
Today

Checking that a function satisfies a DE.

Solving an Initial Value Problem.

Solving Newton’s Law of Cooling (NLC).

Solving equations similar to NLC.



Checking that a function solves a 
differential equation (DE)

Which function solves the equation p’(t) = kp(t)?

(A) p(t) = tk

(B) p(t) = ktk-1

(C) p(t) = ket

(D) p(t) = ekt

(E) p(t) = -1/(kt+2)
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Which function solves the equation p’(t) = p(t)2  ?

(A) p(t) = t3

(B) p(t) = t3/3

(C) p(t) = (et)2

(D) p(t) = 1/(t+3)

(E) p(t) = -1/(t+3)
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Which function solves the equation p’(t) = p(t)2  ?

(A) p(t) = t3

(B) p(t) = t3/3

(C) p(t) = (et)2

(D) p(t) = 1/(t+3)

(E) p(t) = -1/(t+3)

Checking that a function solves a DE

In fact, 
p(t)=-1/(t+C) 

solves it for any C!
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Initial Value problem
An inital condition for a DE is a condition of 
the form p(0)=p0.

A DE with an initial condition is called an 
initial value problem.

Example: p’(t) = p(t) subject to p(0)=3.

Solution: p(t) = 3et.
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Initial Value problem
An inital condition for a DE is a condition of 
the form p(0)=p0.

A DE with an initial condition is called an 
initial value problem.

Example: p’(t) = p(t) subject to p(0)=3.

Solution: p(t) = 3et.

Example: p’(t) = 1-p(t) subject to p(0)=3.

Solution: p(t) = 1+2e-t.



Which function solves the equation 
p’(t)=p(t)2 subject to the initial 

condition p(0)=1/2.

(A) p(t) = 3/2 ⋅ 1/(t+3)

(B) p(t) = 1/(t-2)

(C) p(t) = 1/(2-t)

(D) p(t) = t3/2

(E) p(t) = (et)2 /2



(A) p(t) = 3/2 ⋅ 1/(t+3)

(B) p(t) = 1/(t-2)

(C) p(t) = 1/(2-t)

(D) p(t) = t3/2

(E) p(t) = (et)2 /2

Which function solves the equation 
p’(t)=p(t)2 subject to the initial 

condition p(0)=1/2.
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Newton’s Law of Cooling (NLC)

When an object cools by conduction, it can be 
modeled by Newton’s Law of Cooling:

Heat is lost proportional to the difference 
between the object’s temperature T(t) and 
the surrounding’s temperature E.

(C) T’(t) = k ( E - T(t) )

(D) T’(t) = k ( T(t) - E/k )

(A) T’(t) = E ( k - T(t) )

(B) T’(t) = k ( T(t) - E )



What do you expect 

          to be?

(A) E

(B) kE

(C) 0

(D) E-T(0)

(E) T(0)

lim
t→∞

T (t)
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Solving NLC:  
T’(t) = k (E - T(t)),  T(0)=T0

Define new function D(t) = E - T(t) 
(temp. diff.)

D’(t) = -T’(t)

D(0) = E - T(0) = E - T0

New equation: D’(t) = -kD(t)

T’(t) = k (E - T(t))
-D’(t) k (  D(t)  )



Solving NLC:  
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Solving NLC:  
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Solving NLC:  
T’(t) = k (E - T(t)),  T(0)=T0

(A) T(t) = (E - T0) + e-kt

(B) T(t) = T0e-kt

(C) T(t) = E - (E - T0) e-kt

(D) T(t) = T0 + (E - T0) ekt



Solving NLC:  
T’(t) = k (E - T(t)),  T(0)=T0

(A) T(t) = (E - T0) + e-kt

(B) T(t) = T0e-kt

(C) T(t) = E - (E - T0) e-kt

(D) T(t) = T0 + (E - T0) ekt



Solving NLC:  
T’(t) = k (E - T(t)),  T(0)=T0

(A) T(t) = (E - T0) + e-kt

(B) T(t) = T0e-kt

(C) T(t) = E - (E - T0) e-kt

(D) T(t) = T0 + (E - T0) ekt

How does our expectation match up? 
As t --> ∞, T(t) --> ???


