
is a signal that we need no longer repeat the iteration, if eesatisfied with 5 significant
figures of accuracy.
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In the next example, we show how Newton’s method can be helpfidentifying
critical points of a certain function.

Example 12.5 Find the intersection point of the graph gf= 22 with the graph ofy =
sin(z). N

Solution: The problem consists of finding a positive valuexafuch that

2% = sin(z).

Rewriting this in the form
2

x® —sin(z) = 0,
we recognize a problem of the sort that Newton’s method chmesdVe letf(z) = 22 —
sin(x), and look for roots off () = 0.

To start, we observe that fay, = 1 it is true thatz? = 1, andsin(z) ~ x ~ 1. This
suggests that we could use the initial guegs= 1.

We have
f(z) = 2% — sin(),
S0
f(x) =22 — cos(z).
and thus Fz0) ) in(z0)
_ o fwo)  wp —sin(wo
I T ) T 0T 220 — cos(xo)
S0 1 — sin(1) 1-0.8414
— Sin — U.
=1 T .8014
. 2 — cos(1) 2 0.54
we then evaluate
f(z1) x% — sin(xq)
To = T1 — =

Fz) ' 21y —cos(ay)

Plugging in the value of; we had found, and calculating the value leads to

xo = 0.8770,
We similarly find that

x3 = 0.8767,

x4 = 0.8767.

Thus, the sequence of values converges easily to the valtieeabot after only three
repetitions.

Example 12.6 Find a critical point of the function

x

y:x3+e_.
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Solution: The function is shown in Figure 12.4. We must turn this inte #ppropriate
problem to which Newton’s method will apply. The criticalipts of this function are
values ofz such that

%:3172—67120.

It is not possible to devise a simple algebraic way to solN® ¢lquation forz. We must
apply some approximation method. We will define the function

f(z) =322 —e™®.

Clearly, the zeros of this function are the critical points are looking for. We will find
one of these points using Newton’s method.
To do so, we must find the derivative ff{which happens to be the second derivative
of the original function)
f(x) =6z +e "

15

Figure 12.4.We are asked to find the critical points of the functios 2% + e 7.

As an initial guess we note that~ 3 so that
f(1)~3—-(1/3)~ 2.6

We will usexy = 1 as the initial guess even though this is not a very accurdtevé&or
this problem
f (k) 37 — e %k
T T ) T G e
We show some calculations in Table 12.3.

Thus, we see that the values converge to the critical poiat 0.4590. Again, the
iteration leads to convergence to a desired level of acgwsiaown above. From the graph
of the function shown above, it is apparent that we can expegtcond critical point at
aroundzr ~ —1. ltis left to the reader to find the exact decimal expansiotihaf second
critical point, using similar steps withy = —1.
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T flxy) = fxr) = | Tpg1 =
3z2 — e % | 6x) + €%
1.0000 2.6321 6.3679 | 0.5867
0.5867 0.4763 4.0761 | 0.4698
0.4698 0.0370 3.4439 | 0.4591
0.4591 0.0003 3.3862 | 0.4590
0.4590 0.0000 3.3857 | 0.4590

Table 12.3.Table for calculations in Example 12.6.

Example 12.7 (Effect of the initial guess:)How does the initial guess we use in New-
ton’s method affect the value of the root to which the methdbaonverge? §

Solution: We illustrate below the effect of starting out with severmtidct guesses and
note that the result will depend on the root closest to thesguEor this example we will
solve the problem of finding roots of the equation

f(z) =sin(z) = 0.

(In actual fact, we do not need Newton’s method, since we kimawthe functiorsin(x)
has zeros for integer multiples of(i.e., atz = nm wheren = 0,1,2... is any integer).
However, we will use this example to check Newton’s methodge how well the method
works for various starting guesses.)

Sincef’(x) = cos(x), Newton’s method will be based on the recipe

sin(z)

Tr1 = X

 cos(zg)”

In the graph below we show the sequence of iterates that Nésattethod generates
for two different starting values. In the first experimeng usexr, = 0.5. We'll then get
the sequence of values

z9 = 0.5, z1 = —0.0463, x> = 0.0000

and so on. This experiment leads us to find the roatat0. (We say that the sequence of
iteratesconvergeso z = 0.)
In the second experiment we start with = 4. We then find that

zo=4, z1=28422, x5 =3.1509, x5 = 3.1416

Thus, this sequence converges to the roat at.

In a third experiment, we try, = 4.4. This guess is unfortunately rather close to a
critical point on the functiory = sin(x). The result is that the tangent lineaat = 4.4 has
a very shallow slope (close to slope =0) and intersects:thris quite far away. We see
that the value of:; andz, bounce around as follows:

2o = 4.4, 71 = 1.3037, 2o = —2.3505, x5 = —3.3620, 4 = —3.1380, 25 = —3.1416
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The result is shown in Figure 12.5(b). This illustrates thet that an initial guess that is

too close to a critical point of the function in question maigdirect us. In some cases, the
result will be convergence to a root far away, while in otheses, the sequence may fail to
converge altogether.

Effeqt of initial guess

\ root\found initial guess

X0=0'5 Kp=d) X3\ x2 x1 X0
conveiges 1o
root af x=pi

converges fo
root at x=¢

A&

(@) (b)

Figure 12.5.Figure for Example 12.7

12.4 Euler's method

Euler's method is a technique used to find approximate nwalevalues for solutions to
a differential equations. In general, we might have a pmoblewhichy = ¢(t) is some
(unknown) function to be determined, where we are givenrinfdion about the rate of
change ofy such as

dy

a f(y)
and some initial condition

y(0) = yo.

This type of problem is aimitial value problem(i.e differential equation together with
initial condition.)
Euler's method consists of replacing the differential eureby the approximation

Yk+1 — Yk

Clearly, this approximation is only good if the step sixe is quite small. (In that case,
the derivative is well approximated by the term on the leftalilis actually the slope of a
secant line)
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This approximation leads to the recipe
Y1 =yo + f(yo)At

Yo = y1 + fly1)At

Yk+1 = Yr + f(yr) At

We get from this iterated technique the approximate valéidseedunction for as many time
steps as desired starting fram- 0 in increments of\t.

To set up the recipe for generating successive values ofeieed solution, we first
have to pick a “step size’xt, and subdivide theé axis into discrete steps of that size. This
is shown in Figure 12.6. Our procedure will be to start withrewn initial value ofy,
specified by the initial condition, and use it to generatevileie at the next time point,
then the next and so on.

At

time

Figure 12.6.The time axis is subdivided into steps of sie

It is customary to use the following notation to refer to theetideal solution and the
one that is actually produced by this approximation method:

e ty = the initial time point, usually at = 0.

e h = At = common notations for the step size, i.e. the distance betteepoints
along thet axis.

e t; = the k’th time point. Since the points are just at multipleghaf step size that
we have picked, it follows that, = kAt = hAt.

e y(t) = the actual value of the solution to the differential equatio timet. This is
usually not known, but in the examples discussed here, wedae the differential
equation exactly, so we have a formula for the func¢t). In most hard scientific
problems, no such formula is known in advance.

e y(tx) = the actual value of the solution to the differential equatit one of the
discrete time pointgy. (Again, not usually known.)
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e ;. = the approximate value of the solution obtained by Eulershoé. We hope
that this approximate value is fairly close to the true vaiue thaty, ~ y(tx),
but there is always some error in the approximation. Moreaaded methods that
are specifically designed to reduce such errors are distirsseurses on numerical
analysis.

Example 12.8 Apply Euler's method to approximating solutions for the plexexponen-
tial growth model that was studied in Chapter 9,

dt_ y7

(wherea is a constant) with initial condition

y(0) = yo.

(SeeEqn9.1.) N

Solution: Let us subdivide the axis into steps of sizé\t, starting witht, = 0, and
t1 = At,ty = 2At,... From the above discussion, we note that the first valug isf
known to us exactly, namely,

Yo = y(0) = yo.

We replace the differential equation by the approximation

Yk+1 — Yk

NI

Then
Yk+1 = Yk + alAtyr, k=1,2,...

In particular,
Y1 = Yo + altyo = yo(1 + aldt),

Y2 = yl(l + G/At)a

Y3 = yg(l + aAt),

and so on. At every stage, the quantity on the right hand ssgernds only on values gf,
that are already known, so that this generates a recipe feingiérom the initial value to
successive values of the approximationgor

Example 12.9 Consider the specific problem in which

dy
Y- 05 0) = 100.
o y,  y(0)

Use step sizé\t = 0.1 and Euler's method to approximate the solution for two titeps.
|
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Solution: Euler’s method applied to this example would lead to

yo =100.
y1 =yo(1 + aAt) = 100(1 + (—0.5)(0.1)) = 95,
y2 =y1(1 + aAt) = 95(1 + (=0.5)(0.1)) = 90.25,

and so on.

Clearly, these kinds of repeated calculations are bestleédruh a spreadsheet or
similar computer software. Later in this chapter we will quare the results of Euler’s
method applied to a differential equation with the actuaion known to us from studying
exponential behaviour.

The next example is somewhat more complex, but deals albcavdifferential equa-
tion whose solution is available exactly. We use it to ilfagt the comparison between the
exact solution and the approximate solution generated tsr&unethod.

12.4.1 Applying Euler's method to Newton’s law of cooling

We apply Euler’'s method to the differential equation thataldes the cooling of an object.
(This differential equation is called Newton’s Law of Cowli though it is unrelated to the
Newton’s method we investigated above.) According to Newto

The rate of change of temperaturel’ of an object is proportional to the differ-
ence between its temperature and the ambient temperaturdy.

This hypothesis about the way that temperaffife changes leads to the differential
equation
dTr
— =k(EF-T).
o = k( )
Suppose we are given an initial condition that prescribes¢mperature at the beginning
of the observation

T(0) = Typ.
This initial value problem has a solution that can be wriftea simple formula, i.e.
T(t)=E+ (Ty — E)e ™.

(See chapter 13 for a derivation of this result.) We will rafethis formula, which holds

exactly for all values of time as thetrue solution Observe that it is some function of
time that gives a full record of the behaviour of the tempe®bf the object as it cools
off or heats up in its environment. However, the numericdliea of temperature at a
given time still need to be plotted or computed for this fofato be useful quantitatively.

This motivates us to look for some approximate techniquewiuaild use the differential

equation and the initial condition directly to plot quaative behaviour, without the need
for a formula for the solutior]’(¢).

Example 12.10 (Newton'’s law of cooling:)For simplicity, consider the case that the am-
bient temperature i& = 10 degrees. Suppose that the consfaig £ = 0.2. Find the
exact solution, that is, determine the (formula for) the genature as a function of time
Tw). 1
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Solution: In this case, the differential equation has the form

dr
— =02(10-T
dt ( )7

and its solution (which is known exactly) is
T(t) =10 + (Tp — 10)e 2%,
We will investigate the solutions from several initial catiwhs, 7’ = 0, 5, 15, 20 degrees.

Example 12.11 (Euler's method applied to Newton'’s law of cdimg:) Write down the Eu-
ler's method formula that can be used to find an approximatdhe solution of Exam-
ple12.10 N

Solution: The derivativelT'/dt is approximated by the secant line slope, that is

AT T(t+AH - T(1)
dt At '

This means that an approximation to the differential equmati

dT
— =0.2(10-T
- =02(10-T),

T(t+ At) — T(t)
At

=0.2(10 — T(t)).
or, in simplified form,
T(t+ At) =~ T(t) + 0.2(10 — T'(¢))At.

This is only an approximation, but for smal¢, the approximation should be relatively
good.

Suppose we are given the initial temperature, §¢0) = T,. The important ob-
servation is that the above recipe gives us a way to compateethperature at a slightly
later time. Indeed, as we have already seen, we can use tipg i@ver and over again to
generate a succession of values of the temperdtigach at the next time point. We will
not get a smooth curve: just a collection of point valuesthese can be connected to form
a solution curve, i.e. a record of the temperature through.ti

Example 12.12 Use the formula from Example 12.11 and time steps of &ize= 1.0 to
find the first few values of temperature versus timell

Solution: Note that whileAt = 1.0 is not a “small step”, we use it here only to illustrate
the idea. Subdivide the horizonta) @xis into steps of sizé\t, and label the successive
time values a$, t1, to, . . . t, where

to=0, tr=kAL
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o
P+
—

Figure 12.7.Using Euler's method to approximate the temperature oveeti

This is shown in Figure 12.6. We will refer to the true solati@btained with the exact
formula) at a given time &g (¢x). We will refer to the Euler’s method value of the approx-
imate solution at the time poin}, asT,. Then the initial condition will give us the value
of Ty = T'(0). We will find the temperatures at the successive times by

T, =Ty + 02(10 — TO)At
Ty, =T1 + 0.2(10 — Tl)At
T5 =T5 + 0.2(10 — TQ)At.

By the time we get to th&’th step, we have:
Tiy1 =T + 0.2(10 — Ty)At.

Again we note that at each step, the right hand side involeascallation that depends only
on known quantities.

In Table 12.4, we show a typical example of the method withiahvalueT'(0) =
Ty, = 0 and with a (large) step siz&t = 1.0. The true (red) and approximate (black) solu-
tions are then shown in Figure 12.8. In this figure we illustfaur distinct solutions, each
one representing an experiment with a different initial pemature. (For the approximate
solution point values at are shown at each time step.)

The approximate solution is close to, but not identical ®ttine solution.
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time | approx solution| exact soln
L Tk T(t)
0.0000 0.0000 0.0000
1.0000 2.0000 1.8127
2.0000 3.6000 3.2968
3.0000 4.8800 4.5119
4.0000 5.9040 5.5067
5.0000 6.7232 6.3212
6.0000 7.3786 6.9881
7.0000 7.9028 7.5340
8.0000 8.3223 7.9810

Table 12.4. Euler's method applied to newton’s law of cooling generates
values shown here.

Euler's method

True solution

deltat=1.0

Figure 12.8. A comparison of the true solution and the approximate sofuti
provided by Euler's method.
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Exercises

12.1. An approximation for the square root: Use a linear approximation to find a rough
estimate of the following functions at the indicated paints

(@) y = /z atx = 10. (Use the fact that/9 = 3.)
(b) y =5z —2atz = 1.
(c) y =sin(z) atz = 0.1 and atr = 7 + 0.1
12.2. Use the method of linear approximation to find the colo¢ of
(@) 0.065 (Hint: $/0.064 = 0.4)
(b) 215 (Hint: /216 = 6)
12.3. Use the data in the graph in Figure 12.9 to make the ppsbximation you can to
f(2.01).

N y = f(x)

2, 1)

@3, ON

Figure 12.9.Figure for Problem 3

12.4. Using linear approximation, find the value of
(a) tan44°, giventan45° = 1, sec45° = V2, and1° ~ 0.01745 radians.

(b) sin 61 °, givensin 60 ° = @, cos60° = % and1° ~ 0.01745 radians.

