Today

Newton's method (cont) Qualitative analysis of differential equations Steady states Slope fields Stability of steady states Velocity (y') versus position (y)

Newton's method

It can be applied to finding approximates of \odot critical points of a function g(x): \oslash define f(x)=g'(x), Intersections of functions, g(x)=h(x): o define f(x) = g(x)-h(x), ø irrational numbers: e.g. sqrt(2): \odot define f(x)=x²-2.

Xo

Start with a "guesstimate" x₀.

Start with a "guesstimate" x₀.

 Get a "better" estimate x1 by finding the tangent line and following it to the x-axis. Xo

Xo

Start with a "guesstimate" x₀.

 Get a "better" estimate x1 by finding the tangent line and following it to the x-axis.

Xo

Start with a "guesstimate" x₀.

 Get a "better" estimate x1 by finding the tangent line and following it to the x-axis.

Xo

 X_1

Start with a "guesstimate" x₀.

 Get a "better" estimate x1 by finding the tangent line and following it to the x-axis.

Xo

 X_1

Start with a "guesstimate" x₀.

 Get a "better" estimate x₁ by finding the tangent line and following it to the x-axis.

 \odot Repeat to get $x_2...$

Xo

 X_1

Start with a "guesstimate" x₀.

 Get a "better" estimate x₁ by finding the tangent line and following it to the x-axis.

 \odot Repeat to get $x_2...$

X₀

 X_1

 \oslash Start with a "guesstimate" x_0 .

 Get a "better" estimate x1 by finding the tangent line and following it to the x-axis.

 \odot Repeat to get $x_2...$

 \oslash Start with a "guesstimate" x_0 .

 Get a "better" estimate x1 by finding the tangent line and following it to the x-axis.

Repeat to get x_2 ...

Calculating successive estimates

Calculating successive estimates

Sirst, find tangent line at x_n :
L(x) = f(x_n) + f'(x_n)(x-x_n).

Calculating successive estimates Sirst, find tangent line at xn: $\oslash L(x) = f(x_n) + f'(x_n)(x-x_n).$ The Find x-intercept, that will be x_{n+1} : (A) $x_{n+1} = x_n + f(x_n) / f'(x_n)$. XO (B) $x_{n+1} = x_n - f(x_n) / f'(x_n)$. X_1 (C) $x_{n+1} = x_n - f'(x_n) / f(x_n)$. (D) $x_{n+1} = x_n + f'(x_n) / f(x_n)$.

Calculating successive estimates Sirst, find tangent line at xn: $\oslash L(x) = f(x_n) + f'(x_n)(x-x_n).$ The Find x-intercept, that will be x_{n+1} : (A) $x_{n+1} = x_n + f(x_n) / f'(x_n)$. XO (B) $x_{n+1} = x_n - f(x_n) / f'(x_n)$. X_1 (C) $x_{n+1} = x_n - f'(x_n) / f(x_n)$. (D) $x_{n+1} = x_n + f'(x_n) / f(x_n)$.

To estimate $\sqrt{3}$, which function would you apply Newtons' method to?

(A) $f(x) = x^{1/2}$ (B) $f(x) = x^{1/2} - 3$ (C) $f(x) = x^2$ (D) $f(x) = x^2 - 3$ (E) $f(x) = (x-3)^{1/2}$

To estimate $\sqrt{3}$, which function would you apply Newtons' method to?

(A) $f(x) = x^{1/2}$ (B) $f(x) = x^{1/2} - 3$ (C) $f(x) = x^2$ (D) $f(x) = x^2 - 3$ <---- This one has a root at $\sqrt{3}$. (E) $f(x) = (x-3)^{1/2}$

Estimate $\sqrt{3}$ using Newton's method with initial guess $x_0=2$.

(A) 7/4 (B) 97/56 $x_{n+1} = x_n - f(x_n) / f'(x_n).$ (C) 1.7 (D) 1.73205080757

Finished already? Now use linear approximation. Which approach is better?

Estimate $\sqrt{3}$ using Newton's method with initial guess $x_0=2$.

