Today

- Composition and chain rule, quotient rule
- Antiderivatives of power functions and polynomials
- Tangent lines
- Reminders:
 - Assignment3 Thursday 7am,
 - OSH 2 Friday 11:59 pm.
 - Sign up for midterm time/room.
Composition of functions

If \(f(x) = 2x+3 \) and \(g(x) = -4x+2 \),

A. \(h(x) = f(g(x)) = -8x+7 \)

B. \(h(x) = f(g(x)) = -8x-10 \)

C. \(h(x) = f(g(x)) = -8x^2-8x+6 \)

D. \(h(x) = f(g(x)) = -8x+5 \)
Composition of functions

If $f(x) = 2x+3$ and $g(x) = -4x+2$,

A. $h(x) = f(g(x)) = -8x+7$

B. $h(x) = f(g(x)) = -8x-10$

C. $h(x) = f(g(x)) = -8x^2-8x+6$

D. $h(x) = f(g(x)) = -8x+5$
Composition of functions

If \(h(x) = f(g(x)) \), then

A. \(h'(x) = f'(x) \cdot g'(x) \)

B. \(h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)

C. \(h'(x) = f'(g'(x)) \)

D. \(h'(x) = f'(g(x)) \cdot g'(x) \)
Composition of functions

If \(h(x) = f(g(x)) \), then

A. \(h'(x) = f'(x) \cdot g'(x) \)

B. \(h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \)

C. \(h'(x) = f'(g'(x)) \)

D. \(h'(x) = f'(g(x)) \cdot g'(x) \quad \text{----- Chain Rule} \)
Composition of functions

If \(h(x) = (x^3-2x+1)^6 \), then \(h'(x) = ? \)

A. \(6 (x^3-2x+1)^5 \)

B. \((x^3-2x+1)^6 (3x^2-2) \)

C. \(6 (x^3-2x+1)^5 (3x^2-2) \)

D. \(6 (x^3-2x+1)^5 (x^3-2x+1) \)

E. Are you kidding? It will take me weeks to multiply those out.
Composition of functions

If \(h(x) = (x^3 - 2x + 1)^6 \), then \(h'(x) = \) ?

A. \(6 \ (x^3 - 2x + 1)^5 \)

B. \((x^3 - 2x + 1)^6 \ (3x^2 - 2) \)

C. \(6 \ (x^3 - 2x + 1)^5 \ (3x^2 - 2) \)

D. \(6 \ (x^3 - 2x + 1)^5 \ (x^3 - 2x + 1) \)

E. Are you kidding? It will take me weeks to multiply those out.
Rules for differentiation - summary

• Addition rule:
 \[f(x) = g(x) + h(x) \quad ----> \quad f'(x) = g'(x) + h'(x) \]

• Product rule:
 \[f(x) = g(x) h(x) \quad ----> \quad f'(x) = g'(x) h(x) + g(x) h'(x) \]

• Chain rule:
 \[f(x) = g(h(x)) \quad ----> \quad f'(x) = g'(h(x)) h'(x) \]

• Quotient rule:
 \[f(x) = \frac{g(x)}{h(x)} = g(x) (h(x))^{-1} \quad <---- \text{apply product and chain rules} \]
or
 \[f(x) = g(x) / h(x) = g(x) (h(x))^{-1} \quad <---- \text{apply product and chain rules} \]
Suppose \(f(x) = g(x)/k(x) \) and that
\[
g(2) = 3, \quad k(2) = 1, \quad g'(2) = 2, \quad k'(2) = 5.
\]

• What is \(f'(2) \)?

 (A) -13

 (B) -13/25

 (C) -13/9

 (D) 17/25
Suppose \(f(x) = \frac{g(x)}{k(x)} \) and that
\[
g(2) = 3, \quad k(2) = 1, \quad g'(2) = 2, \quad k'(2) = 5.
\]

• What is \(f'(2) \)?

(A) -13
(B) -13/25
(C) -13/9
(D) 17/25
Antiderivatives – going backward

If \(f'(x) = 6x^2 + 4x - 1 \), then

(A) \(f(x) = 12x + 4 \)

(B) \(f(x) = 2x^3 + 2x^2 - x \)

(C) \(f(x) = 2x^3 + 2x^2 - x + 2 \)

(D) \(f(x) = 2x^3 + 2x^2 - x + C \)
Antiderivatives – going backward

If \(f'(x) = 6x^2 + 4x - 1 \), then

(A) \(f(x) = 12x + 4 \)

(B) \(f(x) = 2x^3 + 2x^2 - x \)

(C) \(f(x) = 2x^3 + 2x^2 - x + 2 \)

(D) \(f(x) = 2x^3 + 2x^2 - x + C \)

Slopes at each \(x \) don't change with vertical shift.
This is $f'(x)$. Draw $f(x)$.

Only determined up to a vertical shift.
Position-Velocity-Acceleration

If $x(t)$ is position as a function of time,

- velocity $v(t) = x'(t)$,
- acceleration $a(t) = v'(t) = x''(t)$.

Constant acceleration a:

- $v(t) = at + C = at + v_0$ so that $v(0) = v_0$.
- $x(t) = a/2 \ t^2 + v_0t + D = a/2 \ t^2 + v_0t + x_0$

Classic “projectile motion” (ball falling)
Tangent lines – simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).

• Need equation of line

 • slope is \(m = f'(3) \), point on line is \((3,f(3)) \)

 • Either \(y = mx + b \) or \(y = m(x-a) + f(a) \)...

(A) \(y = 3x + 44 \)
(B) \(y = 38x + 44 \)
(C) \(y = 38(x-3) + 44 \)
(D) \(y = 44 \)
Tangent lines – simple ex

• Let \(f(x) = x^3 + 2x^2 - x + 2 \).

• Find tangent line at \(x=3 \).

• Need equation of line

 • slope is \(m = f'(3) \), point on line is \((3, f(3)) \)

 • Either \(y = mx + b \) or \(y = m(x-a) + f(a) \)...

(A) \(y = 3x + 44 \)
(B) \(y = 38x + 44 \)
(C) \(y = 38(x-3) + 44 \)
(D) \(y = 44 \)