12.5. Approximate the value ¢f(z) = 2® — 222 + 3z — 5 atz = 1.001 using the method

of linear approximation.
12.6. Use linear approximation to show that the each fundieow can be approximated

by the given expression when| is small (i.e. wher is close to 0).
(a) sinzx ~ x
(b) e* ~1+=x
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12.7.
12.8.

12.9.

12.10.

12.11.

12.12.

12.13.

12.14.

12.15.

€) n(l+a)~=z
Approximate the volume of a cube whose length of eatshisil0.1 cm.
Finding critical points: Use Newton’s method to find critical points of the function
y =e® — 222
Estimating a square root: Use Newton’s method to find an approximate value for
V8. (Hint: First think of a function,f(z), such thatf(z) = 0 has the solution
z = /8).
Finding points of intersection: Find the point(s) of intersection of:

(@) y1 = 823 — 1022 + z + 2 andy, = 3 + 1522 — z — 4 (Hint: an intersection

point exists between = 3 andx = 4).
(b) y1 =e*andy, = Inzx

Roots of cubic equations:Find the roots for each of the following cubic equations
using Newton’s method:

@ 2> +32-1=0
O) 3 +22+2-2=0

(c) x®+52%—2 = 0 (Hint: Find an approximation to a first roetusing Newton’s
method, then divide the left hand side of the equatioridy- a) to obtain a
quadratic equation, which can be solved by the quadratintita.)

(d) f(z) = zlnz andg(z) = 2 (find the larger root only)

Use Newton’s method to find an approximation (co@et0.01 ) for any roots of
the equation
1

sin(x) = —x

2

How many roots does this equation actually have ? Draw a amghowing the
functionsy = sin(z) andy = 2/2 on the same set of axes to help answer this
guestion.

More critical points: Let f(z) = (22 + 2z — 1)e~* .

(a) Find all critical points off (x) and indicate whether each one is a local maxi-
mum, local minimum, or neither.

(b) Graphf(z). Indicate the regions wher#’(x) is positive.
Use Newton’s method to find a valuexahat satisfies
et — x2/2 =0.

Use the starting value, = 0. Display your answer ta significant figures.
We will use Newton’s method to investigate zeros efftmction

y=f(x) = sin(z) — ™"

(i.e. roots of the equatiofi(x) = 0.)



Exercises

247

(a) Use the spreadsheet to graph the function

(b)

(©

(d)

f(z) =sin(z) — exp(—x)

for values ofx from O up to 6.

Find the equation of the tangent line to the curve at thetpg = 1 and plot
it on the same graph.

Use the valuery = 1 as an initial guess, and apply Newton’s method. Plot
the values(z1,0), (z2,0), and(z3,0) on the same graph produced by your
spreadsheet to show how the points approach the zero ofribédo. Use this
method to find the value of the root to four significant figures.

Use a separate computation with the spreadsheet toatethe value of the
root you find with the starting guesg = 4. (You need not show this on the
graph). Do you get to the same value as you did in part (¢)? Whyhy not?

(e) This function has lots of zeros. From your familiaritythvihe functionsin(x)

ande*, where do you expect to find the roots for largeralues?

Hand in a graph produced by the spreadsheet, and an adtfisEgmshowing
any calculations you made to get the answers. You can prnspheadsheet
contents as part of your hand-in work.

12.16. Comparing approximate and true solutions:

(a) Use Euler's method to find an approximate solution to tfieréntial equation

(b)

dy _

dx_y

with y(0) = 1. Use a step sizé = 0.1 and find the values o up tox =
0.5. Compare the value you have calculated§@.5) using Euler’s method
with the true solution of this differential equation. Whattheerror i.e. the
difference between the true solution and the approximation

Now use Euler's method on the differential equation

dyi
de

with y(0) = 1. Use a step sizé = 0.1 again and find the values gfup

to 2 = 0.5. Compare the value you have calculated§@.5) using Euler’s
method with the true solution of this differential equatioWhat is the error
this time?

12.17. Euler's method applied to logistic growth: Consider the logistic differential equa-

tion

dy

= 1—
o ry(l —y)

Letr = 1. Use Euler's method to find a solution to this differentialiation starting
with y(0) = 0.5, and step sizé = 0.2. Find the values of up to timet = 1.0.
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12.18. Use the spreadsheet and Euler's method to solve flieeedtial equation shown

below:
dy/dt = 0.5y(2 — y)

Use a step size gf = 0.1 and show (on the same graph) solutions for the following
four initial values:

y(0) = 0.5, y(0) =1, y(0) = 1.5, y(0) = 2.25

For full credit, you must include a short explanation of wiat did (e.g. 1-2
sentences and whatever equations you implemented on thadshreet.)

12.19. Other differential equations: For each of the following differential equations, find
the approximate solution by Euler's method in the speciii¢erival using the given
initial condition and step size (display three decimal pkfor your answer).

d . , . . .

(@) d_y =y,y(0) = % Find the five successive valuesyffr) using a step size
of step sizeAx = h = 0.1. (your values will correspond to points along the
interval0 < z < 0.5).

d . . .

(b) d_y =z +y, y(0) = 1, step sizé).1 on the interval[—0.5, 0]. (Note: starting

X
atx = 0, you are going in the negativedirection.)

(c) Z_y =z +y,y(l) =2 findyon([l,2]in5 steps.
X

12.20. For each of the following differential equationsdfiralue ofy at the specific point
by Euler’'s method using the given initial condition and st&ge (display three dec-
imal places for your answer).

@) Z—y =2+ 12, y(0) = 1, step sizeh = 0.02, find y(0.1).
X

(b) Z—y = a2 +y?,y(0.2) = 0.5, find y(0.4) in 4 steps.
X



Chapter 13

More Differential
Equations

13.1 Introduction

In our discussion of exponential functions, we briefly endeved the idea of a differential
equation. We saw that verbal descriptions of the rate of ghaf a process (for example,
the growth of a population) can sometimes be expressed ifotheat of a differential
equation, and that the functions associated with such mopsaallow us to predict the
behaviour of the process over time.

In this chapter, we will develop some of these ideas furthied, collect a variety of
methods for understanding what differential equationsrmieew they can be understood,
and how they predict interesting behaviour of a variety ofgital and biological systems.

First, a brief review of what we have seen about differemtplations so far:

1. Adifferential equation is a statement linking the rateledinge of some state variable
with current values of that variable. An example is the sesppopulation growth
model: If N (¢) is population size at time

dN
— =kN.
dt

2. A solution to a differential equation is a function thatisi@es the equation. For
instance, the functiotV (¢) = Ce** (for any constanC) is a solution to the above
unlimited growth model. (We checked this by the approprdifferentiation in a
previous chapter.) Graphs of such solutions (e.g. N vensasetcalled solution
curves.

3. To select a specific solution, more information is needddmely, some starting
value (initial condition) is needed. Given this informatj@.g.N (0) = Ny, we can
fully characterize the desired solution.

4. So far, we have seen simple differential equations withpg functions for their
solutions. In general, it may be quite challenging to makectimnection between the
differential equation (stemming from some application ard®l) with the solution
(which we want in order to understand and predict the behawbthe system.)

249
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In this chapter we will expand our familiarity with differgal equations and assem-
ble a variety of techniques for understanding these. Weeanitounter both qualitative and
guantitative methods. Geometric as well as algebraic fgales will form the core of the
concepts here discussed.

13.2 Review and simple examples

13.2.1 Simple exponential growth and decay

We first review the simplest differential equation represenan exponential growth model.

Example 13.1 (Exponential growth, revisited) Characterize the solutions to the exponen-
tial growth model

dy B
ar Y
with initial condition
y(0) = vo.
[ |
Solution: We know that solutions are
y(t) = yoe'.

These are functions that grow with time, as shown on the kefepin Figure 13.1.
Example 13.2 (Exponential decay:)What are solutions to the differential equation

dy _
dt

with initial condition
y(O) = Yo
[ |

Solution: This differential equation has solutions of the form

y(t) = yoe',

which are functions that decrease with time. We show somkes& on the right panel of
Figure 13.1. (Both graphs were produced with Euler's metimadia spreadsheet.)

Example 13.3 Suppose we are given a differential equation in a relatetslightly dif-
ferent form
dy _
dt
with initial conditiony(0) = yo. Determine the solutions to this differential equationll

11—y

)
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y

<

Solutions to the differential equatiol . ) . .
Solutions to the differential equation

dy/dt=y

dy/dt=-y

/i

///

(@) (b)

ﬁ

time, t

Figure 13.1.Simple exponential growth and decay

Solution: In this section we display the solutions to this equatiow, study its properties.
We show how a simple transformation of the variable can leadoua solution to this
equation.

Letv =1 —y. Then

dv  dy
dt — dt
Butdy/dt =1 — y, so that
dv
= (1=qy) =—
= (1-y=-v

The differential equation has been simplified (when wriiteterms of the variable): It
is just
dv

% =
This means that we can write down its solution by inspecsorge it has the same form as
the exponential decay equation studied previously:

v(t) = voe "

Observe, also, that the initial condition fgimplies that at time¢ = 0 v(0) = 1 — y(0) =
1 — yo. We now have:

v(t) = (1 —yo)e ™"
1—y(t)=(1—yo)e "
Finally, we can arrive at an expression fowhich is what we were looking for originally:

y(t) =1— (L —yoe .
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olutions to the diffefential equation

dy/dt=1-y

e

/7

time, t

Figure 13.2.Solutions are functions that approach the vajue 1

This is an exact formula that predicts the valueg dirough time, starting from any initial
value.

13.3 Newton'’s law of cooling

Consider an object at temperatdré) in an environment whose ambient temperatuig.is
Depending on whether the object is cooler or warmer thanrnkig@ment, the object will
heat up or cool down. From common experience we know thataftang time, we should
find that the temperature of the object will be essentiallyatdp that of its environment.

Newton formulated a hypothesis to describe the rate of achafgemperature. He
assumed that

The rate of change of temperatureT” of an object is proportional
to the difference between its temperature and the ambient tapera-

ture, E.
ar . .
- s proportional to (T'(t) — E)
so that
ar
i k(E—T(t)), where k>0.

Here we have used the proportionality constant 0 to arrive at the appropriate sign
of the Right Hand Side (RHS). (Otherwise, if the expressiorih® right werek(T'(t) —
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E), then the direction of the change would be incorrect (a hatigect would get hotter
in a cold room, etc). This is an example of a differential @mumlinking the current
temperaturd’(¢) to its rate of change.

In order to predict what happens, we need to know the staviihge of I". This is
supplied in separate information, called the initial caioti. For example, we would be
given the value of some constéfit such that at time = 0 the temperature i'(0) = Tp.
The differential equation together with an initial conditiis called arnitial value problem
Below, we will show how a solution to this problem can be foumdeveral ways. One
technique involves seeking a formula for the function thed the property so described.
This is called an analytic solution. Numerical solutionbtaoned by an approximation
method such as Euler’'s method, shortcut the need for sudtidmal descriptions. Finally
qualitative techniques use the differential equationaliyeto analyze and understand the
overall behaviour.

An analytic solution to Newton'’s law of cooling

Considering the temperatui&t) as a function of time, we would like to solve the differ-
ential equation

dT
dt
together with the initial condition

= k(E - T)v

T(0) = To.

We will assume that the ambient temperatureis constant, as is the thermal con-
ductivity, & > 0. We are hoping to identify a functidfi(¢) that satisfies this equation, i.e.
such that when we differentiate this function we find that

dT (t)
—==k(E-T(t)).
—— = k(E - T(1))
The same “trick” as before can be used to convert this to aatexjuthat we know how to
solve. If we define a new variable(t) = F — T'(¢t), we can show that

du(t)
dt

= —kv

(This is left as an exercise for the reader.) We can also sge(lh) = F —T7(0) = FE —Tp.
Just as in the previous example, when the dust clears, we marhié formula for the
solution, which turns out to be

T(t)=E+ (Ty — E)e ™.

In Figure 13.3 we show a number of the curves that descrilsebétaviour for five
different starting values of the temperature. (We havdiset 10 andk = 0.2 in this case.)
This set of curves is often called thelution curvesto the differential equation.

It is evident that finding the full analytic solution to a difential equation can in-
volve a bit of trickery. Indeed, many differential equatsonill pose great challenges, and
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temperature
20

I
L

time

Figure 13.3. Temperature versus time for a cooling object

some will have no analytic solutions at all. Techniques favisg some of the simpler
differential equations forms an important part of mathecsat

Now that we have a detailed solution to the differential equrarepresenting New-
ton’s Law of Cooling, we can apply it to making exact deterations of temperatures over
time, or of time at which a certain temperature was attaidadexample in which this is
done is presented in the following section.

Application of Newton’s law of cooling

Example 13.4 (Murder mystery:) It is a dark clear night. The air temperaturel & C.
A body is discovered at midnight. Its temperature is thghC. One hour later, the body
has cooled t@4° C. Use Newton’s law of cooling to determine the time of deatHll

Solution: We will assume that the temperature of the person just belfeaith is37° C, i.e.
normal body temperature in humans. Letting the time of dbath= 0, this would mean
thatT'(0) = Tp = 37. We want to find how much time elapsed until the body was found,
i.e. the value ot at which the temperature of the body w2i& C. We are told that the
ambient temperature i = 10, and we will assume that this was constant over the time
span being considered. Newton'’s law of cooling states that

dT
— =k(10-1T).
praalilt )
The solution to this equation is

T(t) =10+ (37 — 10)e~** = 27,

or
27 =10+427e %, ie. 17=27e k.
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We do not know the value of the constantbut we have enough information to find it,
since we know that at+ 1 (one hour after discovery) the temperature @&3C, i.e.

T(t+1) =10+ (37— 10)e *H) =24 = 24 =10 + 277 *(+D),

Thus
14 = 27 k(t+D)

We have two separate equations for the two unknotasd k. We can find both
unknowns from these. Taking the ratio of the two equationshbtained we get

14 27e~kGH+L 14

7= ook = e . = —k=In (ﬁ) = —0.194
Thus we have found the constant that describes the rate bfgad the body. Now to find
the time we can use

1
17=27¢ % = —kt=In (2—;> = —0.4626

SO

0.4626  0.4626
t= = 0191 — 2.384.

Thus the time of discovery of the body was 2.384 hours (i.eo@&$iand 23 minutes) after
death, i.e. at 9:37 pm.

13.4 Related examples

The differential equation that we have studied in Newtorasvlof Cooling is one repre-
sentative member of a class of differential equations thatessimilar behaviour. In this
section we describe a more general form, comment on the gleasgrects of the solutions
and list a few other examples. Consider the differentiab¢ign

wherea, b are constants together with the initial value

y(0) = yo.

While this appears to be an example unrelated to our prewots, by a slight reinterpre-
tation, we will see the connection.
Rewrite the differential equation in the form

dy b (a )

at —\p Y
Now note that our previous differential equation for cogltan be translated into the new
equation by the following correspondence:

T@t) = yt), E— % k= b.
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Rewriting Newton’s Law of Cooling in this notation produdé® equation given above.
But we are already familiar with all aspects of the solutiorthie previous problem of
cooling, so, just be reinterpreting it in terms of new quiéedj we get the corresponding
solution to the more general differential equation:
a a
0= ()
y(t) Yo— 7)€ + b
Remarks made in our discussion of cooling should carry owectly to this function
and to the behaviour it describes. For example, we finddhatdt = 0 for y = a/b. We
also note that after a long time the valueydf) should approach/b.

