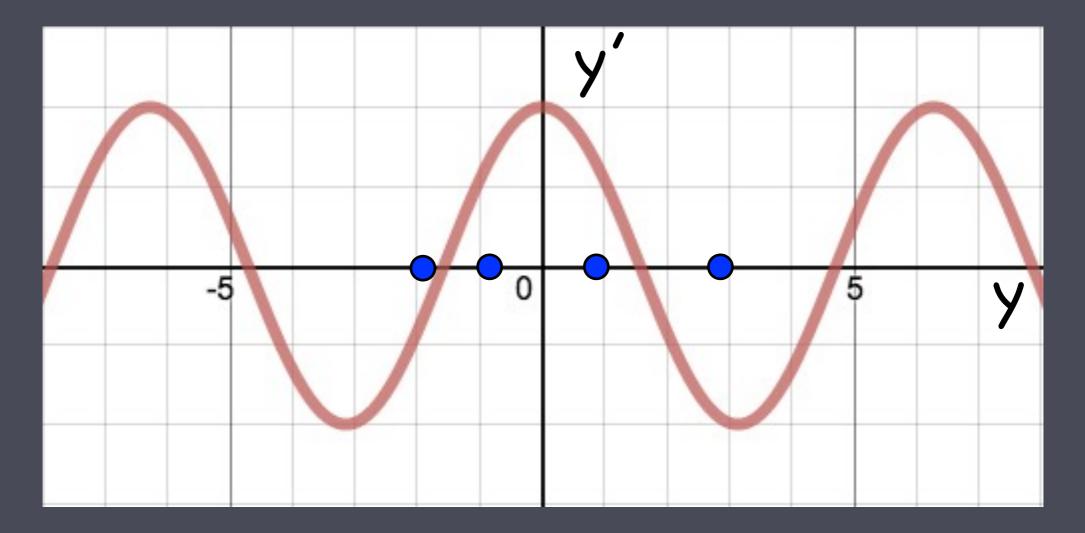
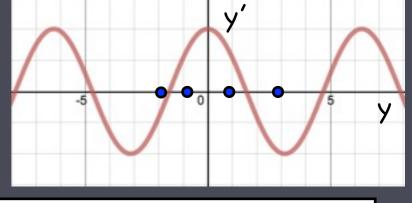
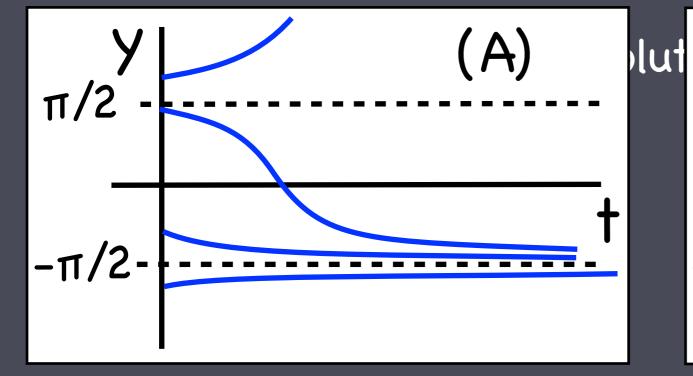
Today

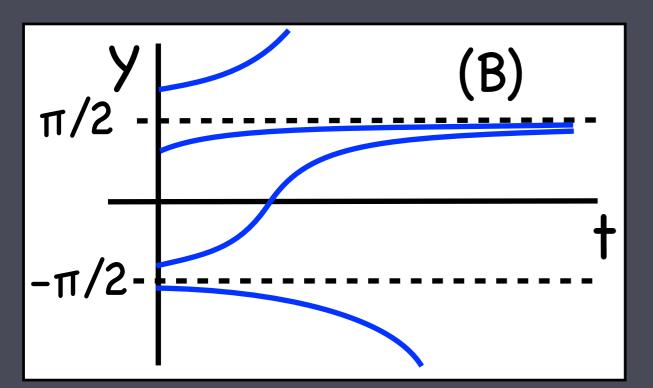
- Phase-line to solution-sketching example (cont).
- Logistic equation in many contexts
 - Classic example of the power of mathematics
 one unifying description for many
 apparently unrelated phenomena.

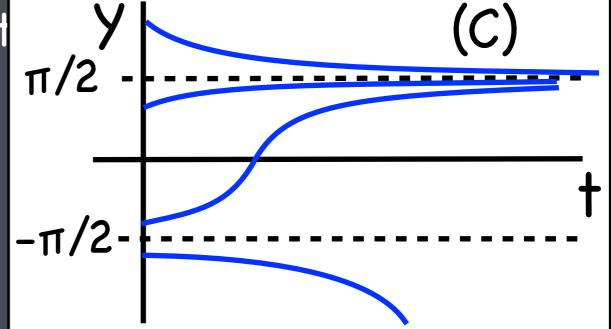
Sketch a few solutions y(t).

