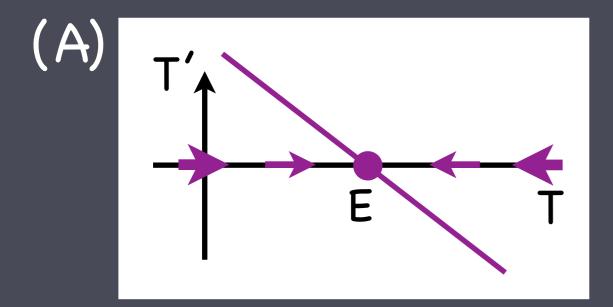
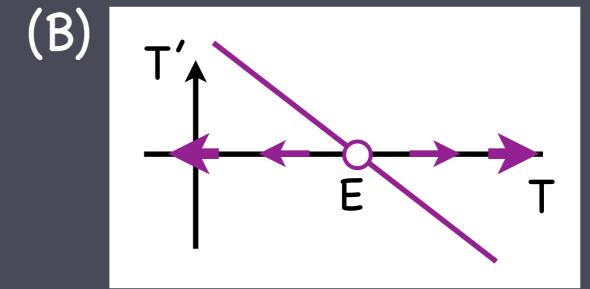
Today

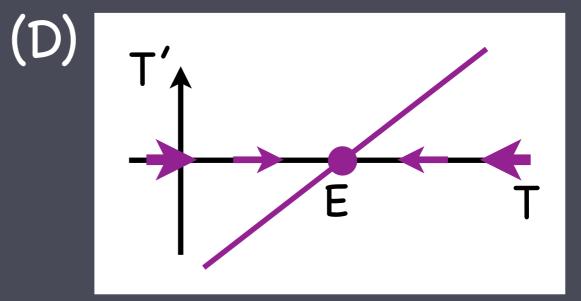
- Qualitative analysis of DEs continued.
 - Drawing the phase line.
 - Determining long term behaviour.
 - Sketching solutions from the phase line.