Friction and terminal velocity

The velocity of a falling object changes due to the accelematf gravity, but friction has an
effect of slowing down this acceleration. The differenéglation satisfied by the velocity
v(t) of the falling object is

—g—-k

at I
where g is acceleration due to gravity aridis a constant that represents the effect of
friction.

Production and removal of a substance

An infusion containing a fixed concentration of substanciatioduced into a fixed vol-
ume. Inside the volume, a chemical reaction results in defdkie substance at a rate
proportional to its concentration. Lettingt) denote the time-dependent concentration of
the substance, we would obtain a differential equation efdinm
de

i Kin — e
whereKj, represents the rate of input of substance atite decay rate.

We can understand the behaviour of these systems by triagstatr notation from
the general to the specific forms given above. For example,

c(t) = y(t), Kin — a, ~ —b.

Thus the behaviour found in the general case, can be intethne each of the specific
situations of interest.

13.5 Qualitative methods

Finding the formula that described temperature over tinvelued some convenient re-
casting of the problem into familiar form. However, not alfiferential equations are as
easily solved analytically. Furthermore, even when we firelanalytic solution, it is not
always easy to interpret, graph, or understand. This mtetva number of simpler qual-
itative methods that lead us to an overall understandindgvefttehaviour directly from
information contained in the differential equation, witliéhe challenges of finding a full
functional form of the solution. We describe some of theséhods below.
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13.5.1 Rates of change
A differential equation
i)

encodes information about the rate of chardggdt of the variabley, and how this rate of
change is linked to the current valueioflt can be helpful to sketch the way that the rate of
change depends a) because certain interesting conclusions emerge fromdiaghams.

Example 13.5 Consider the differential equation

dy _ 3
ik A (13.2)

Then the rate of change y) = y — »® . (This is the function on the right hand side

of the differential equation.) Use this observation to deiae values ofy for which y is
static (does not change). il

Rate of change
dy/dt

Figure 13.4.The functiony — 3* as a rate of change of

Solution: Plotting the rate of changfy) versusy leads to the sketch shown in Figure 13.4.
We see from this sketch that the rate of change is zerg fer—1, 0, 1. This means thaj
does not change at these values, i.e. if we start a systenitbfi®) = 0, ory(0) = £1,
the value ofy will be static. The three places at which this happens ar&eadaoy heavy
dots in Figure 13.5(a).

Example 13.6 Now continue the ideas of Example 13.5 to find the range ofesabiy for
whichy decreases, and for whighincreases. Nl

Solution: We also see thaf(y) < 0for —1 < y < 0 and fory > 1. This means that
the rate of change aof is negative whenever1 < y < 0 ory > 1, which, in turn,
implies that if the value of(¢) falls in either of these intervals at any timetheny(t)
must be a decreasing function of time. On the other hand) fary < 1 or fory < —1,
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we havef(y) > 0, i.e., the rate of change af with respect tot is positive. This says
thaty(t) must be increasing. We can indicate these observationsawitvs marking the
direction of change of;. Along they axis (which is now on the horizontal axis of the
sketch) increasing means motion to the right, decreasipmeans motion to the left. This
has been done in Figure 13.5(b). We see from the directionsadghat there is a tendency
for y to move away from the valug = 0 and to approach either of the valuesr —1 as
time goes by. (What actually happens depends on the inalakvofy.)

Rate of change Rate of change
dy/dt dy/dt

(@) (b)

Figure 13.5. Static points and intervals for whighincreases or decreases for the
differential equatior(13.1) See Examples 13.5 and 13.6.

Example 13.7 (A cooling object:) Sketch the same typeof diagrams for the problem of a
cooling object and interpret its meaning.ll

Solution: Here, the differential equation is

dr
— =02(10 - T).
o ( )

Here, the functionf(7') = 0.2(10 — T') is the rate of change associated with a given
temperaturd’. A sketch of the rate of chang&(T") versus the temperatufeis shown in
Figure 13.6(a).

Example 13.8 Create a similar qualitative sketch for the more generahfof linear dif-
ferential equation

— =a — by. (13.2)
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Rate of change Rate of change
dT/dt f(y)

(@) (b)

Figure 13.6. (a) Figure for Example 13.7, (b) Qualitative sketch for E{t3.2)
in Example 13.8.

Solution: The rate of change af is given by the functiorf (y) = a — by. This is shown
in the sketch in Figure 13.6(b). We see that there is one poiwhich f(y) = 0, namely
aty = a/b. We also see from this figure that the valueyafill be approaching this value
over time. We can say that, just from the form of the diffel@requation, even without
knowing the formula of the solution, we find that after a lomd, the value of; will be
approximatelyu/b.

13.6 Slope fields

In this section we discuss yet another geometric way of wgtdeding the behaviour pre-
dicted by a differential equation. This time, our plots Vhidlve a time axis, and we will try
to figure out something about the actual solution curvesyout resorting to the formulae
for their analytic solutions.

We have already seen that solutions to a differential equati the form

dy

o =W
are curves in the, ¢ plane that describe how(t) changes over time. (Thus, these curves
are graphs of functions of time.) Each initial conditigfd) = y, is associated with one
of these curves, so that together, these curves fofamdly of solutions. What do these
curves have in common geometrically?

Simply stated, the slope of the tangent line (which is jlistdt) at any point on any

of the curves has to be related to the value ofititeordinate of that point. That is exactly
what the differential equation is saying: if the valueyos such and such, then the slope
at that point must b¢g(y). Below we see this related but new way of understanding the
differential equations already discussed in this chapter.
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y | dy/dt | slope of tangentling behaviour ofy
-2 -4 -ve decreasing
-1 -2 -ve decreasing
0 0 0 no changeiny,
1 2 +ve increasing

2 4 +ve increasing

Table 13.1.Table of derivatives and slopes for the differential equa(il3.3)of
Example 13.9.

Example 13.9 Consider the differential equation
dy
— =2y. 13.3
ik (13.3)

Compute some of the slopes for variousalues and use this to sketclslape field N

Solution: We create a table of derivative values
Figure 13.7 illustrates the direction field and the corresiiog solution curves.

05} e e e VO o5t
05P \ \ \ \ 1 05
(@) (b)

Figure 13.7.Direction field and solution curves for Example 13.9.

Example 13.10 For example, consider the differential equation

dy 3
at VY

Create a slope field diagram for this differential equatiorl

Solution: Any curve that satisfies this equation and that goes thrgughl, for example,
must have a tangent line of sloge/dt = 1 — 13 = 0. This is true regardless of the time
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Y dy/dt
0.0000| 0.0000
0.2500| 0.2344
0.5000| 0.3750
0.7500| 0.3281
1.0000| 0.0000
1.2500| -0.7031
1.5000| -1.8750
1.7500| -3.6094
2.0000| -6.0000
2.2500| -9.1406
2.5000| -13.1250

Table 13.2.Table for Example 13.10

t, (since the functioryf(y) = y — y® does not depend explicitly ohdirectly - only on
y). For example, a curve that goes through the pgint 2 would have tangent line of
slopedy/dt = 2 — 23 = —6 at that point. In principle, we could find the correspondence
betweery values and slopes for many possiblealues and use the sketch generated with
this information (theslope field to understand what solution curves look like.

In Table 13.2 we show the slopes associated with variouggimithey, ¢ plane given
by the differential equation in this example.

y y
T T T T
- - - - - - - - - - - -4 1
A A A A A A A A I
A A A A A Y
R A A A A A A A A 05
P D D D 2 A A 4
0 0
N N N N N N N N N N N N \ \ \ \ \ \ \ N
N N N N
051 05K \ \ \ \ \ \ \ \ \
L N N N N
[ N N NN AV N T W S U S S WY
T 1
L L L /
0 5 o 15 20 0 5 o 15 20
ime ime
(@) (b)

Figure 13.8.Figure for Example 13.10.

We see above thatif = 1 ory = 0, the slope of the tangent line is zero (indicating
a horizontal tangent line), whereaslif< y < 1, the slopes are positive, indicating that
y is increasing. We also see thatjif> 1, the slopes are negative {s decreasing), and
steeper for larger values gf This agrees with what we have seen earlier with our plot of
the rate of change. The picture looks different now, becagsare explicitly including the
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temp slopedT’/dt

T =0.2(10 - T)
0.0000 2.0000
2.0000 1.6000
4.0000 1.2000

6.0000 0.8000
8.0000 0.4000
10.0000 0.0000
12.0000 -0.4000
14.0000 -0.8000
16.0000 -1.2000
18.0000 -1.6000
20.0000 -2.0000

Table 13.3.Slopes for Example 13.11.

time axis and showing the curvgst), whereas in our previous sketch, arrows were used
to indicate whethey was increasing or decreasing, without showing a time axis.

Example 13.11 Sketch a slope field and solution curves for the problem ofddircg ob-
ject, and specifically for
% =0.2(10-1T), (13.4)

Solution: The collection of curves shown in Figure 13.3 are solutiorves for theT'(¢),

temperature

20 20

; < ;
D NN N N N NN
N N N N N N N N N
15+ 15
~ ~ ~ ~ ~ ~ ~ ~ ~
0- — - - - - - - - = 10
- - - - - - - - -
51 5
A A 4
Y A
0 ‘ / ‘ 0 ‘ ‘ ‘
0 5 10 15 20 0 5 0 15 20
ime
(@) (b

Figure 13.9.Slope field for a cooling object of Example 13.11.

the functionf(7') = 0.2(10 — T") also corresponds to the slope of the tangent lines to the
curves in Figure 13.3.
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In Table 13.3, we calculate values of the slgfié") = 0.2(10 — T') for a number of
value ofT’, and these are shown plotted as a slope field in Figure 13.9.

13.7 Steady states and stability

We notice from Figure 13.9 that for a certain initial temgara, namelyl, = 10 there will
be no change with time. Indeed, we find that at this tempezdhe differential equation
specifies thatl7'/dt = 0. Such a value is calledsieady state

Definition 13.12 (Steady state:)A Steady state is a state in which a system is not chang-
ing.

Example 13.13Find the steady states of the equation

dy 3
— =y — 13.5
i (13.5)

Solution: To find steady states we look fgrsuch thatly /dt = 0 so that

dy 3
_— = —_ = O
dt y—y )
i.e. we would havey = 0 andy = +1 as three steady states.
From Figure 13.5, we see that solutions startifgge toy = 1 tend to get closer and
closer to this value. We refer to this behavioustability of the steady state..

Definition 13.14 (Stability:). We say that a steady statestableif states that are initially
close enough to that steady state will get closer to it witheti We say that a steady state is
unstable, if states that are initially very close to it eventually nreaway from that steady
state.

Example 13.15Find a stable and an unstable steady state of Eqn. (13.5amfbe 13.13
are stable. W

Solution: From any starting value af > 0 in this example, we see thafter a long time
the solution curves tend to approach the vajue 1. States close tg = 1 get closer to
it, so this is a stable steady state. For the steady gtatd), we see that initial conditions
close toy = 0 do not get closer, but rather move away over time. Thus, tady state is
unstable. It turns out that there is also a stable steady atat= —1.

As seen in Example 13.13, even though we do not have any farthat connects
y values with specific times, we can say qualitatively whatdesys to any positive initial
values after a long time: they all approach the vajue 1.
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13.8 The logistic equation for population growth

The ideas developed in this chapter, and particularly treditgtive and geometric ideas,
can help us to understand a variety of differential equatittrat stem from biological,
physical, or chemical applications. When these equatioas@nlinear, i.e. when the
function f(y) in

dy

o =W
is not a simple linear function af, then it can be quite challenging to discover analytic
solutions. However, the qualitative methods describedalsan help to understand what
the equations predict.

In Chapter 9, we have seen that the assumption of a constamtigrate leads to a

differential equation for population levéN (¢) of the form

AN
2 N
ar

which has exponential solutions. This means that only twssiiide behaviours are ob-
tained: explosive growth if > 0 or extinction ifr < 0.

Most natural populations are found to attain some leveldbas not expand continu-
ally. This is due to limitations in finding resources or in queting for a fixed territory size.
Such populations, under ideal conditions in a fixed envirentywould generally stabilize
at some typical density, rather than going extinct or caritig an exponential growth. This
motivates revising our previous model.

In the modification studied here, we will I&(¢) represent the size of a population
at timet. Consider the differential equation

N _ N

— - (13.6)

We call this the differential equation tHegistic equation Here the parameter > 0
is called theintrinsic growth rate and K > 0 is the carrying capacity. Both these
parameters are assumed to be positive constants.

The logistic equation can be justified in one of several waya aonvenient simple
model for population growth that has a greater relevance ¢éxponential growth. In the
form written above, we could interpret it at

dN
~ = R(N)N
o = BW)

whereR(N) = r(K — N)/K is a so-calledlensity dependent growth rate (It replaces
the previously assumed constant growth rate that leads to unlimited growth.) Rewritten

in the form
dN

dt
(whereb = r/K is a positive quantity), it can be interpreted as the usualali growth

termr N, with a superimposed quadratic (nonlinear) rate of deathtdwvercrowding or
competitionhN2. We already know that this quadratic term will dominate fogler values

=rN — bN?
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of IV, and this means that when the population is crowded, theofasslividuals is greater
than the rate of reproduction.

In this section we will familiarize ourselves with the belaw predicted by the lo-
gistic equation.

Example 13.16 Find the steady states of the Logistic Equation (13.611

Solution: To determine the steady states of the equation (13.6)hiedetel of population
that would not change over time, we look for values\obuch that

dN
- =0
dt
This leads to
(K-N)
N—~-=0
TR

which has solutionsV = 0 (no population at all) otN = K (the population is at its
carrying capacity).

The logistic equation has a long history in modelling pogiatagrowth of microor-
ganisms, animals, and human populations. It is justificldeeiby considering it to be a
special case of théensity dependenigrowth equation

dN
~ — R(N)N
o = B)

(In that case the reproductive rate has the fét() = (K — N)/K), or, equivalently, it
can be considered to fall into a class of equations that Hevéotm

AN _ N N2
dt

(where the constant is= r/K), which means that a constant rate of reproductibnis
modified by a quadratic mortality rateV2. The mortality would tend to dominate only
for larger values of the population, i.e. if conditions areveded so that animals have
to compete for resources or habitat. (This stems from thetfet the quadratic term is
smaller than the linear term near = 0, but dominates for larg&/, as we have already
discussed in Chapter 1.)

It is often desirable to formulate the problem in the simpjesssible terms. We can
do this by a process called rescaling:

Example 13.17 (Rescaling:)Define a new variable

Interpret what this variable represents and show that thggstio equation can be written
in a simpler form in terms of this variable. |



266 Chapter 13. More Differential Equations

Solution: The rescaled variable(t), is a population density expressed in units of the
carrying capacity. (For example, if the environment canansL000 individuals, and the
current population size & = 950 then the value of is y = 0.950.) SinceK is assumed
constant,

dy 1 dN
dt K dt
and we can simplify the equation:
dy
— = 1—y). 13.7
o = vl —y) (13.7)

We observe that indeed, this equation “looks simpler” asd &las only one constant pa-
rameter left in it. It is generally the case that rescalirduees the number of parameters in
a differential equation such as seen here.