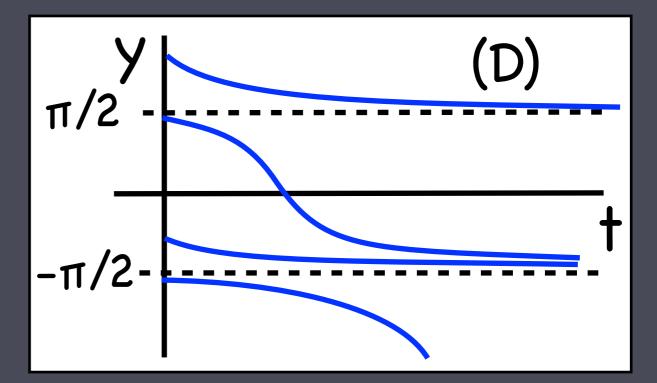


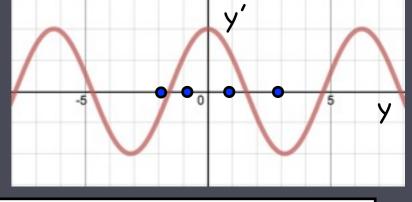


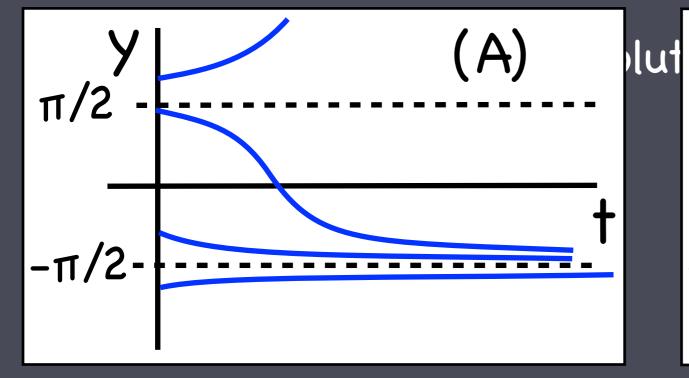


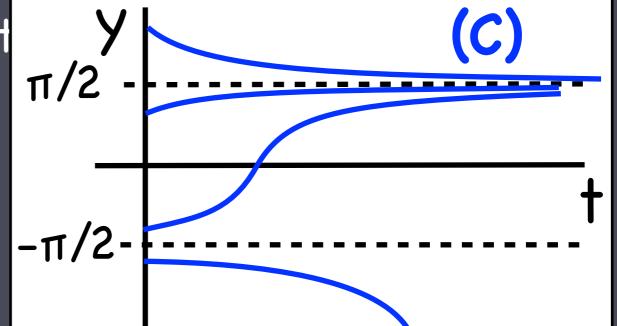


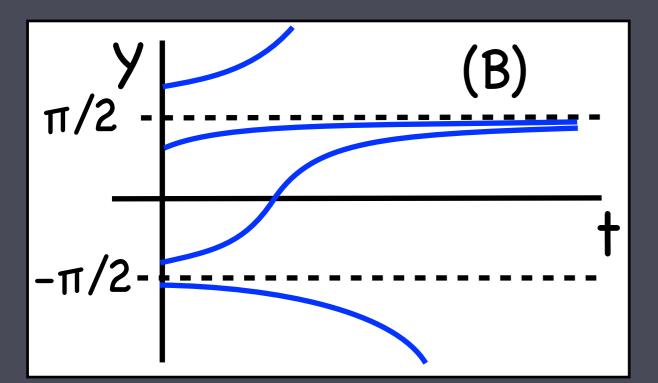


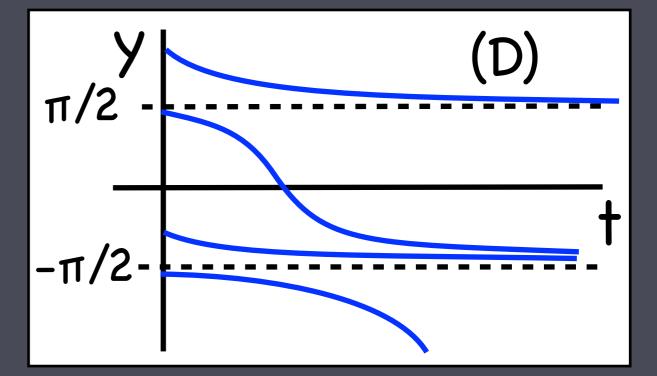












What you should be able to do:

- Identify steady states for a DE.
- Traw/interpret the phase line for a DE.
- Traw/interpret a slope field for a DE.
- Determine stability of steady states.
- Ø Determine long-term behaviour of solutions.
- Sketch the graphs of solutions using phase line and/or slope fields (slopes, concavity, IPs, hasymptotes).

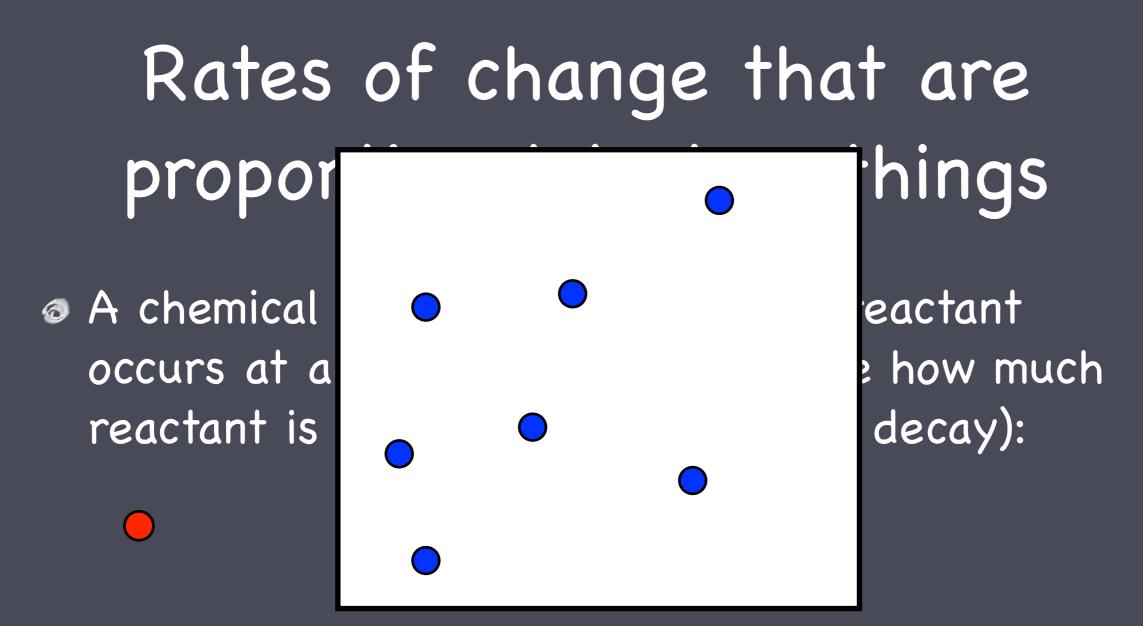
A chemical reaction with only one reactant occurs at a rate proportional to the how much reactant is present (e.g. radioactive decay):

