Today

- Logistic equation in applications
- Trig review
Logistic equation in different contexts...
Rates of change that are proportional to two things

- Infectious disease: \(bSI \) (S=susceptible, I=infected)
- Spread of rumour: \(bNH \) (N = not heard rumour, H = heard rumour)
- Spread of new words: \(bNU \) (use word or not)
- Spread of new technologies: \(bNU \) (use tech or not)
- Active oil exploration sites: \(bUD \) (undiscovered and discovered)
- Waterlillies in a pond: \(bSW \) (waterlillies and space for waterwillies)
...two things that are just different forms of a single thing
...two things that are just different forms of a single thing

- When X meets Y, there's a chance Y turns into X.
...two things that are just different forms of a single thing

When \(X \) meets \(Y \), there’s a chance \(Y \) turns into \(X \).

Lose \(Y \): \[
\frac{dY}{dt} = -bXY
\]
and gain \(X \): \[
\frac{dX}{dt} = bXY
\]
...two things that are just different forms of a single thing

- When X meets Y, there's a chance Y turns into X.

- Lose Y: \(\frac{dY}{dt} = -bXY \) and gain X: \(\frac{dX}{dt} = bXY \)

- \(X+Y= \) constant = \(C \) so \(Y=C-X \).
...two things that are just different forms of a single thing

- When X meets Y, there's a chance Y turns into X.

- Lose Y: \[\frac{dY}{dt} = -bXY \]
 and gain X: \[\frac{dX}{dt} = bXY \]

- $X+Y$ = constant $= C$ so $Y=C-X$.

- \[\frac{dX}{dt} = bX(C - X) \]
Infectious disease

Dr. Erin Mears: Once we know the R_0, we'll be able to get a handle on the scale of the epidemic.

Minnesota Health #4: So, it's an epidemic now. An epidemic of what?

Dave: We sent samples to the CDC.

Dr. Erin Mears: In seventy two hours, we'll know what it is, if we're lucky.

Minnesota Health #4: Clearly, we're not lucky.
Infectious disease
Infectious disease

N individuals, I of them have a flu, S=N−I do not.
Infectious disease

- N individuals, I of them have a flu, $S=N-I$ do not.

- If everyone interacts, new cases appear at a rate proportional to SI.
Infectious disease

\(N \) individuals, \(I \) of them have a flu, \(S=N-I \) do not.

If everyone interacts, new cases appear at a rate proportional to \(SI \).

The DE describing the spread of disease:
Infectious disease

- N individuals, I of them have a flu, $S=N-I$ do not.

- If everyone interacts, new cases appear at a rate proportional to SI.

- The DE describing the spread of disease:

 (A) $\frac{dI}{dt} = -bI(N - I)$
 (B) $\frac{dI}{dt} = bI(N - I)$
 (C) $\frac{dS}{dt} = -bSI$
 (D) $\frac{dI}{dt} = bSI$
Infectious disease

N individuals, I of them have a flu, S=N−I do not.

If everyone interacts, new cases appear at a rate proportional to SI.

The DE describing the spread of disease:

\[\frac{dI}{dt} = -bI(N - I) \] \hspace{1cm} \frac{dS}{dt} = -bSI \] \hspace{1cm} \frac{dI}{dt} = bI(N - I) \] \hspace{1cm} \frac{dI}{dt} = bSI \]

Compare this with \[\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right). \]
What is the carrying capacity?

\[\frac{dI}{dt} = bI(N - I) \]

(A) \(\frac{b}{N} \)
(B) \(\frac{N}{b} \)
(C) \(I \)
(D) \(N \)
Infectious disease

What is the carrying capacity?

\[\frac{dI}{dt} = bI(N - I) \]

(A) \ b/N \hspace{2cm} (C) \ I

(B) \ N/b \hspace{2cm} (D) \ N

\[\frac{dP}{dt} = rP \left(1 - \frac{P}{K} \right) \]
Infectious disease

What is the carrying capacity?

\[
\frac{dI}{dt} = bI(N - I) = bNI \left(1 - \frac{I}{N}\right)
\]

(A) b/N

(B) N/b

(C) I

(D) N

\[
\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right)
\]
Infectious disease

What is the carrying capacity?

\[
\frac{dI}{dt} = bI(N - I) = bNI \left(1 - \frac{I}{N}\right)
\]

(A) b/N (C) I

(B) N/b (D) N

\[
\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right)
\]
Infectious disease

What is the carrying capacity?

\[
\frac{dI}{dt} = bI(N - I) = bNI \left(1 - \frac{I}{N}\right)
\]

(A) b/N (C) I

(B) N/b (D) N

\[
\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right)
\]
Infectious disease

What is the carrying capacity?

\[
\frac{dI}{dt} = bI(N - I) = bNI \left(1 - \frac{I}{N}\right)
\]

(A) b/N

(B) N/b

(C) I

(D) N

Everyone gets sick!

\[
\frac{dP}{dt} = rP \left(1 - \frac{P}{K}\right)
\]
Infectious disease
Infectious disease

Suppose infected people recover at a rate proportional to how many there are.
Infectious disease

Suppose infected people recover at a rate proportional to how many there are.