Example 13.18 Draw a plot of the rate of changé,/dt versus the value of for the
rescaled logistic equation (13.7). B

Solution: This plot is shown in Figure 13.10. The steady states argddcaty = 0, 1
(which correspond tdv = 0 and N = K in the original variable.) We also find that in the
interval0 < y < 1, the rate of change is positive, so thaihcreases, whereas fgr> 1,
the rate of change is negative, galecreases. Sinagerefers to population size, we need
not concern ourselves with behaviour fpk 0.

Rate of change
dy/dt

Figure 13.10.Plot of dy/dt versus y for the rescaled logistic equat{t8.7)

From Figure 13.10 we expect to see solutions to the diffekaguation that ap-
proach the valug = 1 after a long time. (The only exception to this would be thescas
where there is no population present at all, iye= 0, in which case, there would be no
change.) Restated in terms of the original quantities inntleelel, the populationV (¢)
should approacl after a long time. We now look at the same equation from thegesr-
tive of the slope field.

Example 13.19Draw a slope field for the rescaled logistic equation witk 0.5, that is

for J
d—? = 0.5y(1 — y). (13.8)
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population| slopedy/dt
y = 0.5y(1 —y)
0.0000 0.0000
0.1000 0.0450
0.2000 0.0800
0.3000 0.1050
0.4000 0.1200
0.5000 0.1250
0.6000 0.1200
0.7000 0.1050
0.8000 0.0800
0.9000 0.0450
1.0000 0.0000
1.1000 -0.0550
1.2000 -0.1200

Table 13.4.Slopes for the logistic equatiqt3.8)

Solution: We generate slopes in Table 13.4 for different valuegafd plot the slope field
in Figure 13.11(a).

Finally, we can use the numerical technique of Euler's mgtimograph out the full
solution to this differential equation from some set ofialitonditions.

Example 13.20 (Numerical solutions to the logistic equatim) Use Euler's method to ap-
proximate the solutions to the logistic equation (13.8)ll

Solution: In Figure 13.11(b) we show a set of solution curves, obtaimedolving the
equation numerically using Euler's method and the sprezgisfio obtain these solutions,
a value ofh = At = 0.1 was used, the time axis was discretized (subdivided) irjossof
size 0.1. A starting value af(0) = y, at timet = 0 were picked. The successive values of
y were calculated as follows:

y1 = yo + 0.5y0(1 — yo)h

ya =y1 + 0551 (1 —y1)h

Yk+1 = Yk + 0.5yx(1 — yi)h

(The attractive feature of using a spreadsheet is thatépistition can be handled automat-
ically by dragging the cell entry containing the results éoe iteration down to generate
other iterations. Another attractive feature is that oreemethod is implemented, it is

possible to change the initial condition very easily, justhanging a single cell entry.
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Figure 13.11.(a) Slope field and (b) solution curves for the logistic eqprai 3.8.

From these results, we see that solution curves apprpach. This means (in terms
of the original variableN) that the population will approach the carrying capadityfor
all nonzero starting values, i.e. there will be a stabledstestiate with a fixed level of the
population.

Example 13.21 Some of the curves shown in Figure 13.11(b) have an inflegtant, but
others do not. Use the differential equation to determinikwvbf the solution curves will
have an inflection point. W

Solution: From Figure 13.11(b) we might observe that the curves thanee from initial
values in the range < yo < 1 are all increasing. Indeed, this follows from the facy i
in this range, the rate of changg(1 — y) is a positive quantity.
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The logistic equation has the form

— =ry(l—y) =ry —ry’
This means that (by differentiating both sides and remeimgdine chain rule)

d? d d d
Eg = Td_if/ — 27’yd—i/ = Td_i‘/(l — 2y).
An inflection point would occur at places where the second/dive changes sign, and in
addition
d?y
dt2
From the above we see that this is possibledigfdt = 0 or for (1 — 2y) = 0. We have
already dismissed the first possibility because we haveedrthat the rate of change in
nonzero in the interval of interest. Thus we conclude thah#laction point would occur
whenevery = 1/2. Any initial condition satisfyind) < yo < 1/2 would eventually pass
throughy = 1/2 on its way up to the steady state leveljat 1, and in so doing, would

have an inflection point.
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Exercises

13.1. Consider the differential equation

dy
Z —a—b
at — "
whereaq, b are constants.
(&) Show that the function
y(t) = % Ce~b

satisfies the above differential equation for any constant
(b) Show that by setting

a
C=-—
b Yo

we also satisfy the initial condition
y(0) = wo.

Remark: You have now shown that the function

a

0= o0 8)

is a solution to thenitial value problem(i.e differential equation plus initial
condition)
dy
— =a-—b 0) = yo.
o = @by, y(0) =1y
13.2. For each of the following, show the given functipis a solution to the given dif-
ferential equation.

d
(a)t-—y:3y,y:2t3.

dt
d2
(b) Wgy +y=0,y=—2sint + 3cost.
d*y dy t 2t
(C) W—2$+y—6€,y—3t e,
13.3. Show the function determined by the equatioh + 2y — y> = C, whereC' is a

d
)—U = —4x—y.

constantan@y # z, is a solution to the differential equatién—2y Ir
13.4. Find the constaudt that satisfies the given initial conditions.
(@) 222 — 3y? = C, yluo=o = 2.
(b) y = C1ed + Catedt, yli—o = 1 and’é—‘ﬂtzo =0.

(©) y=Crcos(t — C2), yli—z = 0and%|_z = 1.
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13.5.

13.6.

13.7.

13.8.

Friction and terminal velocity: The velocity of a falling object changes due to the
acceleration of gravity, but friction has an effect of slogidown this acceleration.
The differential equation satisfied by the velocity) of the falling object is

—g—k

at I
whereg is acceleration due to gravity arkdis a constant that represents the effect
of friction. An object is dropped from rest from a plane.

(a) Find the function(t) that represents its velocity over time.

(b) What happens to the velocity after the object has bedindebr a long time
(but before it has hit the ground)?

Alcohol level: Alcohol enters the blood stream at a constant kagen per unit time
during a drinking session. The liver gradually convertsdlemhol to other, non-
toxic byproducts. The rate of conversion per unit time igpomdional to the current
blood alcohol level, so that the differential equationsf&d by the blood alcohol
level is
i k — sc

wherek, s are positive constants. Suppose initially there is no altohthe blood.
Find the blood alcohol leve{t) as a function of time from = 0, when the drinking
started.

Newton’s Law of Cooling: Newton’s Law of Cooling states that the rate of change
of the temperature of an object is proportional to the déffere between the temper-
ature of the object]’, and the ambient (environmental) temperatudfe,This leads

to thedifferential equation

dT
— =k(F-T
praatilt )
wherek > 0 is a constant that represents the material properties &nd, the

ambient temperature. (We will assume tliais also constant.)
(@) Show that the function

T(t)=E+ (Tp — E)e*t

which represents the temperature at tinsatisfies this equation.

(b) The time of death of a murder victim can be estimated froentemperature
of the body if it is discovered early enough after the crime becurred. Sup-
pose that in a room whose ambient temperatur® is= 20 degrees C, the
temperature of the body upon discoveryis= 30 degrees, and that a second
measurement, one hour laterfis= 25 degrees. Determine the approximate
time of death. (You should use the fact that just prior to kigiie temperature
of the victim was37 degrees.)

A cup of coffee: The temperature of a cup of coffee is initially 100 degreeBize
minutes later, { = 5) it is 50 degrees C. If the ambient temperaturedis= 20
degrees C, determine how long it takes for the temperatuteeafoffee to reacB0
degrees C.
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13.9.

13.10.

13.11.

13.12.

Glucose solution in a tank: A tank that holds 1 liter is initially full of plain water.
A concentrated solution of glucose, containing 0.25 gni/ésnpumped into the
tank continuously, at the rate 10 éfmin and the mixture (which is continuously
stirred to keep it uniform) is pumped out at the same rate. Hawh glucose will
there be in the tank after 30 minutes? After a long time? (Himite a differential
equation for ¢, the concentration of glucose in the tank hysitering the rate at
which glucose enters and the rate at which glucose leaveartke

Pollutant in a lake: (From the Dec 1993 Math 100 Exam) A lake of constant
volume V' gallons containg)(t) pounds of pollutant at timé evenly distributed
throughout the lake. Water containing a concentratiofs pbunds per gallon of
pollutant enters the lake at a raterofjallons per minute, and the well-mixed solu-
tion leaves at the same rate.

(a) Set up a differential equation that describes the watythigaamount of pollu-
tant in the lake will change.

(b) Determine what happens to the pollutant level after g kime if this process
continues.

(c) If k£ = 0 find the timeT for the amount of pollutant to be reduced to one half
of its initial value.

Slope fields: Consider the differential equations given below. In eactecaraw

a slope field, determine the valuesiofor which no change takes place [such val-
ues are called steady states] and use your slope field tacprelaiat would happen
starting from an initial valug(0) = 1.

dy
= =05
@ o Yy

dy
b
®) -

d
© % == 9B -y)
Draw a slope field for each of the given differentialatipns:
(8 & =2+3y

© % =42 1)

(€) & =2-3y+y?
(d) d—y =-2(3—-y)?

dt
€@ L=y-y+1
) L=y>—y
@ %= ily—2)(y—3)>%y>0.
(h) & =2¢v —2

0] ‘f; = A — siny (Hint: consider the cased < —1, A = -1, -1 < A < 1,

A=1andA > 1).
0) #-y=c¢

= 0.5y(2— y)
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13.13. For each of the differential equations (a) to (i) inltem 12, plot% as a function
of ¢, draw the motion along thgaxis, identify the steady state(s) and indicate if the
motions are toward or away from the steady state(s).

13.14. Periodic motion:
(a) Show that the function(t) = A cos(wt) satisfies the differential equation

2
Ty _ 2y
dt? )

wherew > 0 is a constant, andl is an arbitrary constant. [Remark: Note
thatw corresponds to thirequencyand A to theamplitudeof an oscillation
represented by the cosine function.]

(b) It can be shown using Newton’s Laws of motion that the omtf a pendulum
is governed by a differential equation of the form

Py g .
—— Sin

pr i (),

whereL is the length of the string; is the acceleration due to gravity (both
positive constants), andt) is displacement of the pendulum from the vertical.
What property of the sine function is used when this equasi@pproximated
by the Linear Pendulum Equation:

Py g

a ~ oV
(c) Based on this Linear Pendulum Equation, what functionldoepresent the
oscillations? What would be the frequency of the oscillagi®

(d) What happens to the frequency of the oscillations if #rgth of the string is
doubled?

13.15. A sugar solution: Sugar dissolves in water at a rate proportional to the amafunt
sugar not yet in solution. Le(¢) be the amount of sugar undissolved at titne
The initial amount isl00 kg and afterd hours the amount undissolvedi8 kg.

(a) Find a differential equation fap(¢) and solve it.
(b) How long will it take for50 kg to dissolve?
13.16. Infant weight gain: During the first year of its life, the weight of a baby is given b

y(t) = V3t + 64
wheret is measured in some convenient unit.
(@) Show thay satisfies the differential equation

dy _k

dt vy

wherek is some positive constant.
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(b) What s the value fok?

(c) Suppose we adopt this differential equation as a modehdionan growth.
State concisely (that is, in one sentence) one feature ahutlifferential
equation which makes it a reasonable model. State one éaahich makes it
unreasonable.

13.17. Cubical crystal: A crystal grows inside a medium in a cubical shape with side
lengtha and volumél. The rate of change of the volume is given by

av
— =ka*(Vo -V
a k(b =V)
wherek andVj are positive constants.

(a) Rewrite this as a differential equation f%;r

(b) Suppose that the crystal grows from a very small “seelddwsthat its growth
rate continually decreases.

(c) What happens to the size of the crystal after a very lang i
(d) What is its size (that is, what is eitheror V) when it is growing at half its
initial rate?

13.18. Leaking water tank: A cylindrical tank with cross-sectional areahas a small
hole through which water drains. The height of the water entéinky(¢) at timet
is given by:

- kt o
y(t) = (Voo = 57)
wherek, yo are constants.
(a) Show that the height of the wategfy), satisfies the differential equation

d k
=V
(b) What is the initial height of the water in the tank at time 0 ?
(c) Atwhat time will the tank be empty ?
(d) Atwhat rate is therolume of the water in the tank changing when- 0?

13.19. Find those constanisb so thaty = e¢* andy = e~ * are both solutions of the
differential equation
v +ay + by =0.
13.20. Lety = f(t) = e tsint, —oo <t < occ.
(a) Show thay satisfies the differential equatigff + 2y’ + 2y = 0.
(b) Find all critical points off (¢).
13.21. A biochemical reaction in which a substatces both produced and consumed is

investigated. The concentratioft) of S changes during the reaction, and is seen to
follow the differential equation

de B c
dt ™kt ¢

—Trc
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whereKmay, k, 7 are positive constants with certain convenient units. Tiset&rm
is a concentration-dependent production term and the seteom represents con-
sumption of the substance.

(@) What is the maximal rate at which the substance is pratfud what con-
centration is the production rate 50% of this maximal value?

(b) If the production is turned off, the substance will decipw long would it
take for the concentration to drop by 50%7?

(©

At what concentration does the production rate just bal#meeonsumption rate?
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Appendix A

A review of Straight
Lines

A.A Geometric ideas: lines, slopes, equations

Straight lines have some important geometric properti@sialy:
The slope of a straight line is the same everywhere alonegiitgth.

Definition: slope of a straight line:

Figure A.1. The slope of a line (usually given the symbdl is the ratio of the
change in the y valug)y to the change in the value,Azx.

We define the slope of a straight line as follows:

Ay
1 = —
Slope = =

whereAy means “change in thg value” andAx means “change in the value” between
two points. See Figure A.1 for what this notation represents

279
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Equation of a straight line

Using this basic geometric property, we can find the equati@nstraight line given any of
the following information about the line:

e They interceptp, and the slopen:

y =mx + b.

e A point(zg,yo) on the line, and the slopey, of the line:

Y—Yo _

T — X9
e Two points on the line, sayr1,y1) and(zz, y2):

Y=Yy  Y2—u

xr — X1 To — I1

Remark: any of these can be rearranged or simplified to peothecstandard form
y = mx + b, as discussed in the problem set.

The following examples will refresh your memory on how to fthé equation of the
line that satisfies each of the given conditions.

Example A.1 In each case write down the equation of the straight line $htisfies the
given statements. (Note: you should also be able to easlgkkhe line in each case.)

(&) The line has slope 2 andntercept 4.

(b) The line goes through the points (1,1) and (3,-2).

(c) Theline hag intercept -1 and: intercept 3.

