

- Solving linear DEs
- Murder on 13 ave.
- Reminder: midterm Tuesday 6 pm!

A drug delivered by IV accumulates at a constant rate k_{IV} . The body metabolizes the drug proportional to the amount of the drug.

 $(A) d'(t) = k_{IV} - k_{m} d(t)$ $(B) d'(t) = (k_{IV} - k_m) d(t)$ $(C) d'(t) = k_{IV} d(t) - k_{m}$ $(D) d'(t) = -k_{IV} + k_{m} d(t)$

Make related equation that looks like p'=kp.

Make related equation that looks like p'=kp. \odot Replace RHS by: $c(t) = k_{IV} - k_{m} d(t)$

Make related equation that looks like p'=kp. \odot Replace RHS by: $c(t) = k_{IV} - k_{m} d(t)$ Take derivative of this c(t):

Make related equation that looks like p'=kp. \circ Replace RHS by: c(t) = k_{IV} - k_{m} d(t) σ Take derivative of this c(t): $c'(t) = -k_m d'(t)$

Make related equation that looks like p'=kp. \odot Replace RHS by: c(t) = k_{IV} – k_{m} d(t) Take derivative of this $c(t)$: $c'(t) = -k_m d'(t)$ \odot New equation for c(t):

 (A) $c'(t) = -k_m$ $c(t)$ (B) $c'(t) = -k_{IV} c(t)$ (D) $c'(t) = -k_{m} (k_{IV} - k_{m} d(t))$ (C) $c'(t) = k_m c(t)$

Make related equation that looks like p'=kp. \odot Replace RHS by: c(t) = k_{IV} – k_{m} d(t) Take derivative of this $c(t)$: $c'(t) = -k_m d'(t)$ \odot New equation for c(t):

 (A) c'(t) = $-k_m$ c(t) (B) $c'(t) = -k_{IV} c(t)$ (D) $c'(t) = -k_{m} (k_{IV} - k_{m} d(t))$ (C) $c'(t) = k_m c(t)$

Make related equation that looks like p'=kp. \odot Replace RHS by: c(t) = k_{IV} - k_{m} d(t) Take derivative of this $c(t)$: $c'(t) = -k_m d'(t)$ \odot New equation for c(t):

(A) $c'(t) = -k_m c(t)$ (C) $c'(t) = k_m c(t)$ (B) $c'(t) = -k_{IV} c(t)$ (D) $c'(t) = -k_{m} (k_{IV} - k_{m} d(t))$ What about the initial condition, $c(0) = ?$

Make related equation that looks like p'=kp. \odot Replace RHS by: c(t) = k_{IV} - k_{m} d(t) Take derivative of this $c(t)$: $c'(t) = -k_m d'(t)$ \odot New equation: $c'(t) = -k_m c(t)$, $c(0)=k_{IV}$.

Make related equation that looks like p'=kp. \odot Replace RHS by: c(t) = k_{IV} - k_{m} d(t) Take derivative of this $c(t)$: $c'(t) = -k_m d'(t)$ \odot New equation: $c'(t) = -k_m c(t)$, $c(0)=k_{IV}$. This means the solution to the d(t) eq. is (A) d(t) = k_{IV} exp(- k_{m} t) (B) d(t) = k_{IV} exp(k_{m} t) (C) $d(t) = k_{IV}/k_{m} (1-exp(-k_{m}t))$ (D) $d(t) = k_{IV}/k_m$ exp(- $k_m t$)

Take derivative of this $c(t)$: $c'(t) = -k_m d'(t)$ Make related equation that looks like p'=kp. \odot Replace RHS by: c(t) = k_{IV} - k_{m} d(t) \odot New equation: $c'(t) = -k_m c(t)$, $c(0)=k_{IV}$. This means the solution to the d(t) eq. is (A) d(t) = k_{IV} exp(- k_{m} t) (B) d(t) = k_{IV} exp(k_{m} t) (C) $d(t) = k_{IV}/k_m (1-exp(-k_m t))$ (D) $d(t) = k_{IV}/k_m$ exp(- $k_m t$)

Make related equation that looks like p'=kp.