The DE describing the spread of disease with recovery:

\[\frac{dI}{dt} = bI(N - I) - \mu S \] \hspace{1cm} (A)

\[\frac{dI}{dt} = bI(N - I) - \mu I \] \hspace{1cm} (B)

\[\frac{dI}{dt} = -bI(N - I) + \mu I \] \hspace{1cm} (C)

\[\frac{dI}{dt} = bI(N - I) + \mu I \] \hspace{1cm} (D)
Infectious disease

\[\frac{dI}{dt} = bI(N - I) - \mu I \]
Infectious disease

\[\frac{dI}{dt} = bI(N - I) - \mu I \]

\[= bIN - bI^2 - \mu I \]
Infectious disease

\[\frac{dI}{dt} = bI(N - I) - \mu I \]

\[= bIN - bI^2 - \mu I \]

\[= bI \left(N - \frac{\mu}{b} - I \right) \]
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} + I \right)
\]
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} - I \right)
\]

If \(\frac{\mu}{b} > N \) then

\[
K = N - \frac{\mu}{b} < 0
\]
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} + I \right)
\]

If \(\frac{\mu}{b} > N \) then

\[
K = N - \frac{\mu}{b} < 0
\]
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} + I\right)
\]

If \(\frac{\mu}{b} > N \) then

\[
K = N - \frac{\mu}{b} < 0
\]

and the disease dies out.
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} + I \right)
\]
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} + I \right)
\]

\[
K = N - \frac{\mu}{b} > 0
\]

If \(\frac{\mu}{b} < N \) then
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I
\]

\[
= bIN - bI^2 - \mu I
\]

\[
= bI \left(N - \frac{\mu}{b} - I \right)
\]

If \(\frac{\mu}{b} < N \) then

\[K = N - \frac{\mu}{b} > 0\]
Infectious disease

\[\frac{dI}{dt} = bI(N - I) - \mu I \]
\[= bIN - bI^2 - \mu I \]
\[= bI \left(N - \frac{\mu}{b} - I \right) \]

If \(\frac{\mu}{b} < N \) then
\[K = N - \frac{\mu}{b} > 0 \]
and the disease becomes an epidemic.

\(K \)
Infectious disease

\[
\frac{dI}{dt} = bI(N - I) - \mu I \\
= bIN - bI^2 - \mu I \\
= bI \left(N - \frac{\mu}{b} - I \right)
\]

If \(\frac{\mu}{b} < N \) then

\[
K = N - \frac{\mu}{b} > 0
\]

and the disease becomes an epidemic.

\[
R_0 = \frac{Nb}{\mu} > 1
\]
Infectious disease

If \[\frac{\mu}{b} < N \] then

\[K = N - \frac{\mu}{b} > 0 \]

and the disease becomes an epidemic.

\[R_0 = \frac{Nb}{\mu} > 1 \]
Infectious disease

$$\frac{dI}{dt} = bI\left(\frac{N - I}{2}\right)$$

$$\mu I = bIN$$

$$\downarrow N\mu \iff \mu < N$$

If $\frac{\mu}{b} < N$ then

$$K = N - \frac{\mu}{b} > 0$$

and the disease becomes an epidemic.

$$R_0 = \frac{Nb}{\mu} > 1$$
If θ is measured counterclockwise from the positive x axis we define sin and cos so that

(A) $x = \sin(\theta)$, $y = \tan(\theta)$.

(B) $x = \tan(\theta)$, $y = \sin(\theta)$.

(C) $x = \sin(\theta)$, $y = \cos(\theta)$.

(D) $x = \cos(\theta)$, $y = \sin(\theta)$.
If θ is measured counterclockwise from the positive x axis we define sin and cos so that

(A) $x=\sin(\theta)$, $y=\tan(\theta)$.

(B) $x=\tan(\theta)$, $y=\sin(\theta)$.

(C) $x=\sin(\theta)$, $y=\cos(\theta)$.

(D) $x=\cos(\theta)$, $y=\sin(\theta)$.

Trig review
Trig review

Learn special angles in Quad I and modify signs for other Quads.

