Quiz 2-individual stage

1. Estimate the value of $\sqrt{15}$. Using Newton's method, the best choice will be:
(A) $f(x)=\sqrt{x}, \quad x_{0}=16$
(C) $f(x)=\sqrt{x}-15, \quad x_{0}=4$
(B) $f(x)=\sqrt{x+15}, \quad x_{0}=0$
(D) $f(x)=x^{2}-15, \quad x_{0}=4$
2. Estimate the value of $\sqrt{15}$. Using linear approximation, the best choice will be:
(A) $f(x)=\sqrt{x}, \quad x_{0}=16$
(C) $f(x)=\sqrt{x}-15, \quad x_{0}=4$
(B) $f(x)=\sqrt{x+15}, \quad x_{0}=0$
(D) $f(x)=x^{2}-15, \quad x_{0}=4$
3. Consider the graphs of f and g below. Let $h(x)=f(x) / g(x)$. What is $h^{\prime}(3)$?

(A) 0
(B) $-3 / 2$
(C) $-3 / 4$
(D) $-3 / 8$
(E) Not enough information

Use the graph of the function $y=h(x)$ below to answer Questions 4-6.

4. Estimate the first iteration of Newton's method, x_{1} starting at $x_{0}=3$. Draw any lines that you use on the graph to illustrate your answer.
5. Give an equation of the line you would use to approximate the value of $h(-1.1)$.
6. Give an example of a point (list its coordinates) that, when used as x_{0}, will lead to a failure of Newton's method. Explain why.

Quiz 2-group stage

1. Estimate the value of $\sqrt{15}$. Using Newton's method, the best choice will be:
(A) $f(x)=\sqrt{x}, \quad x_{0}=16$
(C) $f(x)=\sqrt{x}-15, \quad x_{0}=4$
(B) $f(x)=\sqrt{x+15}, \quad x_{0}=0$
(D) $f(x)=x^{2}-15, \quad x_{0}=4$
2. Estimate the value of $\sqrt{15}$. Using linear approximation, the best choice will be:
(A) $f(x)=\sqrt{x}, \quad x_{0}=16$
(C) $f(x)=\sqrt{x}-15, \quad x_{0}=4$
(B) $f(x)=\sqrt{x+15}, \quad x_{0}=0$
(D) $f(x)=x^{2}-15, \quad x_{0}=4$
3. Consider the graphs of f and g below. Let $h(x)=f(x) / g(x)$. What is $h^{\prime}(3)$?

(A) 0
(B) $-3 / 2$
(C) $-3 / 4$
(D) $-3 / 8$
(E) Not enough information

Use the graph of the function $y=h(x)$ below to answer Questions 4-6.

4. Estimate the first iteration of Newton's method, x_{1} starting at $x_{0}=3$. Draw any lines that you use on the graph to illustrate your answer.
5. Give an equation of the line you would use to approximate the value of $h(-1.1)$.
6. Give an example of a point (list its coordinates) that, when used as x_{0}, will lead to a failure of Newton's method. Explain why.