(d) The line has slope -1 and goes through the point (-2,-5).
|

Solution:

(a) We can use the standard form of the equation of a straighty = max + b where
m is the slope and is they intercept to obtain the equatiop:= 2z + 4

(b) The line goes through the points (1,1) and (3,-2). We hiséddct that the slope is the
same all along the line. Thus,

(y — yo) _ (y1 — %) _

(r —xzo) (1 —xo)
Substituting in the valuegeo, yo) = (1,1) and(z1,y1) = (3, —2),
y—1) (1+2) 3

(x—1) (1-3) 2
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(Note that this tells us that the slopenis= —3/2.) We find that

(c) The line hag intercept -1 and: intercept 3, i.e. goes through the points (0,-1) and
(3,0). We can use the method in (b) to get

—1 1
= -T—
Y 3

Alternately, as a shortcut, we could find the slope,

(Note thatA means “change in the value”, i.\y = y; — o). Thusm = 1/3 and
b = —1 (y intercept), leading to the same result.

(d) The line has slope -1 and goes through the point (-2,48¢nT

(y+5)
(x+2)

= —17

so that
y+5=—-1(x+2)=—x—2,

y=—x—1.
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Exercises

1.1. Find the slope angintercept of the following straight lines:
(@ y=4x -5
(b) 3z —4y =8
(c) 2z =3y
(d) y=3
(e) bx —2y =23
1.2. Find the equations of the following straight lines
(@) Through the points (2,0) and (1,5).
(b) Through (3,-1) with slope 1/2.
(c) Through (-10,2) withy intercept 10.
(d) The straight line shown in Figure A.2.

y=-8+18x-9%

1 /

/ ™

Figure A.2. Figure for problem 2(d)

1.3. Find the equations of the following straight lines:
(a) Slope—4 andy intercept3.
(b) Slope3 andx intercept—2/3.
(c) Through the point§2, —7) and(—1,11).
(d) Through the pointl, 3) and the origin.

(e) Through the intersection of the lin8s + 2y = 19 andy = —4x + 7 and
through the point2, —7).

() Through the origin and parallel to the lire: + 8y = 3.
1
(9) Through the poinf—2,5) and perpendicular to the line= 5% + 6.
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1.4. Tangent to a circle: Shown in Figure A.3 is a circle of radius 1. Thecoordinate
of the point on the circle at which the line touches the ciisle = v/2/2. Find

the equation of the tangent line. Use the fact that on a ¢ithke tangent line is
perpendicular to the radius vector.

y

Figure A.3. Figure for problem 4
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Appendix B

A Review of Simple
Functions

Herer we review a few basic concepts related to functions

B.A What is a function

A function is just a way of expressing a special relationgigpveen a value we consider

as the input (") value and an associated outpy) {alue. We write this relationship in
the form

y = f(x)

to indicate thaty depends om:. The only constraint on this relationship is that, for every
value of x we can get at most one value gf This is equivalent to thévertical line
property”: the graph of a function can intersect a vertical line at nabsine point. The set
of all allowablex values is called theomainof the function, and the set of all resulting
values ofy are therange

Naturally, we will not always use the symbalsandy to represent independent and
dependent variables. For example, the relationship

4
V= §7TT3

expresses a functional connection between the radjwmd the volumey’, of a sphere.
We say in such a case thdt‘is a function ofr”.

All the sketches shown in Figure B.1 are valid functions. Titet is merely a collec-
tion of points,z values and associatedvalues, the second a histogram. The third sketch
is here meant to represent the collection of smooth contisfianctions, and these are the
variety of interest to us here in the study of calculus. Orotther hand, the example shown
in Figure B.2 is not the graph of a function. We see that a e@Irtine intersects this curve
at more than one point. This is not permitted, since as wadjyrsaid, a given value af
should have only one corresponding valueg.of

285
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oY  ® Y {
L N X
X

Figure B.1. All the examples above represent functions.

X

o
—

Figure B.2. The above elliptical curve cannot be the graph of a functidhe
vertical line (shown dashed) intersects the graph at moam thne point: This means that
a given value of: corresponds to "too many” values af. If we restrict ourselves to the
top part of the ellipse only (or the bottom part only), thenae@ create a function which
has the corresponding graph.

B.B Geometric transformations

Itis important to be able to easily recognize what happetiseé@raph of a function when
we change the relationship between the variables sligl@lgen this is calledapplying
a transformation Figures B.3 and B.4 illustrate what happens to a functioemwshifts,
scaling, or reflections occur:

y y y

X X

@y = f(z) (b)y=f(z—a) ©y=flx)+0b

Figure B.3. (a) The original functionf(z), (b) The functiory(x — a) shifts f to
the right along the positive axis by a distance, (c) The functiory (x) + b shifts f up the
y axis by heighb.



B.B. Geometric transformations

y=f(=X)

y=f(x)

Figure B.4. Here we see a function = f(x) shown in the black solid line. On
the same graph are superimposed the reflections of this gabpht the x axisy = — f ()
(dashed black), about the y axjs= f(—=z) (red), and about the y and the x axig,=
—f(—xz) (red dashed). The latter is equivalent to a rotation of thigioal graph about the

origin.

’

y=-f(x)
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B.C Classifying

— N

constant linear power smooth  wild

%

derivative

constant
slope

easily
computed

unpredictable

Figure B.5. Classifying functions according to their properties.

While life offers amazing complexity, one way to study ligithings is to classify
them into related groups. A biologist looking at animals ntigroup them according to
certain functional properties - being warm blooded, beirmgnmals, having fur or claws,
or having some other interesting characteristic. In theesaray, mathematicians often
classify the objects that they study, e.g., functions, ietated groups. An example of the
way that functions might be grouped into very broad classedsio shown in Figure B.5.
From left to right, the complexity of behaviour in this chgrows: at left, we see constant
and linear functions (describable by one or two simple patans such as intercepts or
slope): these linear functions are “most convenient” ompdést to describe. Further to the
right are functions that are smooth and continuous, whiteatight, some more irregular,
discontinuous function represents those that are outs&lgroup of the “well-behaved”.
We will study some of the examples along this spectrum, asdrdze properties that they

share, properties they inherit form their “cousins”, and/roharacteristics that appear at
distinct branches.

B.D Power functions and symmetry

We list some of the features of each family of power functionthis section

Even integer powers

Forn = 2,4,6, 8.. the shape of the graph gf= 2" is as shown in Figur@?(a).
Here are some things to notice about these graphs:
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1. The graphs of all the even power functions intersegt-at0 and at atc = +1. The
value ofy corresponding to both of theseys= +1. (Thus, the coordinates of the
three intersection points afe, 0), (1,1),(—1,1).)

2. All graphs have a lowest point, also callechmimum valuatz = 0.

3. Asz — +o0, y — oo, We also say that the functions are “unbounded from above”.

4. The graphs are all symmetric about thaxis. This special type of symmetry will be
of interest in other types of functions, not just power fioes. A function with this

property is called arven function

Odd integer powers

Forn =1,3,5,7,.. and other odd powers, the graphs have shapes shown in Fgine

1. The graphs of the odd power functions interseat at 0 and atr = +1. The three
points of intersection in common to all odd power functions @, 1), (0,0), and
(—1,-1).

2. None of the odd power functions have a minimum value.

3. Asz — 400,y — +00. Asz — —o0, y — —oo. The functions are “unbounded
from above and below”.

4. The graphs are all symmetric about the origin. This spggi@ of symmetry will be
of interest in other types of functions, not just power fioes. A function with this

type of symmetry is called amdd function.

B.D.1 Further properties of intersections

Here, and in Figure B.6 we want to notice that a horizonta limersects the graph of a
power function only once for the odd powers but possibly énfior the even powers (we
have to allow for the case that the line does not intersedt, atrdhat it intersects precisely
at the minimum point). This observation will be importantther on, once we want to
establish the idea of an inverse function.

A horizontal line has an equation of the fogm= C whereC' is some constant. To
find where it intersects the graph of a power functios 2™, we would solve an equation

of the form
2" =C (B.1)

To do so, we take n'th root of both sides:
(xn)l/n _ Cl/n.
Simplifying, using algebraic operations on powers leads to

(xn)l/n _ xn/n _ Il == Cl/n’
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However, we have to allow for the fact that there may be maae time solution to equa-
tion B.1, as shown for som@ > 0 in Figure B.6. Here we see the the distinction between
odd and even power functions.sifis even then the solutions to equation B.1 are

z=+CY",
whereas ifn is 0odd, there is but a single solution,

z=CYn,

ol

Y=XA3

N /.

y=X

(a) (b)

Figure B.6. The even power functions intersect a horizontal line in upwo
places, while the odd power functions intersect such a lirenily one place.

Definition B.1 (Even and odd functions:). A function that is symmetric about thyeaxis
is said to be arevenfunction. A function that is symmetric about the origin iglda be an
oddfunction.

Even functions satisfy the relationship

f(x) = f(=x)
Odd functions satisfy the relationship
f(@) = —f(=x).
Examples of even functions include= cos(z),y = —2%,y = |z|. All these are

their own mirror images when reflected about thaxis. Examples of odd functions are
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y = sin(x),y = —23,y = 2. Each of these functions is its own double-reflection (alyout
and then x axes).

In a later calculus course, when we compute integrals, ¢gatkiase symmetries into
account can help to simplify (or even avoid) calculations.

B.D.2 Optional: Combining even and odd functions

Not every function is either odd or even. However, if we staith symmetric functions,
certain manipulations either preserve or reverse the syrgme

Example B.2 Show that the product of an even and an odd function is an oaictifun.
|

Solution: Let f(x) be even. Then

Let g(x) be an odd function. Theq(xz) = —g(—z). We defineh(z) to be the product of
these two functions,

so that the new function is odd.

A function is not always even or odd. Many functions are regiteven nor odd.
However, by a little trick, we can show that given any funiatip = f(x), we can write it
as a sum of an even and an odd function.

Hint: Supposef(z) is not an even nor an odd function. Consider defining the twoa@s
ated functions:

o) = 5(F(@) + F(=))

and
1

fola) = 5(/@) = f(=a)).

(Can you draw a sketch of what these would look like for thecfiom given in Fig-
ure B.3(a)?) Show that.(z) is even and thafy(x) is odd. Now show that

f(x) = fe(x) + fol@).
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B.E Inverse functions and fractional powers

Suppose we are given a function expressed in the form

y = f(x).

What this implies, is that is the independent variable, apds obtained from it by evalu-
ating a function, i.e. by using the “rule” or operation sffieci by that function. The above
mathematical statement expresses a certain relationshigebn the two variables, and
y, in which the roles are distinct: is a value we pick, ang is then calculated from it.

However, sometimes we can express a relationship in moredha way: as an
example, if the connection betweerandy is simple squaring, then provided> 0, we
might write either

y=x
or
r=y'? =y

to express the same relationship. In other words

y:a:2<:>a::\/§.

Observe that we have used two distinct functions in desugitiie relationship from
the two points of view: One function involves squaring ane thher takes a square root.
We may also notice that far > 0

flg(x)) = (Vo) =u
9(f(x)) = v (2?) = =

i.e. that these two functions invert each other’s effect.
Functions that satisfy
y=f(x) & z=gy)
are said to bénverse functionsWe will often use the notation

(@)

to denote the function that acts as an inverse functiof{ 9.

B.E.1 Graphical property of inverse functions

The graph of an inverse function= f~!(z) is geometrically related to the graph of the
original function: itis a reflection of = f(«) about the15° line, y = x. This relationship
is shown in figure B.7 for a pair of functiorfsand f —!.

But why should this be true? The idea is as follows: Suppoae(thb) is any
point on the graph off = f(z). This means that = f(a). That, in turn, implies that
a = f~1(b), which then tells us thgb, ) must be a point on the graph ¢f ! (). But the
points(a, b) and(b, a) are related by reflection about the lipe= z. This is true for any
arbitrary point, and so must be true faf points on the graphs of the two functions.
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(@) (b)

Figure B.7. The point(a, b) is on the graph ofy = f(x). If the roles ofz and
y are interchanged, this point becom@sa). Geometrically, this point is the reflection of
(a,b) about the lingy = x. Thus, the graph of the inverse functign= f~*(z) is related
to the graph of the original function by reflection about tireely = . In the left panel,
the inverse is not a function, as it does not satisfy the e&rtine property. In the panel on
the right, bothf and its reflection satisfy that property, and thus the inggfs ' is a true
function.

B.E.2 Restricting the domain

The above argument establishes that, given the graph ofctidunits inverse is obtained
by reflecting the graph in an imaginary mirror placed alongey = x.
However, a difficulty could arise. In particular, for the fiiion

y = f(x) =27

a reflection of this type would lead to a curve that cannot benatfon, as shown in Fig-
ure B.8. (The sideways parabola would not be a function ifiweduided both its branches,
since a given value aof would have two associatedvalues.)

To fix such problems, we simply restrict the domain:to 0, i.e. to the solid parts of
the curves shown in Figure B.8. For this subset ofittexis, we have no problem defining
the inverse function.

Observe that the problem described above would be encadhf@rany of the even
power functions (by virtue of their symmetry about thexis) but not by the odd power
functions.

y=fla)=a y=[f""(a)=2'"

are inverse functions for all values: when we reflect the graphof about the lingy = «
we do not encounter problems of multiplevalues.



294 Appendix B. A Review of Simple Functions

y=x"(1/2)

y=x"p

omit this branch=> !

Blue curve notla function |
if this branch is included =>

Figure B.8. The graph ofy = f(x) = z? (blue) and of its inverse function. We
cannot define the inverse for all because the red parabola does not satisfy the vertical
line property: However, if we restrict to positivevalues, this problem is circumvented.

This follows directly from the horizontal line propertidst we discussed earlier, in
Figure B.6. When we reflect the graphs shown in Figure B.6 athmuliney = z, the
horizontal lines will be reflected onto vertical lines. Odower functions will have in-
verses that intersect a vertical line exactly once, i.ey Hagisfy the “vertical line property”
discussed earlier.

B.F Polynomials

A polynomial is a function of the form
y=p(x) = apz” + ap_12"" "+ + a1z + ao.

This form is sometimes referred to asperposition(i.e. simple addition) of the basic
power functions with integer powers. The constantsre called coefficients. In practice
some of these may be zero. We will restrict attention to tise @ghere all these coefficients
are real numbers. The highest powefwhose coefficient is not zero) is called ttiegree
of the polynomial.

We will be interested in these functions for several reas@&msnarily, we will find
that computations involving polynomials are particulaglysy, since operations include
only the basic addition and multiplication.
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B.F.1 Features of polynomials

e Zeros of a polynomialare values of: such that

y=p(z) =0.