$(\cos\phi, \sin\phi)$
Trig review

Learn special angles in Quad I and modify signs for other Quads.
Learn special angles in Quad I and modify signs for other Quads.
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[(\cos \phi, \sin \phi)\]

\[(\cos \theta, \sin \theta)\]

\[\cos \theta = -\cos \phi\]
Trig review

Learn special angles in Quad I and modify signs for other Quads.
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[(\cos \theta, \sin \theta)\]

\[\cos \theta = -\cos \phi\]
\[\sin \theta = \sin \phi\]
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[(\cos \phi, \sin \phi)\]

\[(\cos \theta, \sin \theta)\]

\[\cos \theta = -\cos \phi\]
\[\sin \theta = \sin \phi\]
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[
\cos \theta = -\cos \phi \\
\sin \theta = \sin \phi
\]
Trig review

Learn special angles in Quad I and modify signs for other Quads.

$$\cos \theta = -\cos \phi$$
$$\sin \theta = -\sin \phi$$

$$\cos \phi, \sin \phi$$

$$\cos \theta, \sin \theta$$

$$\cos \theta = -\cos \phi$$
$$\sin \theta = \sin \phi$$
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[\cos \theta = -\cos \phi \]
\[\sin \theta = -\sin \phi \]
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[\cos \theta = -\cos \phi \]
\[\sin \theta = -\sin \phi \]
Learn special angles in Quad I and modify signs for other Quads.

\[
\cos \theta = -\cos \phi \\
\sin \theta = -\sin \phi
\]

\[
\cos \phi = -\cos \theta \\
\sin \phi = \sin \theta
\]
Trig review

Learn special angles in Quad I and modify signs for other Quads.

\[\cos(\theta) = -\cos(\phi) \]
\[\sin(\theta) = -\sin(\phi) \]

\[\cos(\theta) = \cos(\phi) \]
\[\sin(\theta) = -\sin(\phi) \]
Trig review

- The other trig functions:
Trig review

The other trig functions:

\[\tan \theta = \frac{\sin \theta}{\cos \theta} \]
Trig review

The other trig functions:

- \(\tan \theta = \frac{\sin \theta}{\cos \theta} \)
- \(\csc \theta = \frac{1}{\sin \theta} \)
Trig review

The other trig functions:

- $\tan\theta = \frac{\sin\theta}{\cos\theta}$
- $\csc\theta = \frac{1}{\sin\theta}$
- $\sec\theta = \frac{1}{\cos\theta}$
Trig review

The other trig functions:

- \(\tan \theta = \frac{\sin \theta}{\cos \theta} \)
- \(\csc \theta = \frac{1}{\sin \theta} \)
- \(\sec \theta = \frac{1}{\cos \theta} \)
- \(\cot \theta = \frac{1}{\tan \theta} \)
Which of the following is not a trig identity?

(A) \(1 + \cot^2 \theta = \csc^2 \theta\)

(B) \(\tan^2 \theta + 1 = \sec^2 \theta\)

(C) \(\sin(2 \theta) = 2 \sin \theta \cos \theta\)

(D) \(\cos(\theta) = \sin(\theta - \pi/2)\)

(E) \(\sin(\theta) = \cos(\theta - \pi/2)\)
Trig review

Which of the following is not a trig identity?

(A) $1 + \cot^2 \theta = \csc^2 \theta$

(B) $\tan^2 \theta + 1 = \sec^2 \theta$

(C) $\sin(2\theta) = 2 \sin \theta \cos \theta$

(D) $\cos(\theta) = \sin(\theta - \pi/2)$

(E) $\sin(\theta) = \cos(\theta - \pi/2)$

$\cos(A+B) = \cos A \cos B - \sin A \sin B$
Which of the following is not a trig identity?

(A) $1 + \cot^2 \theta = \csc^2 \theta$

(B) $\tan^2 \theta + 1 = \sec^2 \theta$

(C) $\sin(2\theta) = 2 \sin \theta \cos \theta$

(D) $\cos(\theta) = \sin(\theta - \pi/2)$

(E) $\sin(\theta) = \cos(\theta - \pi/2)$

$\cos(A+B) = \cos A \cos B - \sin A \sin B$
Trig review

Which of the following is not a trig identity?

(A) $1 + \cot^2 \theta = \csc^2 \theta$

(B) $\tan^2 \theta + 1 = \sec^2 \theta$

(C) $\sin(2 \theta) = 2 \sin \theta \cos \theta$

(D) $\cos(\theta) = \sin(\theta - \pi/2)$

(E) $\sin(\theta) = \cos(\theta - \pi/2)$

$\sin^2 \theta + \cos^2 \theta = 1$

$\cos(A+B) = \cos A \cos B - \sin A \sin B$
Trig review

Which of the following is not a trig identity?