$$\frac{dR}{dt} = -kR$$

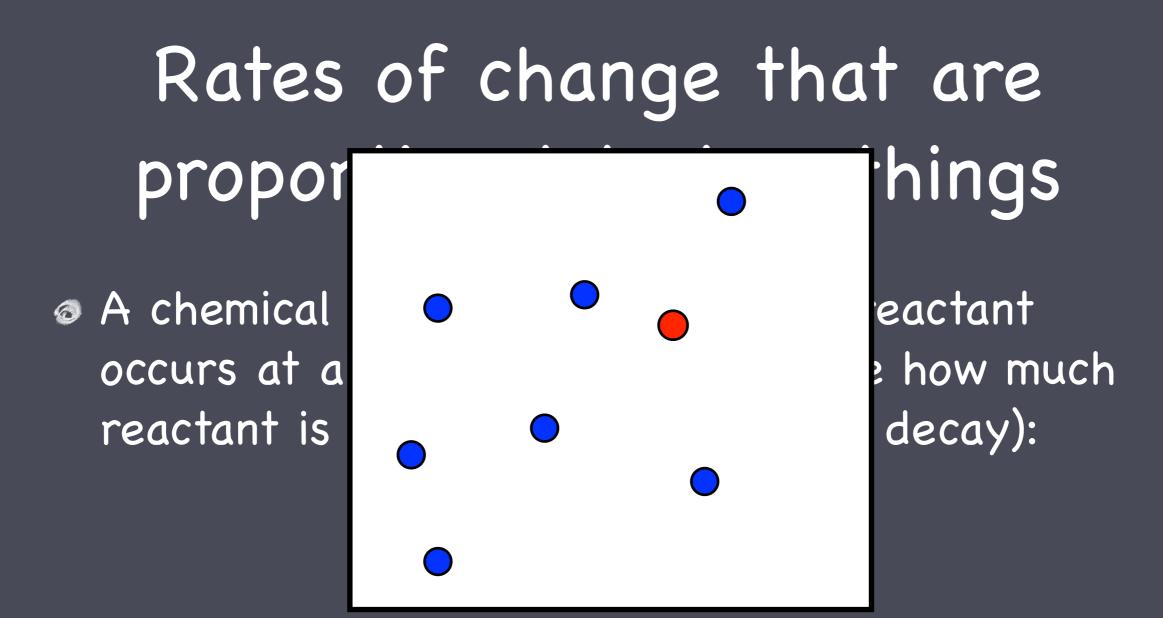
A chemical reaction with only one reactant occurs at a rate proportional to the how much reactant is present (e.g. radioactive decay):