If p(z) is quadratic (a polynomial of degree 2) then the quadratiméda gives a
simple way of finding roots of this equation (also called &=rof the polynomial).
Generally, for most polynomials of degree higher than Sglieeno analytical recipe
for finding zeros. Geometrically, zeros are places wheregtaph of the function
y = p(x) crosses the axis. We will exploit this fact much later in the course to
approximate the values of the zeros ushgwton’s Method

e Critical Points: Places on the graph where the value of the function is lotaigyer
than those nearby (local maxima) or smaller than those gektal minima) will be
of interest to us. Calculus will be one of the main tools fotredéing and identifying
such places.

e Behaviour for very large z: All polynomials are unbounded as — oo and as
x — —oo. Infact, for large enough values of we have seen that the power function
y = f(z) = 2™ with the largest power;, dominates over other power functions with
smaller powers.For

p(T) = apa™ + an—12" ' + -+ a1z + ao

the first (highest power) term witlominatefor largexz. Thus for larger (whether
positive or negative)
p(z) ~ ana™ for large z.

e Behaviour for small z: Close to the origin, we have seen that power functions with
smallest powers dominate. This means thatfet 0 the polynomial is governed by
the behaviour of the smallest (non-zero coefficient) powner,

p(z) = a1x + ap for small .
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Exercises

2.1. Figure B.9 shows the graph of the functipe= f(x). Match the functions (a)-(d)
below with their appropriate graph (1)-(4) in Figure B.10.

@ y=|f(=)],
(b) y = f(lz]),
©) y=f(-z),
d) y=—f(z)
y
0 X
Figure B.9. Plot for problem 1
y y y
y
§ X X
0 0 x4
(1) (2) (3) (4)

Figure B.10. Plot for problem 1

2.2. Even and odd functions: An even function is a function that satisfies the relation-

ship f(x) = f(—z). An odd function satisfies the relationshifr) = —g(—x).
Determine which of the following is odd, which is even, andeths neither.

(@) h(z) =3z
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2.3. Figure B.11 shows the graph for the functipa= f(x), sketch the graph fay =
f(|z]).

Figure B.11. Plot for problem 3

2.4. Consider the functiop = Ax™ for n > 0 an odd integer andl > 0 a constant.
Find the inverse function. Sketch both functions on the ssatef coordinates, and
indicate the points of intersection. How would your figuréetiif n were an even
integer?
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Appendix C
Limits

We have surreptitiously introduced some notation invajuimits without carefully defin-
ing what was meant. Here, such technical matters are brisftysised.

The concept of éimit helps us to describe the behaviour of a function close to some
point of interest. This proves to be most useful in the cademdtions that are either not
continuous, or not defined somewhere. We will use the natatio

lim f(z)

to denote the value that the functignrapproaches as gets closer and closer to the value
a.

C.A Limits for continuous functions

If x = a is a point at which the function is defined and continuousofimially, has no
“breaks in its graph”) the value of the limit and the valueoé function at a point are the
same, i.e.

If fis continuous atx = a then

lim f(z) = f(a).

r—a

Example C.1 Find 1in% f(z) for the functiony = f(z) =10 N
Tr—r

Solution: This function is continuous (and constant) everywhereatt, fthe value of the
function is independent of. We conclude immediately that

z—0

lim f(z) = ili% 10 = 10.
Example C.2 Find 1ir% f(z) for the functiony = f(z) = sin(z). N
Tr—

299
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Solution: This function is a continuous trigonometric function, ara lthe valuein(0) =
0 at the origin. Thus
glclg%) f(z) = ilg% sin(x) =0

Power functions are continuous everywhere. This motividiiesiext example.

Example C.3 Compute the limitlim =™ wheren is a positive integer. |

z—0

Solution: The function in questionf (z) = =™ is a simple power function that is continu-
ous everywhere. Furthef(0) = 0. Hence the limit ag — 0 coincides with the value of
the function oat that point, so

lim z" = 0.
x—0

C.B Properties of limits

Suppose we are given two functionz:) andg(x). We will also assume that both func-
tions have (finite) limits at the point = a. Then the following statements follow.

1.
lim (f(z) + g(x)) = lim f(z) + lim g()
2.
lim (cf(x)) = ¢ lim f(z)
3.

lim (£(x) - g(2)) = (1im f(@)) - (1im ()

r—ra T—a T—ra

4. Provided thatim g(z) # 0, we also have that
r—a

o (L@ _ ()
et ~ \lim g(z) |
~a\g(@)) " \Timg
The first two statements are equivalent to linearity of thecpss of computing a
limit.

Example C.4 Find lim f(x) for the functiony = f(x) = 222 — 23.
Tr—r
|

Solution: Since this function is a polynomial, and so continuous ewélre, we can sim-
ply plug in the relevant value of, i.e.
lim (22% —2%) =22 - 2% = 0.

r—2

Thus whenz gets closer to 2, the value of the function gets closer tor®fat, the value
of the limit is the same as the value of the function at themgpeint.)
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C.C Limits of rational functions

C.C.1 Case 1: Denominator nonzero

We first consider functions that are the quotient of two polials,y = f(x)/g(x) at
points wereg(z) # 0. This allows us to apply Property 4 of limits together withath
we have learned about the properties of power functions ahtpmials. Much of this
discussion is related to the properties of power functiortsdominance of lower (higher)
powers at small (large) values of as discussed in Chapter 1. In the examples below, we
consider both limits at the origin (at= 0) and at infinity (forz — o). The latter means
“very largez”. See Section 1.5 for examples of the informal version ofsti@e reasoning
used to reach the same conclusions.

Example C.5 Find the limit ast — 0 and ast — oo of the quotients

Kx Ax™

(a)k +x’ (b)

) .
a™ + "

Solution: We recognize (a) as an example of the Michaelis Menten kisgfbund in (1.2)
and (b) as a Hill function in (1.3) of Chapter 1. We now compfitst for x — 0,

Kz (b)tim A2

z—0 kn +x z—0 a™ + 2"

=0.

This follows from the fact that, provided k,, # 0, both functions are continuousat= 0,
so that their limits are the same as the actual values attdipehe functions. Now for
Tr — 00
K K Azx™ Azx™
@ lim ——— = lim =% = K, (b) lim ——— = lim = A,

z—o0 Ky + @ T—00 T z—oo q™ + ™ z—oo M

This follows from the fact that the constaritg, o™ are always “swamped out” by the value
of x asz — oo, allowing us to obtain the result. Other than the formal{inatation, there
is nothing new here that we have not already discussed ioB8ect.6.

Below we apply similar reasoning to other examples of ratidanctions.

Example C.6 Find the limit ast — 0 and ast — oo of the quotients

32 \1<+x
2 (bl 3"
9+« 1+

(@)
|

Solution: For part (a) we note that as— oo, the quotient approach&s?/z? = 3. As
x — 0, both numerator and denominator are defined and the dentumieanonzero, so
we can use the 4th property of limits. We thus find that

322 . 3z

@l g2 =% Mo

207



302 Appendix C. Limits

For part (b), we use the fact that as— oo, the limit approaches/z® = =2 — 0. As
x — 0 we can apply property 4 yet again to compute the (finite) lisotthat

.1+ . 1+

Example C.7 Find the limits of the following function at 0 ansb

a2t =32+ -1
5+ '

y:

Solution: for z — oo powers with the largest power dominate, whereas:fes 0, smaller
powers dominate. Hence, we find

oot =34 a—1 ozt .

lim = lim — = lim — =0.
—00 0 + x r—00 I° T—00 I

ot =32+ a—1 . —1 1

lim = =lim — = —lim — =0
z—0 T +x z—=0 x z—0 x

So in the latter case, the limit does not exist.

C.C.2 Case 2: zero in the denominator and “holes” in a graph

In the previous examples, evaluating the limit, where isted, was as simple as plugging
the appropriate value af into the function itself. The next example shows that thisds
always possible.

Example C.8 Compute the limit ag — 4 of the functionf(z) = 1/(z —4) &

Solution: This function has a vertical asymptoterat 4. Indeed, the value of the function
shoots off to+ oo if we approach: = 4 from above, and- o if we approach the same point
from below. We say that the limioes not existin this case.

Example C.9 Compute the limit as — —1 of the functionf(z) = z/(2> — 1) &

Solution: We compute

I i I -
1m = m -——77
a—>-122 -1 a=-1(z—1)(x+1)

Itis evident (even before factoring as we have done) thafftiiction has a vertical asymp-
tote atr = —1 where the denominator approaches zero. Hence, the limit moteexist.

Next, we describe an extremely important example whereuhetion has a “hole” in
its graph, but where a finite limit exists. This kind of limigys a huge role in the definition
of a derivative.
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Example C.10 Find lim2 f(x) for the functiony = (z — 2)/(2®> —4). 1
Tr—r

Solution: This functionis a quotient of two rational expressigiis) /g (z) but we note that
lim, 9 g(x) = lim,_,o(2%—4) = 0. Thus we cannot use property 4 directly. However, we
can simplify the quotient by observing that foe 2 the functiony = (z —2) /(2% —4) =

(x —2)/(z — 2)(z + 2) takes on the same values as the expreskjgm + 2). At the
pointz = 2, the function itself is not defined, since we are not allowastbn by zero.
However, the limit of this function does exist:

lim f(x) =l Tm -

Providedr # 2 we can factor the denominator and cancel:

lim (z-2) = lim (z-2) = lim L
z—2 (:v2 - 4) z—2 (x - 2)(1‘ + 2) z—2 (x + 2)

Now we can substitute = 2 to obtain

I J@) =59~ 1

1/4

Figure C.1. The functiony = % has a “hole” in its graph atz = 2.
The limit of the function as approaches 2 does exist, and “supplies the missing point”:
lim, o f(2) = i.

Example C.11 Compute the limit

. K(z+h)?— Ka?
lim .
h—0 h
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Solution: This is a calculation we would perform to compute the derreatdf the function
y = Ka? from the definition of the derivative. Details have alreadeb displayed in
Example 2.8. The essential idea is that we expand the nuonawrad simplify algebraically

as follows: )
lim K(2xh + h?)
h—0 h

Even though the quotient is not defined at the value- 0 (as the denominator is zero

there), the limit exists, and hence the derivative can baddfiSee also Example 4.1 for a

similar calculation for the functio® z>.

= lim K(2z + h) = 2K .
h—0

C.D Right and left sided limits

Some functions are discontinuous at a point, but we maybitible to define a limit that
the function attains as we approach that point from the ragghtrom the left. (This is
equivalent to gradually decreasing or gradually incregasims we get closer to the point
of interest.

Consider the function

[0 ifz<o0;
f(x)_{l if 2 > 0.

This is a step function, whose values is O for negative reallyars, and 1 for positive real
numbers. The function is not even defined at the peiat 0 and has a jump in its graph.
However, we can still define a right and a left limit as follows

li =0, i = 1.
Jlim f(z)=0, lm f(z)

That is, the limit as we approach from the right is 0 whereamfthe left it is 1. We also
state the following result:

If f(x) has aright and a left limit at a point 2z = « and if those limits
are equal, then we say that the limit atx = a exists, and we write

lm f(e) = lm f(z) = lim f(x)

rz—ta rz—a

Example C.12 Find lim f(z) for the functiony = f(z) = tan(z). §

z—7/2

Solution: The functiontan(z) = sin(z)/ cos(z) cannot be continuous at= /2 because
cos(x) in the denominator takes on the value of zero at the poiat /2. Moreover, the
value of this function becomes unbounded (grows withoutit)iasz — 7/2. We say in
this case that “the limit does not exist”. We sometimes usentiitation
lim tan(z) = +oo.

z—m/2
(We can distinguish the fact that the function approachss asx approaches /2 from
below, and—oo asz approaches /2 from higher values.
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C.E Limits at infinity

We can also describe the behaviour “at infinity” i.e. the dreiisplayed by a function for
very large (positive or negative) valuesiofWe consider a few examples of this sort below.

Example C.13 Find lim f(z) for the functiony = f(z) = 2% —2° +z. N
Tr—r00

Solution: All polynomials grow in an unbounded way agends to very large values. We
can determine whether the function approaches positivegative unbounded values by
looking at the coefficient of the highest poweragfsince that power dominates at large
values. In this example, we find that the term? is that highest power. Since this has a
negative coefficient, the function will approach unboundegdative values as gets larger

in the positive direction, i.e.

. 5 .
lim 22 —2° + 2 = lim —2° = —c0.
xTr—r0o0 xr—r0o0

Example C.14 Determine the following two limits:

(@ lim e 2*, (b) lim €%,
Tr—r 00 r—r— 00

Solution: The functiony = e~2* becomes arbitrarily small as — oo. The function
y = €@ becomes arbitrarily small as— —oo. Thus we have

(@) lim e 2 =0, (b) lim €% =0.
Tr—r0o0 Tr—r— 00
Example C.15 Find the limits below:

1
(@ lim z%e2*, (b) lim —e~ %,
T—00 z—0 1

Solution: For part (a) we state here the fact thatras> oo, the exponential function with
negative exponent decays to zero faster than any poweirduariotreases. For part (b) we
note that for the quotient~* /= we have that as — 0 the top satisfies ™* — ¢ = 1,
while the denominator has — 0. Thus the limit atz — 0 cannot exist. We find that

1
(@) lim 2% 2" =0, (b) lim —e " = oo,
T—00 z—0 T

C.F Summary of special limits

As a reference, in the table below, we collect some of theiaplamits that are useful in a
variety of situations.
We can summarize the information in this table informallya®ws:
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Function point Limit notation | value
e % a>0 T — 00 lim e™ %" 0
xT—r 00
e % a>0 T — —00 lim e ** 00
T——00
e, a>0 T — 00 lim e** 00
xT—r 00
ek x—0 lim e*® 1
r—0
e % a >0 T — 00 lim 2"e %" 0
xT—r 00
In(az), a >0 T — 00 lim In(ax) 00
xT—r0o0
In(az), a >0 z—1 lim1 In(ax) 0
T—
In(az), a >0 x—=0 lin% In(ax) —00
T—
zln(azx),a>0| z—0 lin})xln(az) 0
T—
1 1
n(az) ya>0 T — 00 lim n(az) 0
T T—00 T
sin(x) 250 lim sin(z) 1
x€x x—0 x€x
(1 — cos(z)) 220 lim (1 — cos(z)) 0
T r—0 T

Table C.1. A collection of useful limits.

1. The exponential functiost” grows faster than any power function.ascreases, and
conversely the functioa™® = 1/e* decreases faster than any powef bfz) asz
grows. The same is true fef* provideda > 0.

2. The logarithmn(z) is an increasing function that keeps growing without bousid a
x increases, but it does not grow as rapidly as the fungfienxz. The same is true
for In(ax) provideda > 0. The logarithm is not defined for negative values of its
argument and as approaches zero, this function becomes unbounded andve=gat
However, it approachesco more slowly thane approaches 0. For this reason, the
expression: In(z) has a limit of 0 az — 0.
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Appendix D. Short Answers to Problems

D..1 Answers to Chapter 1 Problems

Problem 1.1:
(a) Stretched iy direction by factorA; (b) Shifted up by; (c) Shifted in positiver
direction byb.
Problem 1.2:
Not Provided

Problem 1.3:

y=a"y=a " y=z"n=24,6,..;y=x",n=1,2 3,...
Problem 1.4:

@z =0,(3/2)3; (b)z = 0,2 = £,/1/4.