(A) $1 + \cot^2 \theta = \csc^2 \theta$

(B) $\tan^2 \theta + 1 = \sec^2 \theta$

(C) $\sin(2\theta) = 2 \sin \theta \cos \theta$

(D) $\cos(\theta) = \sin(\theta - \pi/2)$

(E) $\sin(\theta) = \cos(\theta - \pi/2)$

$\sin^2 \theta + \cos^2 \theta = 1$

$\sin \theta \cos \theta = \sin(A+B) = \cos A \cos B - \sin A \sin B$
Trig review

Which of the following is not a trig identity?

(A) $1 + \cot^2 \theta = \csc^2 \theta$

(B) $\tan^2 \theta + 1 = \sec^2 \theta$

(C) $\sin(2\theta) = 2 \sin \theta \cos \theta$

(D) $\cos(\theta) = \sin(\theta - \pi/2)$

(E) $\sin(\theta) = \cos(\theta - \pi/2)$

\[\sin^2 \theta + \cos^2 \theta = 1\]

\[\cos^2 \theta \div \cos^2 \theta \div \cos^2 \theta\]
Trig review

Which of the following is not a trig identity?

(A) $1 + \cot^2\theta = \csc^2\theta$

(B) $\tan^2\theta + 1 = \sec^2\theta$

(C) $\sin(2\theta) = 2 \sin\theta \cos\theta$

(D) $\cos(\theta) = \sin(\theta-\pi/2)$

(E) $\sin(\theta) = \cos(\theta-\pi/2)$

$\sin^2\theta + \cos^2\theta = 1$

$\cos^2\theta \quad \cos^2\theta \quad \cos^2\theta$

$\sin\theta \quad \cos\theta \quad 1$

$\cos(A+B) = \cos A \cos B - \sin A \sin B$
Trig review

Which of the following is not a trig identity?

(A) \(1 + \cot^2 \theta = \csc^2 \theta\)

(B) \(\tan^2 \theta + 1 = \sec^2 \theta\)

(C) \(\sin(2\theta) = 2 \sin \theta \cos \theta\)

(D) \(\cos(\theta) = \sin(\theta - \pi/2)\)

(E) \(\sin(\theta) = \cos(\theta - \pi/2)\)

\[
\sin^2 \theta + \cos^2 \theta = 1
\]

\[
\frac{\cos^2 \theta}{\cos^2 \theta} \quad \frac{\cos^2 \theta}{\cos^2 \theta} = 1
\]

\[
\cos(A+B) = \cos A \cos B - \sin A \sin B
\]

Use \(\sin(A+B)\) (watch today’s 2\(^{nd}\) video)

Know graphs, how to shift or use \(\sin(A+B), \cos(A+B)\)
Trig review

$\cos(2\pi/3) =$

(A) $\frac{\sqrt{3}}{2}$

(B) $-\frac{\sqrt{3}}{2}$

(C) $\frac{1}{2}$

(D) $-\frac{1}{2}$
Trig review

\[\cos\left(\frac{2\pi}{3}\right) = \]

(A) \(\frac{\sqrt{3}}{2} \)

(B) \(-\frac{\sqrt{3}}{2} \)

(C) \(\frac{1}{2} \)

(D) \(-\frac{1}{2} \)
$\cos\left(\frac{2\pi}{3}\right) =$

(A) $\frac{\sqrt{3}}{2}$

(B) $-\frac{\sqrt{3}}{2}$

(C) $\frac{1}{2}$

(D) $-\frac{1}{2}$
Trig review

\[
\cos(2\pi/3) =
\]

(A) \(\frac{\sqrt{3}}{2}\)

(B) \(-\frac{\sqrt{3}}{2}\)

(C) \(\frac{1}{2}\)

(D) \(-\frac{1}{2}\)
Trig review

\[\cos \left(\frac{2\pi}{3} \right) = \]

(A) \[\frac{\sqrt{3}}{2} \]

(B) \[-\frac{\sqrt{3}}{2} \]

(C) \[\frac{1}{2} \]

(D) \[-\frac{1}{2} \]
Trig review

\[
\cos(2\pi/3) =
\]

(A) \(\frac{\sqrt{3}}{2} \)

(B) \(-\frac{\sqrt{3}}{2} \)

(C) \(\frac{1}{2} \)

(D) \(-\frac{1}{2} \)

And \(2\pi/3 \) is in Quad II so \(\cos(2\pi/3) < 0 \).
Trig review

\[\tan \left(\frac{\pi}{4} \right) = \]

(A) \(\frac{1}{\sqrt{2}} \)

(B) 1

(C) \(\sqrt{2} \)

(D) \(\frac{1}{2} \)
Trig review

\[\tan \left(\frac{\pi}{4} \right) = \]

(A) \(\frac{1}{\sqrt{2}} \)

(B) 1

(C) \(\sqrt{2} \)

(D) \(\frac{1}{2} \)