$$\frac{dR}{dt} = -kR$$

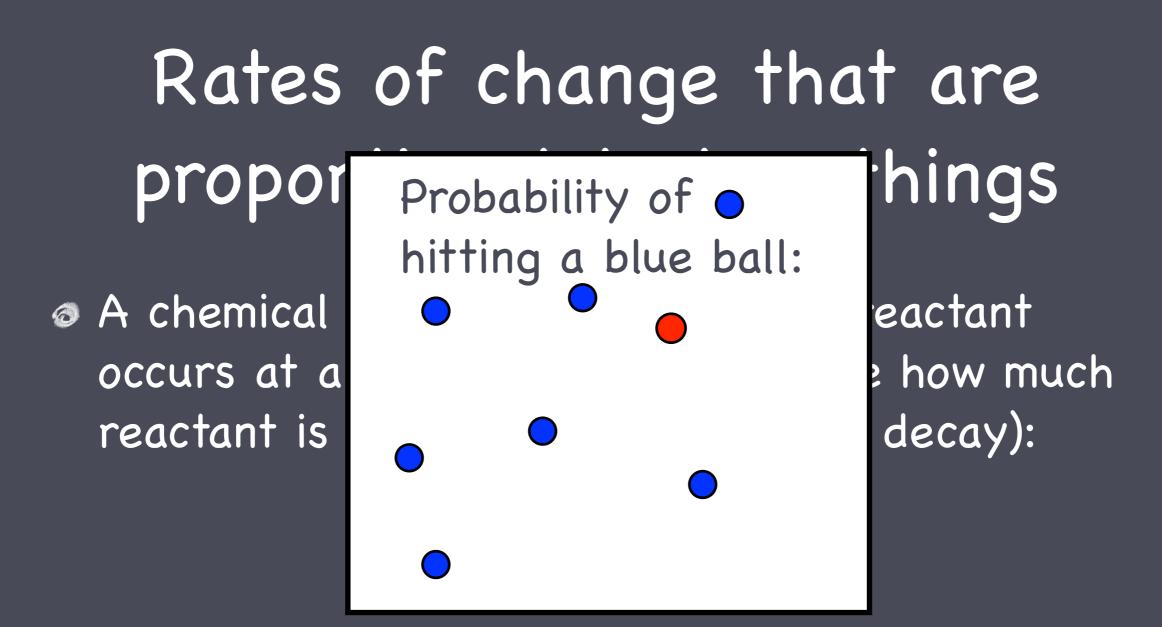
$$\frac{dR_1}{dt} = -kR_1R_2$$



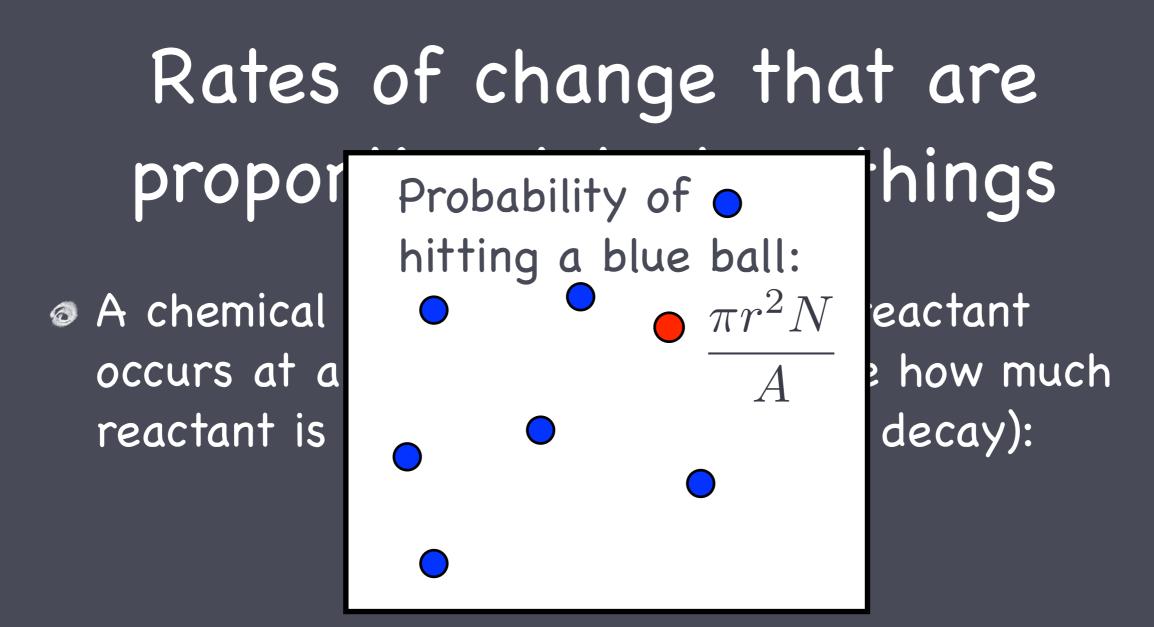
$$\frac{dR_1}{dt} = -kR_1R_2$$



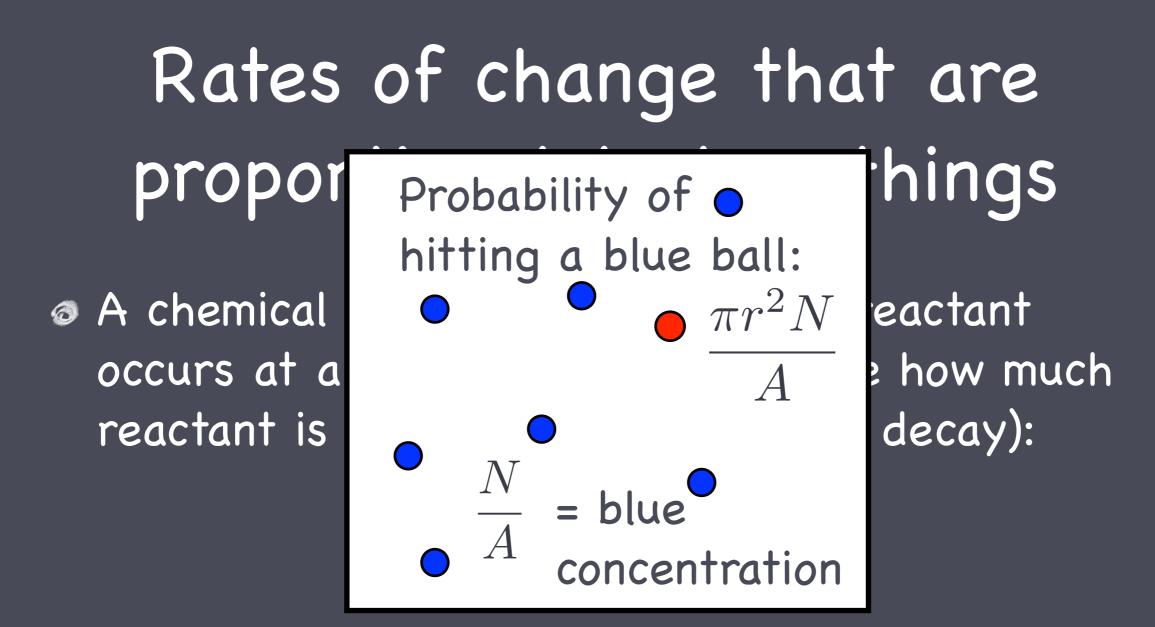
$$\frac{dR_1}{dt} = -kR_1R_2$$



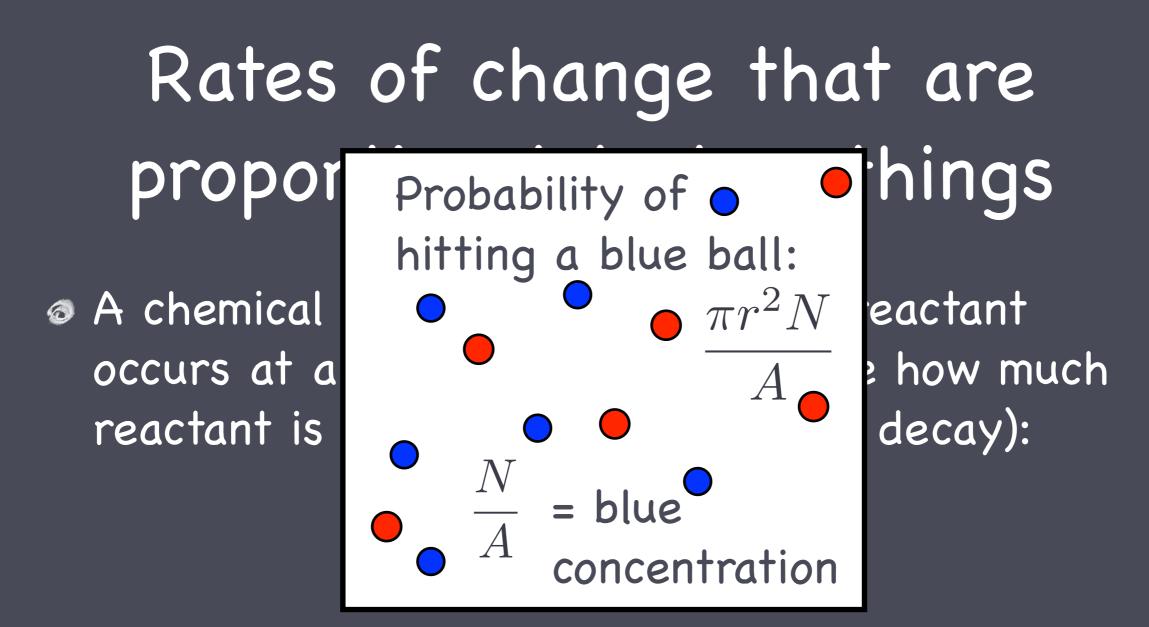
$$\frac{dR_1}{dt} = -kR_1R_2$$



$$\frac{dR_1}{dt} = -kR_1R_2$$



$$\frac{dR_1}{dt} = -kR_1R_2$$



$$\frac{dR_1}{dt} = -kR_1R_2$$

Logistic equation in different contexts...

Infectious disease: bSI (S=susceptible, I=infected)

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).
- Spread of new technologies: bNU (use tech or not).

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).
- Spread of new technologies: bNU (use tech or not).
- Active oil exploration sites: bUD (undiscovered and discovered).

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).
- Spread of new technologies: **bNU** (use tech or not).
- Active oil exploration sites: bUD (undiscovered and discovered).
- Waterlillies in a pond: bSW (waterlillies and space for waterwillies).

When X meets Y, there's a chance Y turns into X.

When X meets Y, there's a chance Y turns into X.

$${\it @}$$
 Lose Y: $\frac{dY}{dt} = -bXY$ and gain X: $\frac{dX}{dt} = bXY$

When X meets Y, there's a chance Y turns into X.

$$\textcircled{O}$$
 Lose Y: $\frac{dY}{dt} = -bXY$ and gain X: $\frac{dX}{dt} = bXY$

 \oslash X+Y= constant = C so Y=C-X.