Problem 1.5:

if m —neveniz ==+ ( )1/(m*n)

)1/(m7n) &= 0

[/l

,x=0;ifm—nodd:z = (%
Problem 1.6:

() (0,0) and(1,1); (b) (0,0); (c) (4, 2), (=4, ), and(0, —1).
Problem 1.7:

m > —1

Problem 1.8:

Not Provided

Problem 1.9:

B\
(%)

Problem 1.10:
@z=0,-1,3;(b)z=1;(c)x=-2,1/3;(d)z = 1.

Problem 1.11:
(b)a<0:2=0;a>0:z=0, +al/4; (€)a > 0.

Problem 1.12:

Not Provided

Problem 1.13:

@)V; (b)% = %a,a >0;(C)a=V3;a= (%S)%; a=10cm; a = ‘/31_5 cm.
Problem 1.14:

@V 0) 5 @r = (£)°V% = (£)7 572 r ~ 62085 0m 1 ~
0.8921 cm.
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Problem 1.15:

r = 2ky/ko = 12um.
Problem 1.16:
@P=0C(%)
Problem 1.17:
@a: Ms=1,b: 571 (b) b = 0.2, a = 0.002; (c) v = 0.001.

Y% (0) S = am (3L)°,

4w

Problem 1.18:
@v=K,(b)v=K/2.

Problem 1.19:

K ~0.0048, k,, =~ 77 nM

Problem 1.20:

(@)r = —1,0,1(b) 1 (c)y1 (d)yo.
Problem 1.21:

Line of slopea®/A and intercept /A

Problem 1.22:
K=05a=2

Problem 1.23:
Not Provided

Problem 1.24:
m=~67,bx~1.2, K ~0.8,k, ~56

Problem 1.25:

1
()
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D..2 Answers to Chapter 1 Problems

Problem 1.1:
(a) Stretched iy direction by factorA; (b) Shifted up by; (c) Shifted in positiver
direction byb.
Problem 1.2:
Not Provided

Problem 1.3:

y=a"y=a " y=z"n=24,6,..;y=x",n=1,2 3,...
Problem 1.4:

@z =0,(3/2)3; (b)z = 0,2 = £,/1/4.

Problem 1.5:

if m —neveniz ==+ ( )1/(m*n)

)1/(m7n) &= 0

[/l

,x=0;ifm—nodd:z = (%
Problem 1.6:

() (0,0) and(1,1); (b) (0,0); (c) (4, 2), (=4, ), and(0, —1).
Problem 1.7:

m > —1

Problem 1.8:

Not Provided

Problem 1.9:

B\
(%)

Problem 1.10:
@z=0,-1,3;(b)z=1;(c)x=-2,1/3;(d)z = 1.

Problem 1.11:
(b)a<0:2=0;a>0:z=0, +al/4; (€)a > 0.

Problem 1.12:

Not Provided

Problem 1.13:

@)V; (b)% = %a,a >0;(C)a=V3;a= (%S)%; a=10cm; a = ‘/31_5 cm.
Problem 1.14:

@V 0) 5 @r = (£)°V% = (£)7 572 r ~ 62085 0m 1 ~
0.8921 cm.
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Problem 1.15:

r = 2ky/ko = 12um.
Problem 1.16:
@P=0C(%)
Problem 1.17:
@a: Ms=1,b: 571 (b) b = 0.2, a = 0.002; (c) v = 0.001.

Y% (0) S = am (3L)°,

4w

Problem 1.18:
@v=K,(b)v=K/2.

Problem 1.19:

K ~0.0048, k,, =~ 77 nM

Problem 1.20:

(@)r = —1,0,1(b) 1 (c)y1 (d)yo.
Problem 1.21:

Line of slopea®/A and intercept /A

Problem 1.22:
K=05a=2

Problem 1.23:
Not Provided

Problem 1.24:
m=~67,bx~1.2, K ~0.8,k, ~56

Problem 1.25:

1
()
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D..3 Answers to Chapter 2 Problems
e Problem 2.1:
(8)m = 28°/min, b = 50.
e Problem 2.2:
() —4.91°F/min. (b) -7, -8, - F/min. (c) -9°F/min.
e Problem 2.3:

Displacements have same magnitude, opposite signs.

e Problem 2.4:
(b) 9.8 m/s.

e Problem 2.5:
(@) —14.7m/s; (b)—gt — & ()t = 10 s.
e Problem 2.6:
Vo — 9/2
e Problem 2.7:
v = 13.23m/s.; secantline iy = 13.23z — 2.226
e Problem 2.8:
(@)2; (b) 0; (c) —2; (d) 0.
e Problem 2.9:
(@1;1;1;(b) 1;0; 15 (c) 15 2; 4.
e Problem 2.10:
(a)3; (b) 5.55; (c) 22.
e Problem 2.11:
(@) 22; (b) S1=v2): () /4 < & < 57/4 (one solution).
e Problem 2.12:
(@)2+ h; (b)2; (c)y = 2.
e Problem 2.13:
2h2 + 25h + 104; 104
e Problem 2.14:
(b)0,—4,-1.9,—-2.1, -2 — h; (c) —2.

e Problem 2.15:
(@2 + h; (b)2; (c)2.98.
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Problem 2.16:

() 4; (b) 2212,

Problem 2.17:

@) —1; (b) f—fé; (c) Slope approaches -2; (g)= —2x + 4.

Problem 2.18:

(@)v(2) = 12 m/s;v = 15 m/s; (b)v(2) = 0 m/s;v = 25 m/s; (C)v(2) = 13 m/s;
v =11 m/s.

Problem 2.19:

0

Problem 2.20:

—1
(EENYE
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D..4 Answers to Chapter 3 Problems

e Problem 3.1:
Not Provided

e Problem 3.2:
Not Provided

e Problem 3.3:
5; 5; no change; linear function

e Problem 3.4:
(a) notangentline; (by = —(z + 1); (c)y = (= + 1).
e Problem 3.5:
(a) increasing—oo < =z < 0, 1.5 < < oo; decreasing fof < =z < 1.5; (b) 0,
local maximum;l.5, local minimum; (c) No.
e Problem 3.6:
Not Provided

e Problem 3.7:
Not Provided

e Problem 3.8:
Not Provided

e Problem 3.9:
y=2xr—3

e Problem 3.10:
Not Provided

e Problem 3.11:
@) f'(z) =2z, f'(0) =0, f'(1) =2 >0, f'(-1) = =2 < 0. Local minimum at
z=0;(b) f'(z) = =322 f'(0) =0, f ’( )=-3<0, f'(-1) = -3 < 0. No local
maxima nor minima; (cf’(z) = —423, f/(0) =0, f'(1) = -4 < 0,f'(-1) =4 >
0. Local maximum at: = 0.

e Problem 3.12:

Not Provided

e Problem 3.13:
Not Provided

e Problem 3.14:
Not Provided
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Problem 3.15:
5

Problem 3.16:

@y =3z—2;(b)z=2/3;(c)1.331; 1.3.

Problem 3.17:

(@y=—4z+5;(b)z =5/4,y = 5; (c) y = 0.6, smaller.
Problem 3.18:

@y = f'(zo)(z —x0) + f(z0); (b)) z =20 — f(xo)

f'(xo)

Problem 3.19:
Not Provided

Problem 3.20:
Not Provided

Problem 3.21:

() 14.7 m/s; (b)—4.9 m/s.
Problem 3.22:

(b)a = 2.

Problem 3.23:

(3, 9), (1, 1)
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D..5 Answers to Chapter 5 Problems

Problem 5.1:

(@) zeros:z = 0, z = +v/3; loc. max..z = —1; loc. min.: 2z = 1; (b) loc. min.:
x = 2;loc. max..x = 1; (¢) (a):x = 0; (b): = = 3/2.

Problem 5.2:

(a) max.:18; min.: 0; (b) max.: 25; min.: 0; (c) max.:0; min.: —6; (d) max.: —2;
min.: —17/4.

Problem 5.3:
min.: 3/4

Problem 5.4:
=0

Problem 5.5:
+

N | =
ol
w

critical points:z = 0, 1, 1/2; inflection pointsiz =

Problem 5.6:
Not Provided

Problem 5.7:
a=1,b=—-6,¢=7
Problem 5.8:
(@v =3t246t,a=6t+6;(b)t =0,/3/a; (C)t =0,+/3/2a; (d)t = 1/+/2a.
Problem 5.9:
Not Provided
Problem 5.10:
2
(@)t = vo/g; (b) ho + 52; () v = 0.
Problem 5.11:
min. atz = —v/3; max. atz = V3;cuiz < —1,0 <z < l;cdi—1 <z <
0,z > 1;inflLpt:z =0
Problem 5.12:

loc. min.z = a loc. max..z = —2a

Problem 5.13:

(a) increasingz < 0,0 < = < 3k, x > 5k; decreasing3k < = < 5k; loc. max.:
x = 3k; loc. min.z = 5k; (b)cu.i0 <z < (3 — @)k, x> (34 @)k; c.d.
x<0,(3— @)k <z <3+ ‘/TE)k; infl.pts.:z =0, (3+ ‘/TE)k.
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e Problem 5.14:

(b) dv/dp = —b{=2%9: () p = po.

e Problem 5.15:
Not Provided

e Problem 5.16:
abs. max. oft.25 at end points; abs. min. @fatx = 1

e Problem5.17:

(@)362% — 16x — 15; (b) —122° + 3:17 — 3; (€) 423 — 1822 — 30z — 6; (d) 322; (e)

36 ( 6x>—32%+6. :(Q) 18b% — 7be :(h )—36m 34+72m*—36m+5. (i) 9z 4+82°% —32° —4x+6
(z2+49)2 (1—3x)? 3(2— b3 (3m—1)2 (3x+2)2 ’
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D..6 Answers to Chapter 6 Problems

Problem 6.1:
(a) 10, 10; (b) 10, 10; (c) 12, 8.

Problem 6.2:

(@wv(t) = 120t2 — 16t3%; (b)t = 5; (c) t = 7.5.
Problem 6.3:

9:24A.M., 15 km

Problem 6.4:

(@)t =~ 1.53 sec; (b(0.5) = 10.1 m/secp(1.5) = 0.3 m/sec,a(0.5)

a(1.5) = —9.8 m/seé; (c) t ~ 3.06 sec.
Problem 6.5:

30 x 10 x 15cm

Problem 6.6:

@y = (1/v3); (b) V3/9.

Problem 6.7:

la|if a < 4;2v/2a —4ifa >4

Problem 6.8:

A = 625 ft?

Problem 6.9:

All of the fencing used for a circular garden.
Problem 6.10:

Squares of sidé — 2+/3 cm.

Problem 6.11:

Straight lines from(10, 10) to (12, 0) then to(3, 5).
Problem 6.12:

4°C

Problem 6.13:

@z =2B/3, R= (4/27)AB3?; (b)xz = B/3,S = AB?/3.
Problem 6.14:

r = 2/€1//€2

Problem 6.15:
h=20,r =52

—9.8m/seé,
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Problem 6.16:

(b)z = 55 (€)x = 0; (d) v = 5.
Problem 6.17:

r=(A/2B)'/? -1

Problem 6.18:

(b) N = K/2.

Problem 6.19:

NMSY = K(l — qE/r)

Problem 6.20:
E =r/2q
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D..7 Answers to Chapter 7 Problems
e Problem 7.1:

d 242. d
(a)d_gzmm +2 (b)ﬁ:

6y5+3 L]
Problem 7.2:

(a)4mr2k; (b) 87rk; (c) —i—’fj.

Problem 7.3:

(©) 3—‘2 = 2°% (—sinz - Inx + <2L),

x

(8)dA/dt = 2nrC; (b)dM/dt = a27rC.

Problem 7.4:
% = Cn(3r?)a
Problem 7.5:
‘2—‘{ = 1m?/min

Problem 7.6:

() 30= cm/s; (b) 2 cm?/s.

Problem 7.7:

5cm/s

Problem 7.8:

dV _ nRdT. () dV _
@G =% (b) o =

P dt’
Problem 7.9:
7 1/2k
Problem 7.10:
— 5= cm/min

Problem 7.11:

1 cm/sec toward lens

Problem 7.12:

dh _ -1
dt — 36r

Problem 7.13:

— 1 4n
k_10+45

cm/min

Problem 7.14:
dh — S ft /min
Problem 7.15:

W (5) = & m/min
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Problem 7.16:

(a) &= m/min; (b) £ m/min.
Problem 7.17:

(a) —4 m/s; (b) —23 per sec.
Problem 7.18:

ﬁ m/min

Problem 7.19:

ds _ ab .
dA = T+bA’

Problem 7.20:

dy _ gls
o =3 cm/hr

no.

Problem 7.21:
Not Provided

Problem 7.22:
Not Provided

Problem 7.23:
@F=-3=-50y=J(z+rV3)iy=(1/V2)(@-rV3)
Problem 7.24:

(@-3/4; (b)y = —(3/4)x + 8.

Problem 7.25:

Not Provided

Problem 7.26:
and(—

(L L) 2 _L)
V107 V10 V107 V10

Problem 7.27:

_ 4y

Tp
Problem 7.28:
(c) Global minimum occurs at an endpoint, rather than attacatipoint.

Problem 7.29:
Not Provided

Problem 7.30:
(b) & — (@y=2: (c) o = 0, 2 = 2'/34; (d) No.

— (yP—az)’
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e Problem 7.31:

@F=(2%) - (p+ %)/ (v-b).
e Problem 7.32:

(0,5/4)

e Problem 7.33:
@y—1=—-1(x—1);(b)y" = %; (c) concave up.
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D..8 Answers to Chapter 8 Problems

Problem 8.1:
Not Provided

Problem 8.2:
Not Provided

Problem 8.3:

(a) 5% > 506% (b) 0.47%2 > 0.4%% (c) 1.001* < 1.001%; (d) 0.999"° >
0.9992-3,

Problem 8.4:

Not Provided

Problem 8.5:
@)z = a?b?; (b)z = 4.

