

Linear regression
aka linear least squares
aka fitting data with straight lines
Another optimization example (if time allows)

Linear regression

Linear regression

How do we find the best line to fit through the data?

Linear regression

How do we find the best line to fit through the data?

Minimizing

y=ax Minimizing [⊙](x_n,y_n) \bigcirc \bigcirc 0 (Xi,Yi) (X1,Y1) • • i=1,2,3,...,n

y=ax Minimizing (x_1,y_1) • i=1,2,3,...,n

Each red bar is called a residual. We want the residuals to be as small as possible.

The residuals are...

(A) $r_i = y_i^2 + x_i^2$ (B) $r_i = a^2(y_i^2 + x_i^2)$ (C) $r_i = y_i - a x_i$ (D) $r_i = y_i - x_i$ (E) $r_i = x_i - y_i$

The residuals are...

(A) $r_i = y_i^2 + x_i^2$ (B) $r_i = a^2(y_i^2 + x_i^2)$ (C) $r_i = y_i - a x_i$ (D) $r_i = y_i - x_i$ (E) $r_i = x_i - y_i$

To minimize the residuals, we define the objective function... (A) $f(a) = |y_1 - ax_1| + |y_2 - ax_2| + ... + |y_n - ax_n|$ (B) $f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + ... + (y_n - ax_n)^2$ (C) $f(a) = (y_1 - ax_1)(y_2 - ax_2)...(y_n - ax_n)$ (D) $f(a) = max((y_1-ax_1),(y_2-ax_2),...,(y_n-ax_n))$

To minimize the residuals, we define the objective function... (A) $f(a) = |y_1 - ax_1| + |y_2 - ax_2| + ... + |y_n - ax_n|$ (B) $f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + ... + (y_n - ax_n)^2$ (C) $f(a) = (y_1 - ax_1)(y_2 - ax_2)...(y_n - ax_n)$ (D) $f(a) = max((y_1 - ax_1), (y_2 - ax_2), ..., (y_n - ax_n))$ (B) is called the "sum of squared residuals". (A) and (D) are reasonable but not as good (take a stats class to find out more).

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Define f(a): (A) f(a) = |5-4a| + |7-6a| $(B) f(a) = (4-5a)^2 + (6-7a)^2$ $(C) f(a) = (5-4a)^2 + (7-6a)^2$ $(D) f(a) = (5-4-a)^2 + (7-6-a)^2$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Define f(a): (A) f(a) = |5-4a| + |7-6a| $(B) f(a) = (4-5a)^2 + (6-7a)^2$ $(C) f(a) = (5-4a)^2 + (7-6a)^2$ $(D) f(a) = (5-4-a)^2 + (7-6-a)^2$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes f(a): (A)a = 7/6(B) a = 5/4(C)a = (7/6 + 5/4) / 2(D)a = 31/26

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes f(a): (A)a = 7/6(B) a = 5/4(C)a = (7/6 + 5/4) / 2 $(D)a = 31/26 = (4 \cdot 5 + 6 \cdot 7) / (4^2 + 6^2)$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes f(a): (A)a = 7/6(B)a = 5/4(C)a = (7/6 + 5/4) / 2 $(D)a = 31/26 = (4 \cdot 5 + 6 \cdot 7) / (4^2 + 6^2)$ $= (x_1 \cdot y_1 + x_2 \cdot y_2) / (x_1^2 + x_2^2)$

Find a so that y=ax fits (x1,y1), (x2,y2),..., (xn,yn) in the "least squares" sense.

Define f(a): $(A)f(a) = |y_1-ax_1| + |y_2-ax_2| + ... + |y_n-ax_n|$ $(B) f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + \dots + (y_n - ax_n)^2$ $(C) f(a) = (ay_1 - x_1)^2 + (ay_2 - x_2)^2 + \dots + (ay_n - x_n)^2$ $(D) f(a) = (y_1 - a - x_1)^2 + (y_2 - a - x_2)^2 + \dots + (y_n - a - x_n)^2$ Find a so that y=ax fits (x1,y1), (x2,y2),..., (xn,yn) in the "least squares" sense.