When X meets Y, there's a chance Y turns into X.

$$\textcircled{O}$$
 Lose Y: $\frac{dY}{dt} = -bXY$ and gain X: $\frac{dX}{dt} = bXY$

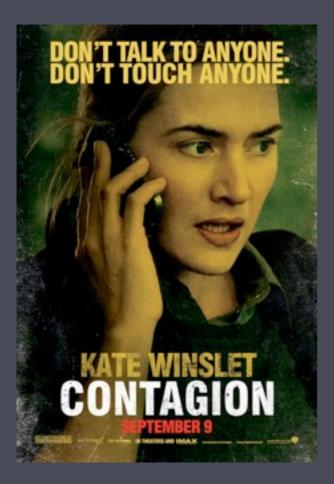
 \oslash X+Y= constant = C so Y=C-X.

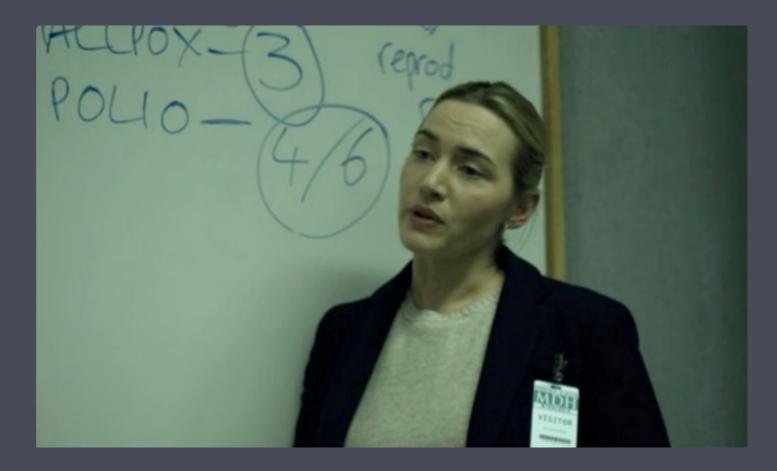
$$a \frac{dX}{dt} = bX(C - X)$$

Dr. Erin Mears: Once we know the R_0 , we'll be able to get a handle on the scale of the epidemic.

Minnesota Health #4: So, it's an epidemic now. An epidemic of what? **Dave:** We sent samples to the CDC.

Dr. Erin Mears: In seventy two hours, we'll know what it is, if we're lucky. **Minnesota Health #4:** Clearly, we're not lucky.





Saturday, November 15, 2014

 \oslash N individuals, I of them have a flu, S=N-I do not.

- \oslash N individuals, I of them have a flu, S=N-I do not.
- If everyone interacts, new cases appear at a rate proportional to SI.

- \odot N individuals, I of them have a flu, S=N-I do not.
- If everyone interacts, new cases appear at a rate proportional to SI.
- The DE describing the spread of disease:

- \otimes N individuals, I of them have a flu, S=N-I do not.
- If everyone interacts, new cases appear at a rate proportional to SI.
- The DE describing the spread of disease:

(A)
$$\frac{dI}{dt} = -bI(N-I)$$
 (C) $\frac{dS}{dt} = -bSI$
(B) $\frac{dI}{dt} = bI(N-I)$ (D) $\frac{dI}{dt} = bSI$

- \otimes N individuals, I of them have a flu, S=N-I do not.
- If everyone interacts, new cases appear at a rate proportional to SI.
- The DE describing the spread of disease:

(A)
$$\frac{dI}{dt} = -bI(N-I)$$
 (C) $\frac{dS}{dt} = -bSI$
(B) $\frac{dI}{dt} = bI(N-I)$ (D) $\frac{dI}{dt} = bSI$
Compare this with $\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$.

6

What is the carrying capacity?

$$\frac{dI}{dt} = bI(N - I)$$

(A) b/N

(C) I

(B) N/b

(D) N

What is the carrying capacity?

$$\frac{dI}{dt} = bI(N - I)$$

(A) b/N

(C) I

(B) N/b

(D) N

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

What is the carrying capacity?

$$\frac{dI}{dt} = bI(N-I) = bNI\left(1 - \frac{I}{N}\right)$$

(A) b/N

(C) I

(B) N/b

(D) N

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

What is the carrying capacity?

$$\frac{dI}{dt} = bI(N - I) = \frac{bNI}{r} \left(1 - \frac{I}{N}\right)$$

(A) b/N (C) I

(B) N/b

(D) N

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

What is the carrying capacity?

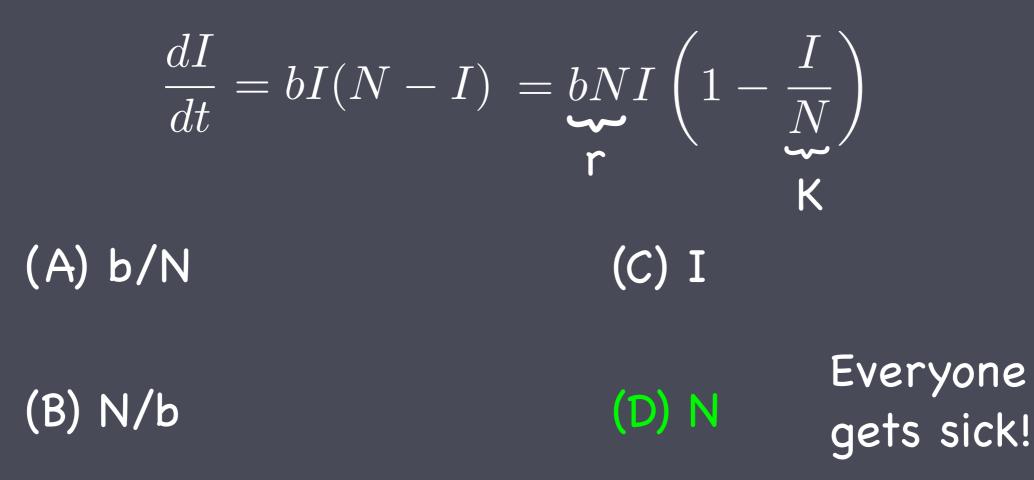
$$\frac{dI}{dt} = bI(N - I) = \underbrace{bNI}_{r} \left(1 - \frac{I}{\underbrace{N}}_{K} \right)$$
(A) b/N (C) I

(B) N/b

(D) N

$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

What is the carrying capacity?



$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

Saturday, November 15, 2014

Saturday, November 15, 2014

Suppose infected people recover at a rate proportional to how many there are.