2
c3

Problem 8.6:
Not Provided

Problem 8.7:
(@) = 00 () e = S () a = el = e (d) o = 29
Problem 8.8:

n(<zxr 2 . . X —
(@) 3 = i (0) = T2l () 2 = —ytan g () 2 = ¥t
(€)% = 62e3"; () W = —La=37Ina; (g) ¥ = 2227 (3+xn2); (h) & = "+,
0) & = e
Problem 8.9:
(@) min.:z = %; max.: x = —\/lg; infl.pt.: 2 = 0; (b) min.: z = \g/ig (c) max.:
z = 1;inf.pt.: x = 2; (d) min.: x = 0; (€) min.:z = 1; max.:x = —1; (f) min.:
x = In(2); infl. pt.: 2 = In(4).
Problem 8.10:
C=4,k=-05

Problem 8.11:

(a) decreasing; (b) increasingi(0) = y2(0) = 10; y; half-life = 101In(2); y2
doubling-time= 101n(2)

Problem 8.12:

Not Provided

Problem 8.13:
Not Provided
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e Problem 8.14:
Not Provided
e Problem 8.15:
critpts.z =0,z ~ +1.64; f(0) = 1; f(£1.64) ~ —0.272
e Problem 8.16:
x=1/8
e Problem 8.17:
@z =r;(c)z = -2 In (£); (d) decrease; () decrease.

a—T

e Problem 8.18:

x = by/In((a? + b2)/b?)
e Problem 8.19:

Not Provided
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D..9 Answers to Chapter 9 Problems

e Problem 9.1:
Not Provided

e Problem 9.2:
(a)C any valuek = —5; (b) C any valuef = 3.
e Problem 9.3:
(@ y(t) = Cet; (b) c(z) = 20e~%1%; (c) 2(¢) = be3t.

e Problem 9.4:

t — In2
- In7—In10

e Problem 9.5:
(a) 57300 years; (b22920 years

e Problem 9.6:

(a) 29 years; (b) 58 years; (2Y9.7 years.
e Problem9.7:

(2)80.7%; (b) 12.3 years.

e Problem 9.8:
y ~ 707.8 torr

e Problem 9.9:
(@) P(5) =~ 1419; (b) t ~ 9.9years.
e Problem 9.10:
4 = 0.05N; N(0) = 250; N(t) = 250e*%%; 2.1 x 10'° rodents
e Problem 9.11:
(@) dy/dt = 2.5Ty; (b) dy/dt = —6.93y.
e Problem 9.12:
(a) 12990; (b) 30792 bacteria.

e Problem 9.13:
1.39 hours;9.2 hours

e Problem 9.14:
20 min; 66.44 min

e Problem 9.15:

(@)y1 growing,y, decreasing; (0.5, 2.3; (€) y1 (t) = 100e%2t, y5(t) = 10000e ~%-3;
(d)t =~ 9.2 years.
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e Problem 9.16:

12265 peoplg’km?
e Problem 9.17:

(@) 1 hour; (b)r = In(2); (c) 0.25 M; (d)t = 3.322 hours.
e Problem 9.18:

6.93 years

e Problem 9.19:
1.7043 kg

e Problem 9.20:

(a) $510, $520.20, $742.97; 17.5 years; for 8% interest$520, $540.80, $1095.56;
(b) $510.08, $520.37, $745.42; (c) 5%.
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D..10 Answers to Chapter 10 Problems
e Problem 10.1:

(@) % = 2z cosz?; (b) & = sin2a; (€) & = —2273(cot f)(csc2 ¥x); (d)
&y (1 6x) sec(z — 3x )tan(:c—3x2); (e) 3 i _ = 622 tan x+22° sec? z; (f) & =
cosztrsing; (g) du U — cosx — zsinz; (h) & &= 251:;); T () 7 dy = 6(2tan3x +
3cosx)(2sec? 3z — sinz); (j) Z—Z = —sin(sinz) - cosz + cos 2.

e Problem 10.2:
x z) sin(In(x x 322 —2 cos(x) sin(z 0s 0s? (x)+aF
@) f(z) = —(4 +1O(m)4+o(ml25r3)+5 243)) (b)f’( ) = ( c ((2)\/(:%;):)”\3/)0 )+ )
©f(x)= 6$2+mln(3 (d) f'(x) = 4(x®e®+tan(3x))? (2ze® +a%e®+3 sec? (37));

e) f'(z)= 2x\/sm (x) + cos?(z) + 3962(51“22(\;);5:((;);22::((;) sin(2))

e Problem 10.3:
(a) 180° (b) 300° (c) 164.35° (d) 4320°

(€)5m/9 (f) 2 /45 (g) 57 /2 (h) w/2

(i) 1/2 () v2/2 (k) V3/3
e Problem 10.4:
Not Provided

e Problem 10.5:
Not Provided

e Problem 10.6:

Not Provided
e Problem 10.7:

—/3/20,1/20
e Problem 10.8:

(@) [0, /4], [57/4,2x]; (b) [3w/4, Tn/4]; (C) x = 3w /4, Tr/4.
e Problem 10.9:

(@) T(t) =37.1+ 0.4 cos[w(t —8)/12]; (b) W(¢t) = 0.5+ 0.5 cos[r (¢t — 8)/6].
e Problem 10.10:

(@) S = 3cos (\/?t); (b)y = 2sin (%’Tt—i— %) + 10.
e Problem 10.11:

+(2,1)
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e Problem 10.12:
—0.021 rad/min

e Problem 10.13:

0.125 radians per minute

e Problem 10.14:
Not Provided

e Problem 10.15:
(@) w/8; (b) 57/8.

e Problem 10.16:

@F = -7 0 & =T
e Problem 10.17:
R= 3% v3

e Problem 10.18:
8m m/s;0 m/s
e Problem 10.19:
30w cm/s; to the right
e Problem 10.20:
(@) Vh? + 2hR; (b) —vvh? + 2hR/R.

e Problem 10.21:

dy _ 4sec2(21+y) . dy __ 2sinx. dy _ _ ycosz+siny
(a) dr — 1-—2sec?(2z+y)’ (b) dr ~ cosy’ (C) dr ~  xcosy+sinz®

e Problem 10.22:
y=—x+2
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D..11 Answers to Chapter 11 Problems
e Problem 11.1:
y =a/V1—a?x?
e Problem 11.2:
@ x; (b) z/vV1 — 22; (c) V1 — 22.
e Problem 11.3:

@Y - - ! oYL
dr  3.2\/1— 22 dr  3(arcsinz)svI—a2  dr 22 42r+1°
dy dy —222+a®>—a dy 1+t

d) =2 —arcsed — = (e) 2 = = % " 2L = _ ,

D % i O T e 0% T e

2(1 —t2)

ESEE

e Problem 11.4:
0.4m

e Problem 11.5:
2 rad/s
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D..12 Answers to Chapter 12 Problems
e Problem 12.1:
(a)%2; (0) 3; (c) —0.1, —0.1.
e Problem 12.2:
(2) 0.40208; (b) 5.99074.

e Problem 12.3:
0.99

e Problem 12.4:
(a) 0.98255; (b) 0.87475.

e Problem 12.5:
—2.998

e Problem 12.6:
Not Provided

e Problem 12.7:
1030 cm?

e Problem 12.8:
x = 0.357403, 2.153292

e Problem 12.9:
2.83

e Problem 12.10:
(a)(3.41421,207.237),(0.58580,0.762), (—0.42858, —0.895); (b) (1.30980, 0.269874).

e Problem 12.11:
(@)z = 0.32219; (b) = = 0.81054; (C) z = 0.59774, z = —0.68045, z = —4.91729;
(d) z = 2.34575.

e Problem 12.12:
=0, +1.805

e Problem 12.13:
(@) loc.max.:x = 1.1397, — 1.9100; loc.min.: z = —0.2297; (b) f”(x) positive:
(—00, —2.1902], [—0.7634,0.3801], [1.5735, c0).

e Problem 12.14:
—0.9012
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Problem 12.15:
Not Provided

Problem 12.16:

(@) ys = 1.61051; y(0.5) = 1.6487213; error = 0.03821; (b) y5 = 0.59049;
y(0.5) = 0.60653; error= 0.01604.

Problem 12.17:

0.55, 0.5995, 0.6475, 0.6932, 0.7357

Problem 12.18:
Not Provided

Problem 12.19:
(a)0.806; (b) 0.681; (c) 4.027.

Problem 12.20:
(a)1.112; (b) 0.622.
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D..13 Answers to Chapter 13 Problems
e Problem 13.1:
Not Provided

e Problem 13.2:
Not Provided

e Problem 13.3:
Not Provided

e Problem 13.4:
(@) C =—12;(b)Cy =1,Cy = =5, (c) Cy = —1,Cy = 0.
e Problem 13.5:
@uv(t) = —fe " + £ () v =£.
e Problem 13.6:
o(t) = —Eemst 4 £
e Problem 13.7:

(b) 46 minutes before discovery.

e Problem 13.8:
10.6 min

e Problem 13.9:

64.795 gm, 250 gm
e Problem 13.10:

@Q(t) = kr— $r=—F[Q - kV]; (0)Q = kV; (O T = VIn2/r,
e Problem 13.11:

Not Provided

e Problem 13.12:
Not Provided

e Problem 13.13:
Not Provided
e Problem 13.14:
(©) y(t) = Acos(y/g/Lt).
e Problem 13.15:
@) 22 = 1Q; Q(t) = 10039107 () 7.77 hr.
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Problem 13.16:

(b) k = 3/2.

Problem 13.17:

(@) 9 = £(Vo —2%); (d) V = V5.
Problem 13.18:

() yo; (c) t = 2% (d) — k. /5o
Problem 13.19:

a=0,b=-1

Problem 13.20:
(b)t = 7/4 + nr.

Problem 13.21:

(@) Kmax, ¢ = k; (b) In(2)/r; (€) e =0, c = KTm
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D..14 Answers to Appendix A Problems

e Problem 1:

(a) slopet, y intercept—5; (b) slope%, y intercept—2; (c) sIope%, y intercep®; (d)

H . 5 H 23
slope0, y intercept; (e) slopes, y intercept—=-.

e Problem 2:
@y = 5z —2) = 5x+10;(b)y = 2z~ 3; (©)y = 2z +10; (d)y =
—(3/4)x + 1.

e Problem 3:
@y=—-4x+3;(b)y =32z +2;(c)y = —6x + 5, (d)y = 3z; () y = —62 + 5;
y=—z/4,(Q)y =2z +09.

e Problem 4:

y=v2-uz
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D..15 Answers to Appendix B Problems
e Problem 1:
Not Provided
e Problem 2:
(a) Odd; (b) Even; (c) Even; (d) Odd; (e) Neither.
e Problem 3:

Not Provided

e Problem 4:
Y= [(I/A)x]l/n; z =0, j:(l/A)l/(nfl)
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Arrhenius, 155

differential equation, 163

Lysteria
monocytogenes, 66

acceleration, 59, 63
uniform, 60

ActA, 66

actin, 66

age distribution, 167

airplane, 83

ambient temperature, 174, 252

Andromeda strain, 145, 153
angle
degrees, 181
radians, 182
ant trails, 133
antiderivative, 58
antidifferentiation, 58, 60
approximation
linear, 227
arccosine, 214
arcsine, 212
arctan, 215
argument
geometric, 5
astroid, 126
attention, 129
attraction, 12
average
rate of change, 25, 27

biochemical
reaction, 8

bird flock, 11

box
rectangular, 96

Index
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carrying capacity, 91, 264
cell

length, 96

shape, 1

size, 92

spherical, 2
cesium-137, 172
chainrule, 115
Chernoby, 172
clock hands, 197, 198
coffee budget, 117
comet tail, 66
concave

down, 74

up, 74
cone, 120
converge, 237
cooling, 21
cooling object, 258
cosine, 184

derivative, 194
Crichton

Michael, 145
critical point, 75, 231, 235
critical points

classifying, 81
cryptic food, 129
cubic, 55
cycle

peridic, 187
cylinder

surface area, 94

volume, 94

daylight cycle, 188
decreasing
function, 74
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Index

degree

of polynomial, 57
density dependent

growth, 91

growth rate, 264
derivative, 38

definition, 32
differential

equation, 241
differential equation, 151, 249
Dill

Larry, 218
displacement, 23, 25
doubling time, 169
Dukas

Reuven, 129

E. coli, 145
ellipse
rotated, 127
endpoints
maxima at, 98
energy gain, 105
enzyme, 8
escape response, 218
Euler's method, 176, 227, 238, 267
even
function, 3
even function, 186
exponential decay, 250
exponential function, 147, 161
base 10, 149
base 2, 148
base e, 150
exponential growth, 240, 250

falling object, 25, 59, 61, 256
fertility, 167
fish school, 11
food patch, 104
food type, 129
foraging
optimal, 104
frequency, 186

Galileo, 28

geometric argument, 5, 107
geometric relationships, 118
gravity, 28, 59
growth

rate, 168
growth rate

intrinsic, 91

half life, 172
harmonic oscillator, 201
heating, 21
Hill
coefficient, 10
function, 10
hormone cycle, 189

implicit differentiation, 121
increasing

function, 74
inflection

point, 74
infusion, 256
initial

value, 164

velocity, 60
initial guess, 237
instantaneous

rate of change, 32
intrinsic growth rate, 264
inverse function, 151, 211
iodine-131, 172
iteration, 233

Kepler, 99
wedding, 99

Lactobacillus, 21
landing system, 83
law of cosines, 192, 196
limits
trigonometric, 193
linear
approximation, 227, 228
operation, 57
linearity
of derivative, 57
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of limits, 300
Linweaver-Burke, 13
local

maximum, 75

minimum, 75
logarithm

natural, 151
logistic

growth, 91
logistic equation, 264

maximum, 91
absolute, 83
global, 83

Michaelis-Menten
Kinetics, 8

milk
temperature, 21

minimum, 91
absolute, 83
global, 83

model
mathematical, 1

molecular collision, 155

moon phase, 190

mortality, 168

moving bead, 66

moving object, 23

Newton’s
law of cooling, 174, 241, 252
method, 4, 227, 230
nM
nano Molar, 9
nonlinear
differential equation, 264
nuclear power plant, 172
numerical solution, 175
nutrient
absorption, 3
consumption, 3

odd

function, 3
odd function, 186
one-to-one, 211

oxygen, 5

parameter, 165
per capita

birth rate, 165

mortality rate, 165
perimeter

maximal, 98
period, 185
periodic function, 185
pheromone, 133
pollution, 116
polynomial, 6

degree, 6

derivative of, 57
population

density, 91

growth, 165, 249
position, 63
power

dominant, 3

function, 3
power function, 55
power rule, 55, 82, 124
powers

of 2,145
predator

size, 220
Pythagoras

theorem, 103
Pythagoras theorem, 212, 214

race track, 196
radioactive decay, 171
radioactivity, 171
rate
constant, 168
rate of change
average, 21, 25, 27
instantaneous, 55
rational
function, 8
reaction
speed, 8
related rates, 195
repulsion, 12
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Index

rescaling, 265
residence time, 106
restricting the domain, 211
roots

of equation, 237

saturation, 9
scientific problems, 165
secant

line, 26
secant line, 27, 29
second derivative, 58, 76
shortest path, 133
sine, 184

derivative, 193
sketching

the derivative, 41, 63
slope

of tangent line, 55
slope field, 259
solution

approximate, 227

numerical, 227

to differential equation, 163

solution curve, 249
solution curves, 253
spacing distance, 11
spreadsheet, 234, 241
stability, 263
stable

steady state, 263
steady state, 263
step size, 239
stroboscope, 23
substrate, 8
superposition, 6
symmetry, 3

tangent
to a circle, 42

tangent line, 32, 38, 40, 58, 68

temperature
ambient, 174, 241
milk, 21
terminal velocity, 256
time of death, 254

trigonometric functions, 181, 211

trigonometric identities, 192
tumor growth, 118

unstable, 263

velocity, 23, 59, 63
average, 23
instantaneous, 23, 30

visual angle, 199, 220

wine barrel, 99
yoghurt, 21

zebra danio, 218
ZEeros

of a function, 41, 79
zoom, 38