Define f(a): $(A) f(a) = |y_1 - ax_1| + |y_2 - ax_2| + ... + |y_n - ax_n|$ (B) $f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + ... + (y_n - ax_n)^2$ $(C) f(a) = (ay_1 - x_1)^2 + (ay_2 - x_2)^2 + \dots + (ay_n - x_n)^2$ $(D) f(a) = (y_1 - a - x_1)^2 + (y_2 - a - x_2)^2 + \dots + (y_n - a - x_n)^2$

Notation

n $\sum_{i=1}^{n} q_i = q_1 + q_2 + \dots + q_n$

Notation

n $\sum_{i=1}^{n} q_i = q_1 + q_2 + \dots + q_n$

 $\sum_{i=1}^{n} (y_i - ax_i)^2 = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + \dots + (y_n - ax_n)^2$

Find a so that y=ax fits (x1,y1), (x2,y2),..., (xn,yn) in the "least squares" sense.

Find the a that minimizes f(a):

(A)
$$a = \sum_{i=1}^{n} y_i / \sum_{i=1}^{n} x_i$$
 (C) $a = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i$
(B) $a = \sum_{i=1}^{n} x_i / \sum_{i=1}^{n} y_i$ (D) $a = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i^2$

Find a so that y=ax fits (x1,y1), (x2,y2),..., (xn,yn) in the "least squares" sense.

Find the a that minimizes f(a):

(A)
$$a = \sum_{i=1}^{n} y_i / \sum_{i=1}^{n} x_i$$
 (C) $a = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i$
(B) $a = \sum_{i=1}^{n} x_i / \sum_{i=1}^{n} y_i$ (D) $a = \sum_{i=1}^{n} x_i y_i / \sum_{i=1}^{n} x_i^2$

For best fits using y=ax+b, see course notes supplement.

$$egin{aligned} a&=rac{P_{avg}-ar{x}ar{y}}{X_{avg}^2-ar{x}^2}\ egin{aligned} b&=ar{y}-aar{x}\ egin{aligned} b&=ar{y}-aar{x}\ egin{aligned} x&=rac{1}{n}\sum_{i=1}^n x_iy_i\ X_{avg}^2&=rac{1}{n}\sum_{i=1}^n x_ix_i \end{pmatrix}\ egin{aligned} ar{x}&=rac{1}{n}\sum_{i=1}^n x_i\ egin{aligned} ar{y}&=rac{1}{n}\sum_{i=1}^n y_i\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} x&=egin{aligned} 1\\ egin{aligned} x&=egin{aligned} x&=egin{aligned} 1\\ egin{aligned} x&=egin{aligned} x&=egin{aligned} 1\\ egin{aligned} x&=egin{aligned} 1\\ egin{aligned} x&=egin{aligned} x&=egin{aligned} 1\\ egin{aligned} x&=egin{aligned} x&=egin{aligned} x&=egin{aligned} x&=egin{aligned} x&=egin{align$$

 (\mathbf{A})

Sketch:

(B)

Two quantities relevant to solving this problem are: (A) x = 5/60 + , y = 5/60 (60-t). (B) x = 5(t-2), y=5(3-t). (C) x = 5-2, y=5+3. (D) x = 5t-2, y=5t-3.

Objective function to be minimized: (A) f(t) = 25|t| + 25|60-t|(B) $f(t) = 5/60 \text{ sqrt}(2t^2)$ (C) $f(t) = t^2 + (60-t)^2$ (D) $f(t) = \text{sqrt}(25(t-2)^2 + 25(3-t)^2)$

Expectation: The boats will be closest together... (A) at 2 pm. (B) at 3 pm. (C) sometime between 2 pm and 3 pm. (D) before 2 pm. (E) after 2 pm.

Constraint:

 (A) The minimum distance must occur between 2 pm and 3 pm.

- (B) $x(t)^2 + y(t)^2 = t^2/6$.
- (C) x(t) = 60-y(t).

(D) There isn't really a constraint for this problem.

Answer (in minutes past 2 pm): $(A) \dagger = 0.$ (B) $\dagger = 15$. $(C) \dagger = 30.$ $(D) \dagger = 45$ (E) $\dagger = 60$.