- Suppose infected people recover at a rate proportional to how many there are.
- The DE describing the spread of disease with recovery:

(A)
$$\frac{dI}{dt} = bI(N-I) - \mu S$$
 (C) $\frac{dI}{dt} = -bI(N-I) + \mu I$
(B) $\frac{dI}{dt} = bI(N-I) - \mu I$ (D) $\frac{dI}{dt} = bI(N-I) + \mu I$

$$\frac{dI}{dt} = bI(N - I) - \mu I$$

$$\frac{dI}{dt} = bI(N - I) - \mu I$$

 $= bIN - bI^2 - \mu I$

$$\frac{dI}{dt} = bI(N - I) - \mu I$$
$$= bIN - bI^2 - \mu I$$
$$= bI\left(N - \frac{\mu}{b} - I\right)$$

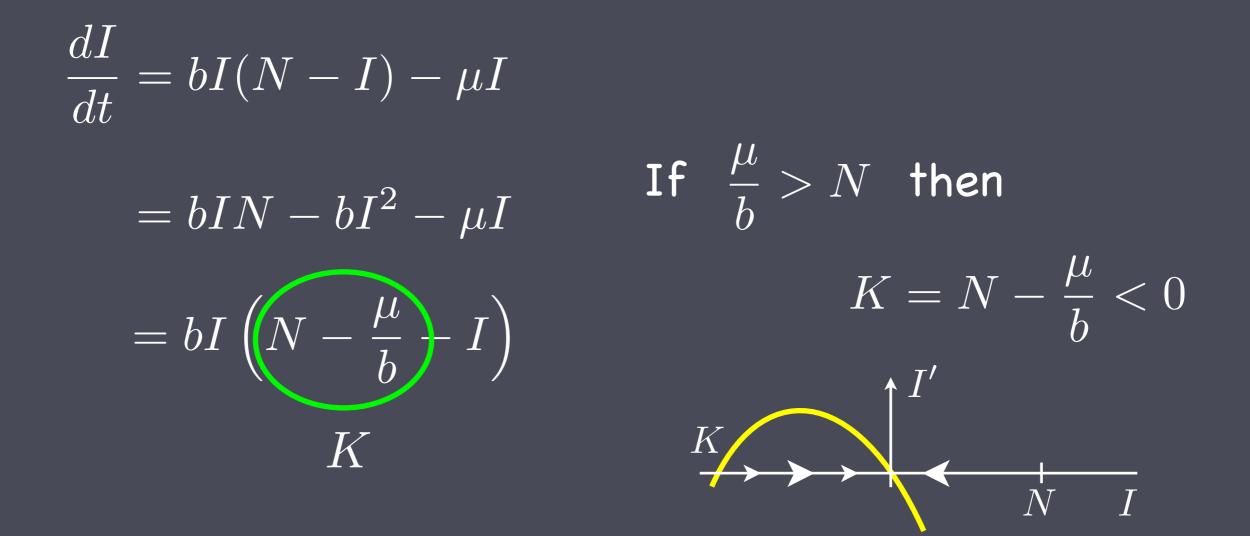
$$\frac{dI}{dt} = bI(N - I) - \mu I$$
$$= bIN - bI^2 - \mu I$$
$$= bI\left(N - \frac{\mu}{b} - I\right)$$
K