 $R_{\rm eff}$ - km d(t) \sim kHs by: c(t) \sim What happens to d(t) as t--> ∞?

c'hoarier an dizon (* 1938)
1900 : C'hoarier an dizon (* 1938)
1910 : C'hoarier an dizon (* 1938)

 \odot New equation: $c'(t) = -k_m c(t)$, $c(0)=k_{IV}$.

This means the solution to the d(t) eq. is

(A) $d(t) = k_{IV} exp(-k_{m}t)$ $\overline{(B)}$ d(t) = k_{IV} exp(k_{m} t) (C) $d(t) = k_{IV}/k_m (1-exp(-k_m t))$ (D) $d(t) = k_{IV}/k_m$ exp(- $k_m t$)

Make related equation that looks like p'=kp.

c'hoarier an dizon (* 1938)
1900 : C'hoarier an dizon (* 1938)
1910 : C'hoarier an dizon (* 1938) $R_{\rm eff}$ - km d(t) \sim kHs by: c(t) \sim $d(t) \rightarrow k_{\text{IV}}/k_{\text{I}}$ What happens to d(t) as t--> ∞? $d(t)$ --> k $_{\rm IV}/$ k $_{\rm m}$

 \odot New equation: $c'(t) = -k_m c(t)$, $c(0)=k_{IV}.$

This means the solution to the d(t) eq. is

(A) $d(t) = k_{IV} exp(-k_{m}t)$ (B) d(t) = k_{IV} exp(k_{m} t) (C) $d(t) = k_{IV}/k_m (1-exp(-k_m t))$ (D) $d(t) = k_{IV}/k_m$ exp(- $k_m t$)

 \odot Any problem of the form $y' = a$ -by with IC $y(0)=y_0$ has solution

$$
y(t) = a/b + (y_0 - a/b) e^{-bt}
$$

Check:

 \odot LHS: $y'(t) = (on the blackboard)$ RHS: a-by = (on the blackboard) $\sqrt{9}y(0) = a/b + (y_0 - a/b) e^0 = y_0$

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

If b>0 then as t--> ∞, y(t) --> a/b.

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

If b>0 then as t--> ∞, y(t) --> a/b.

When b>0, the characteristic time is 1/b.

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

If b>0 then as t--> ∞, y(t) --> a/b.

When b>0, the characteristic time is 1/b.

 \circ Notice that if $y_0=a/b$ then $y(t) = a/b$.

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

If b>0 then as t--> ∞, y(t) --> a/b.

- When b>0, the characteristic time is 1/b.
- \odot Notice that if y₀=a/b then y(t) = a/b.
- Constant solutions like this are called steady states.

Where is y(t) going?

Where is y(t) going? To the steady state a/b.

When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Never but at t=1/b it will be 1/e of the way. When will it get there?

Newton's Law of Cooling: T'(t) = k(E-T(t))

Newton's Law of Cooling: T'(t) = k(E-T(t)) $a = kE$, $b = k$.

 \odot Newton's Law of Cooling: $T'(t) = k(E-T(t))$ $a = kE$, $b = k$.

Drug delivery: d'(t) = kIV - kmd(t)

 \odot Newton's Law of Cooling: $T'(t) = k(E-T(t))$ $a = kE$, $b = k$.

 \odot Drug delivery: d'(t) = k_{IV} - $k_{m}d(t)$

 $a = k_{IV}$, $b = k_{m}$

Newton's Law of Cooling: T'(t) = k(E-T(t)) $a = kE$, $b = k$. $Druq$ delivery: $d'(t) = k_{IV} - k_{m}d(t)$ $a = k_{IV}$, $b = k_{m}$

 \odot Terminal velocity: v'(t) = g - $\delta v(t)$

 \odot Newton's Law of Cooling: $T'(t) = k(E-T(t))$ $a = kE$, $b = k$. \odot Drug delivery: d'(t) = k_{IV} - $k_{m}d(t)$ $a = k_{IV}$, $b = k_{m}$ \odot Terminal velocity: v'(t) = g - $\delta v(t)$ $a = g$, $b = \delta$