(A) $7/4 = 1.75 < --- x_1$

(B) $97/56 = 1.73214 < --- x_2$

(C) 1.7

(D) 1.73205080757 <--- first 11 digits of $\sqrt{3}$.

Finding a general solution to a DE is ideal but what if you can't?

Finding a general solution to a DE is ideal but what if you can't?

Qualitative analysis – extract information about the general solution without solving.

Finding a general solution to a DE is ideal but what if you can't?

Qualitative analysis – extract information about the general solution without solving.

Steady states

Slope fields

Stability of steady states

Plotting y' versus y (phase line)

Steady state. Where can you stand so that the DE tells you not to move?

(A) $\times = -1$ (B) $\times = 0$ (C) $\times = 1/2$ (D) $\times = 1$

Steady state. Where can you stand so that the DE tells you not to move?

(A) $\times = -1$ (B) $\times = 0$ (C) $\times = 1/2$ (D) $\times = 1$

Steady state. Where can you stand so that the DE tells you not to move?
(A) x=-1
(B) x=0
(C) x=1/2

(D) x=1

 $\begin{array}{c} & x(t) \\ 1 \\ 1 \\ 0 \\ t \end{array}$

A steady state is a constant solution.

Slope field.

position Slope field

Slope field.

Slope field.
At any t, don't know x yet so plot all possible x' values
When x(t)=1/2 what is x'?

(A) 0
(B) 1/4
(C) 1/2

(D) 1

Slope field. At any t, don't know x yet so plot all possible x' values • When x(t)=1/2 what is x'? (A) 0(B) 1/4 (C) 1/2(D) 1

Slope field.

Slope field.

Slope field.

Slope field.

Slope field.

Slope field.

Slope field.

Slope field.

Slope field.

At any t, don't know x yet so plot all possible x' values

Slope field.

At any t, don't know x yet so plot all possible x' values

Slope field.

At any t, don't know x yet so plot all possible x' values

- x)

Slope field.

At any t, don't know x yet so plot all possible x' values

-x)

Slope field.

At any t, don't know x yet so plot all possible x' values

 $\mathbf{k} \mathbf{x}(t)$ $1 \\ 1 \\ 1/2 \\ 1/$ 0 / ||

 $- \mathcal{X})$

Slope field.

At any t, don't know x yet so plot all possible x' values

x' = x(1)

position Slope field

- x)

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1)

position Slope field

-x)

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1)

position Slope field

 $-\mathcal{X}$

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1

position Slope field

 \mathcal{X}

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1

position Slope field

 \mathcal{X}

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1

position Slope field

 \mathcal{X}

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1

position Slope field

 \mathcal{X}

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1

position Slope field

 \mathcal{X}

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

x' = x(1

position Slope field

 \mathcal{X}

Slope field.

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

Velocity (x') vs. position (x)

Velocity (x') vs. position (x)

Velocity (x') vs. position (x)

Stable steady state- all nearby solutions approach Unstable steady state - not stable

x' = x(1 - x)

If you start at x(0)=-0.01, the solution
(A) increases

x' = x(1 - x)

If you start at x(0)=0.01, the solution
(A) increases

x' = x(1 - x)

If you start at x(0)=0.99, the solution
(A) increases

x' = x(1 - x)

If you start at x(0)=1.01, the solution
(A) increases

(A) Both x(t)=0 and x(t)=1 are stable steady states.
(B) x(t)=0 is stable and x(t)=1 is unstable.
(C) x(t)=0 is unstable and x(t)=1 is stable.
(D) Both x(t)=0 and x(t)=1 are unstable steady states.

x' = x(1 - x)

x' = x(1 - x)

(A) Both x(t)=0 and x(t)=1 are stable steady states.
(B) x(t)=0 is stable and x(t)=1 is unstable.
(C) x(t)=0 is unstable and x(t)=1 is stable.
(D) Both x(t)=0 and x(t)=1 are unstable steady states.
Stable - solid dot. Unstable - empty dot.