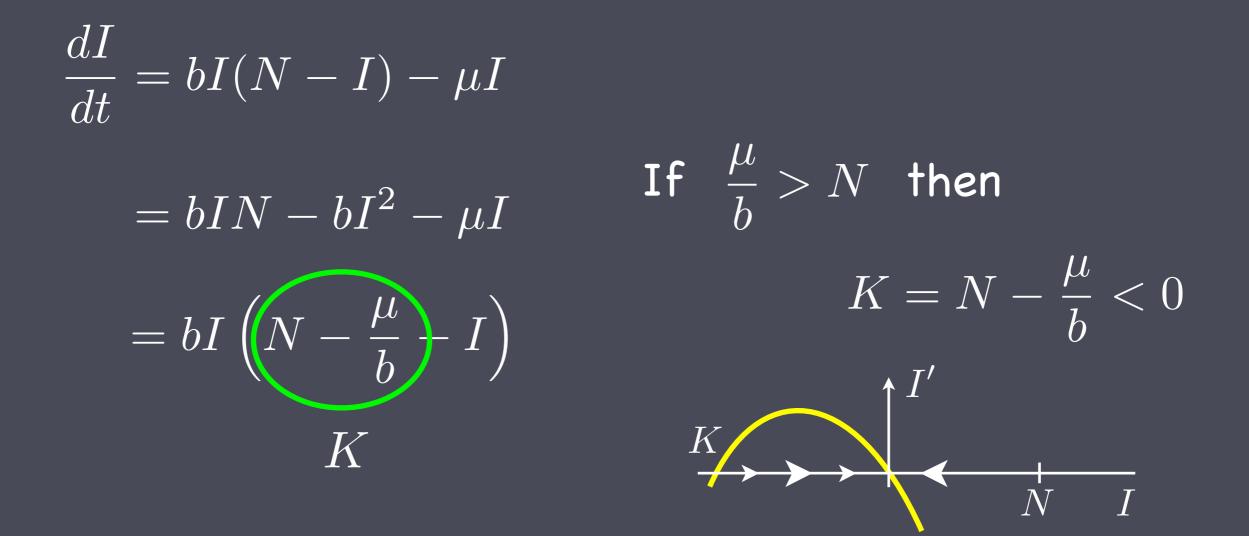
$$\frac{dI}{dt} = bI(N - I) - \mu I$$

$$= bIN - bI^{2} - \mu I$$

$$= bI\left(N - \frac{\mu}{b} - I\right)$$

$$K = N - \frac{\mu}{b} < 0$$

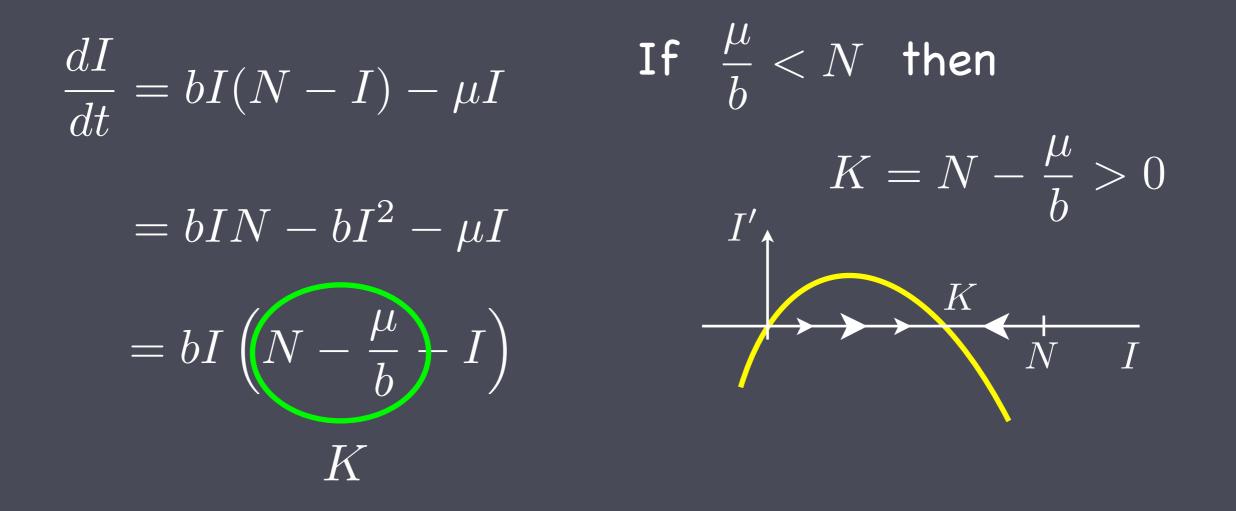




and the disease dies out.

$$\frac{dI}{dt} = bI(N - I) - \mu I$$
$$= bIN - bI^2 - \mu I$$
$$= bI\left(N - \frac{\mu}{b} - I\right)$$
K

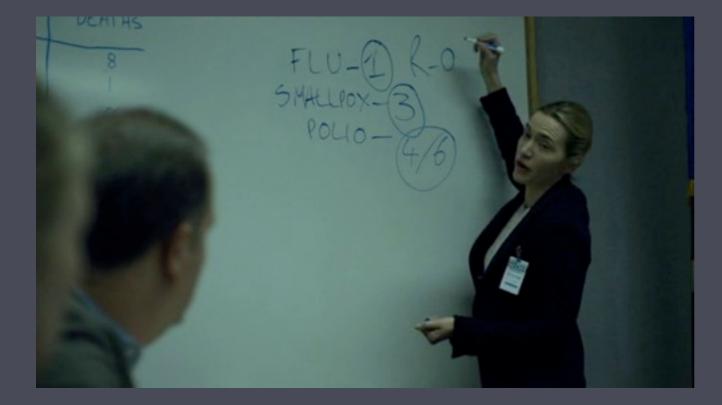
$$\frac{dI}{dt} = bI(N - I) - \mu I \qquad \text{If} \quad \frac{\mu}{b} < N \text{ then}$$
$$= bIN - bI^2 - \mu I$$
$$= bI\left(N - \frac{\mu}{b} - I\right)$$
K



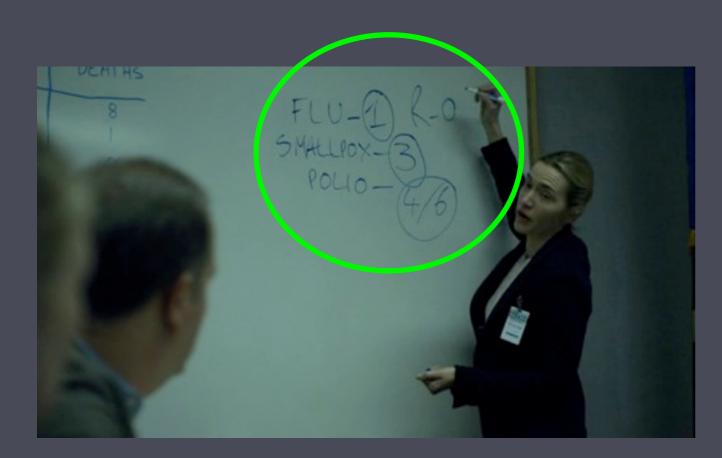
$$\frac{dI}{dt} = bI(N - I) - \mu I$$
$$= bIN - bI^2 - \mu I$$
$$= bI\left(N - \frac{\mu}{b} - I\right)$$
K

$$\frac{dI}{dt} = bI(N - I) - \mu I$$
$$= bIN - bI^2 - \mu I$$
$$= bI\left(N - \frac{\mu}{b} - I\right)$$
K