 \odot Newton's Law of Cooling: $T'(t) = k(E-T(t))$ $a = kE$, $b = k$. $Druq$ delivery: $d'(t) = k_{IV} - k_{m}d(t)$ $a = k_{IV}$, $b = k_{m}$ \odot Terminal velocity: $\overline{v}'(t) = g - \delta v(t)$ $a = g$, $b = \delta$ \bullet General form, factored: $y'(t) = b$ (a/b - y).

 \odot Newton's Law of Cooling: $T'(t) = k(E-T(t))$ $a = kE$, $b = k$. \odot Drug delivery: d'(t) = k_{IV} - $k_{m}d(t)$ $a = k_{IV}$, b = k_{m} σ Terminal velocity: $v'(t) = g - \delta v(t)$ $a = g$, $b = \delta$ \circ General form, factored: $y'(t) = b((a/b) - y)$. steady state

 \odot Newton's Law of Cooling: $T'(t) = k(E-T(t))$ $a = kE$, $b = k$. $Druq$ delivery: $d'(t) = k_{IV} - k_{m}d(t)$ $a = k_{IV}$, $b = k_{m}$ σ Terminal velocity: $v'(t) = g - \delta v(t)$ $a = g$, $b = \delta$ General form, factored: y'(t) = b (a/b - y). steady state 1 / characteristic time

What do you need to know?

- Given a word description, write down an equation for the quantity q(t) described.
	- Ex. Blah is added at a constant rate and is removed proportional to how much is there...
	- Ex. Blah changes proportional to the difference between blah and fixed #.
- Substitute as in the drug problem to get y'=ky and state that $y(t)=Ce^{kt}$ solves it.
- Substitute back to find q(t).
- Determine C using the initial condition.
- Answer questions about the resulting exponential q(t).

Newton's Law of Cooling (NLC)

When an object cools by convection, it can be modeled by Newton's Law of Cooling:

> Heat is lost proportional to the difference between the object's temperature T(t) and the surrounding's temperature E.

> > $T'(t) = k (E - T(t))$

Note: heat can be lost in other ways (e.g. radiation). Newton's Law of Cooling is a model that is sometimes appropriate and sometimes not.

What do you expect $\lim\; T(t)$ to be? *t*→∞ *T*(*t*)

- (A) E (B) kE (C) 0 (D) E-T(0) (E) T(0)
	-
-
-
- - - - -
	- - -
			-
-
- -

What do you expect $\lim\; T(t)$ to be? *t*→∞ *T*(*t*)

(A) E (B) kE (C) 0 (D) E-T(0) (E) T(0)

$T'(t) = k (E - T(t))$ $T(0)=T_0$

$T'(t) = k (E - T(t)) = kE - kT(t)$ TO)=To

a=kE, b=k $T'(t) = k (E - T(t)) = kE - kT(t)$ $TO=TO$

a=kE, b=k $T'(t) = k (E - T(t)) = kE - kT(t)$ $T(0)=T_0$

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

a=kE, b=k $T'(t) = k (E - T(t)) = kE - kT(t)$ $T(0)=T_0$

 $T(t) = E + (T_0 - E) e^{-kt}$ $y(t) = a/b + (y_0 - a/b) e^{-bt}$

All Hallow's Eve

- On Oct 31, 2014, a string of trick-ortreaters were seen walking along the 400 block of East 13th ave.
	- 8:38 pm Tina
	- 8:55 pm Jinsong
	- 9:05 pm Maria
	- 9:12 pm Ali-reza
	- 9:27 pm Chadni

All Hallow's Eve

- At 8:15 am, the woman who lived at 444 East 13 ave was found dead in the front yard of her home.
	- The VPD has asked you to figure out who did it.
	- You arrive on the scene, and tell the police you will have an answer for them soon.
	- What is your next move? Discuss.