$$R_0 = \frac{Nb}{\mu} > 1$$



$$R_0 = \frac{Nb}{\mu} > 1$$

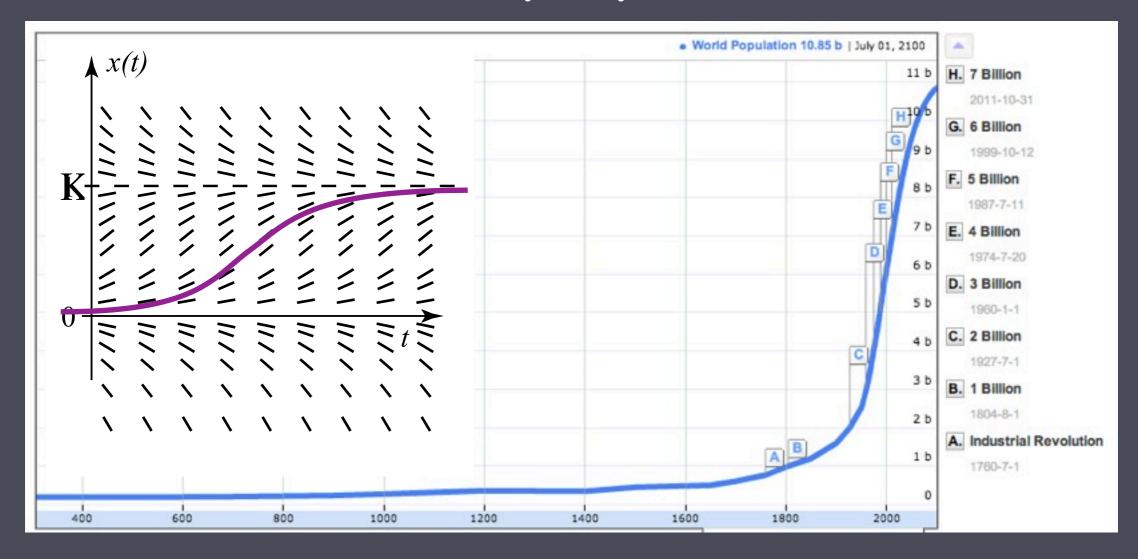


$$R_0 = \frac{Nb}{\mu} > 1$$

Some other logistic systems

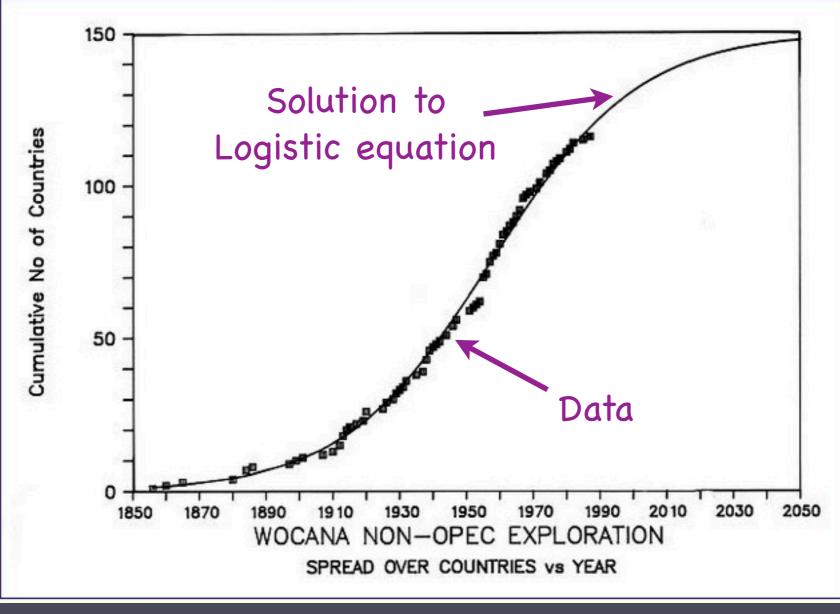
Saturday, November 15, 2014

Human population



We're past the inflection point - estimate K≈10 billion

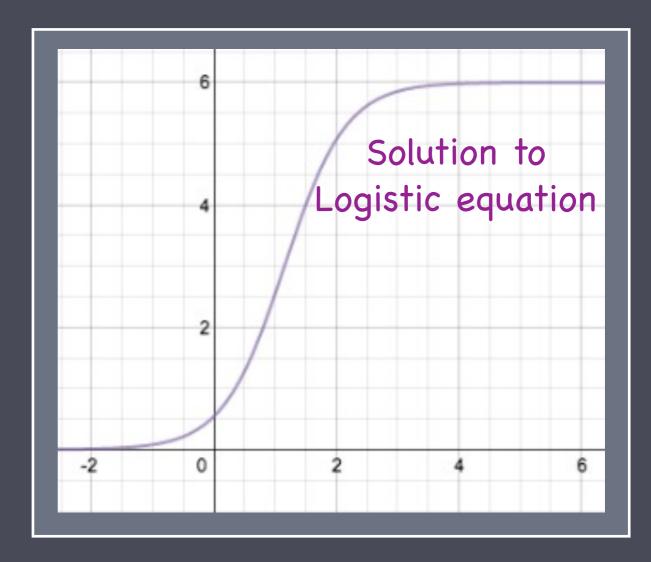
Number of countries with active oil exploration



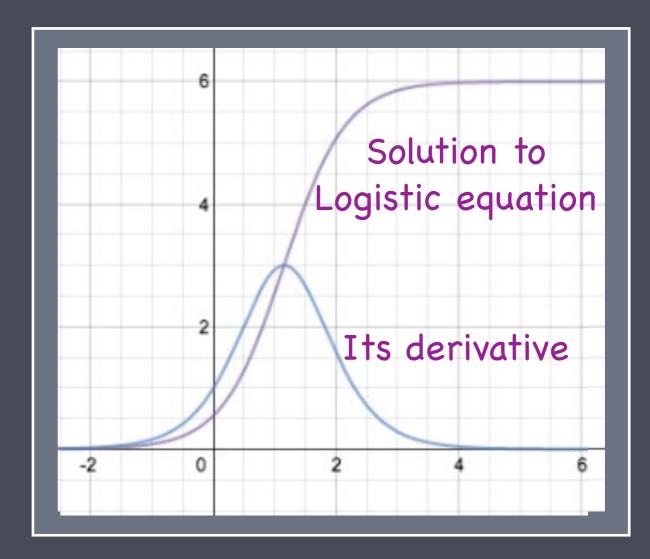
http://www.mhnederlof.nl/kinghubbert.html

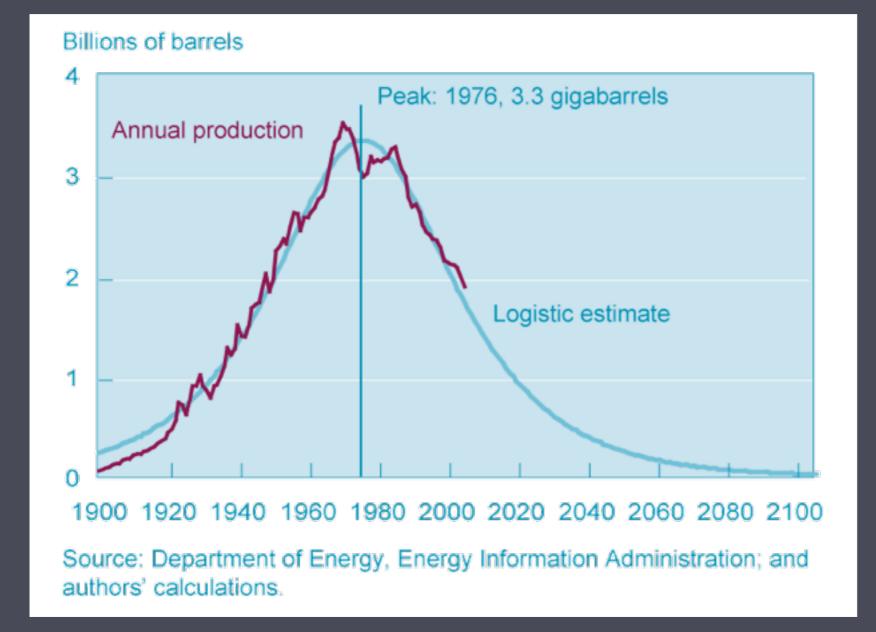
Oil economists talk about production rate rather than total produced so...

Oil economists talk about production rate rather than total produced so...



Oil economists talk about production rate rather than total produced so...





http://www.clevelandfed.org/research/commentary/2007/081507.cfm

World peak oil production