$$\frac{dT}{dt} = k(E - T)$$

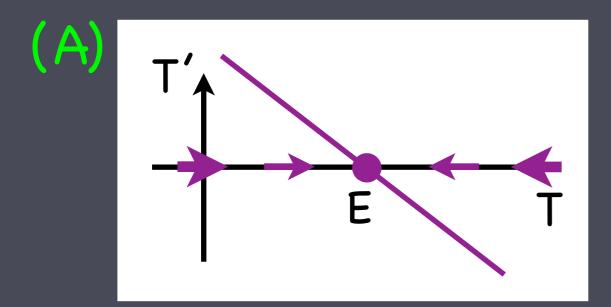


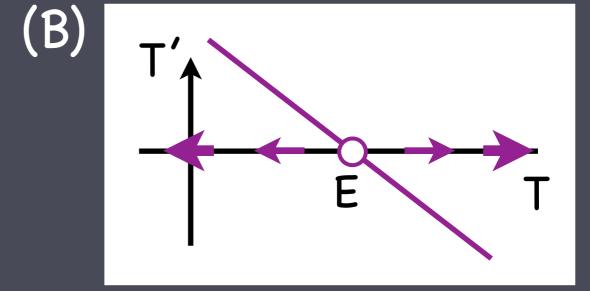


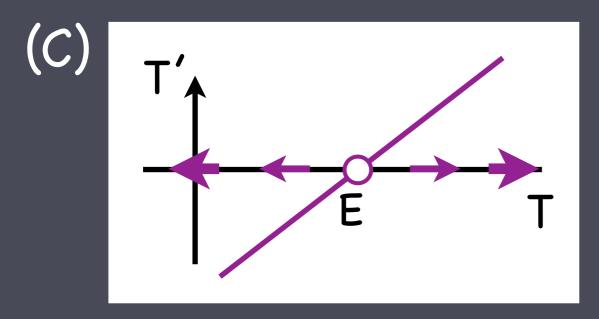


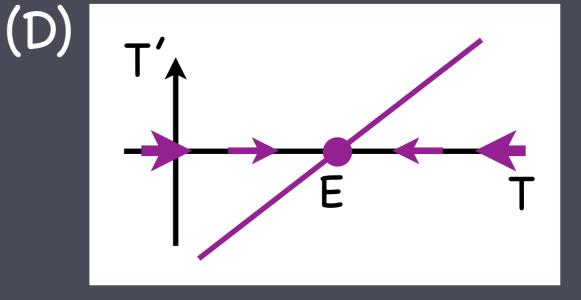


$$\frac{dT}{dt} = k(E - T)$$

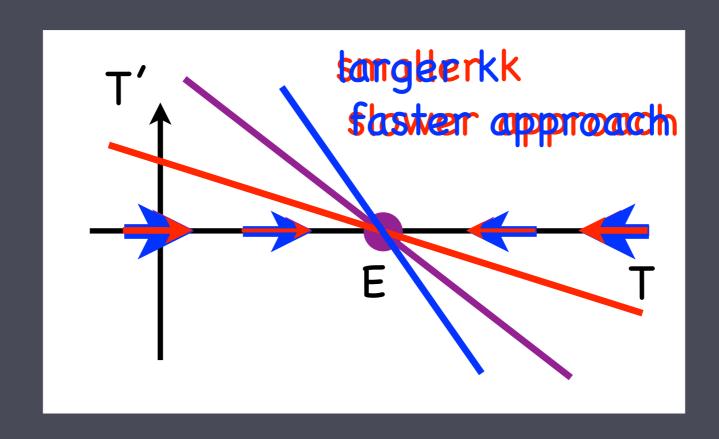




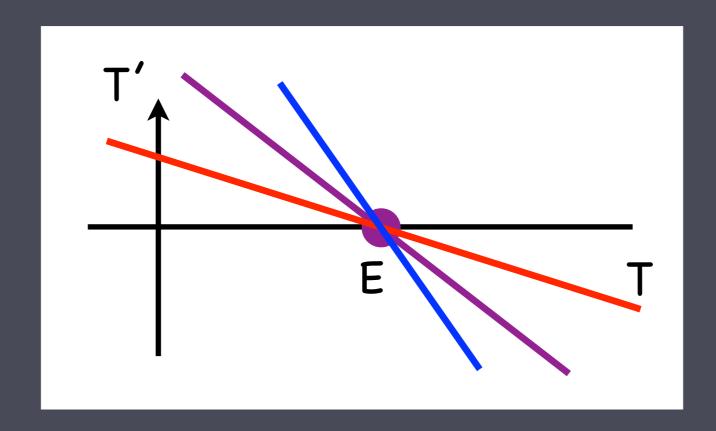




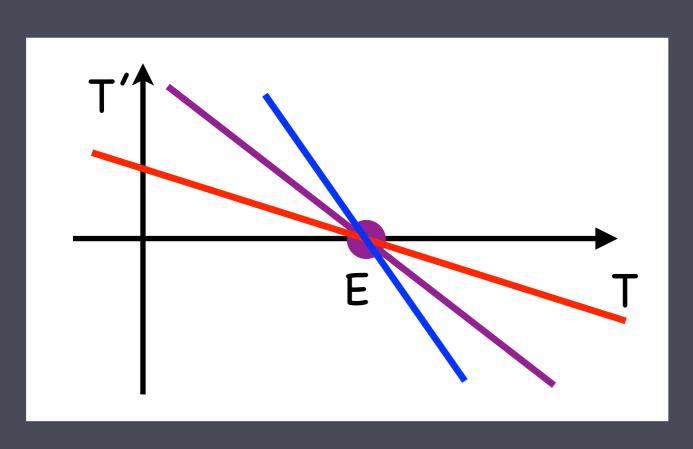
$$\frac{dT}{dt} = k(E - T)$$

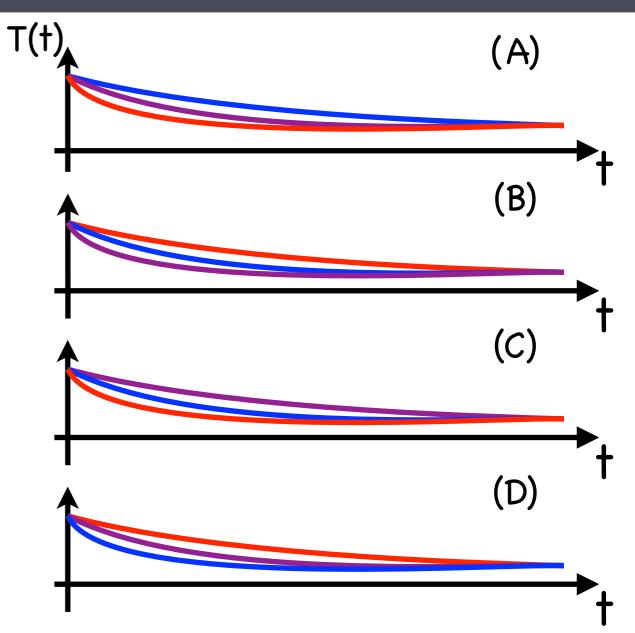


$$\frac{dT}{dt} = k(E - T)$$

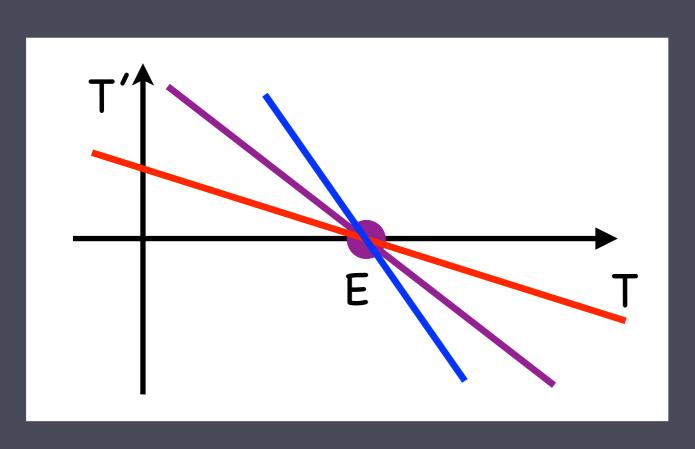


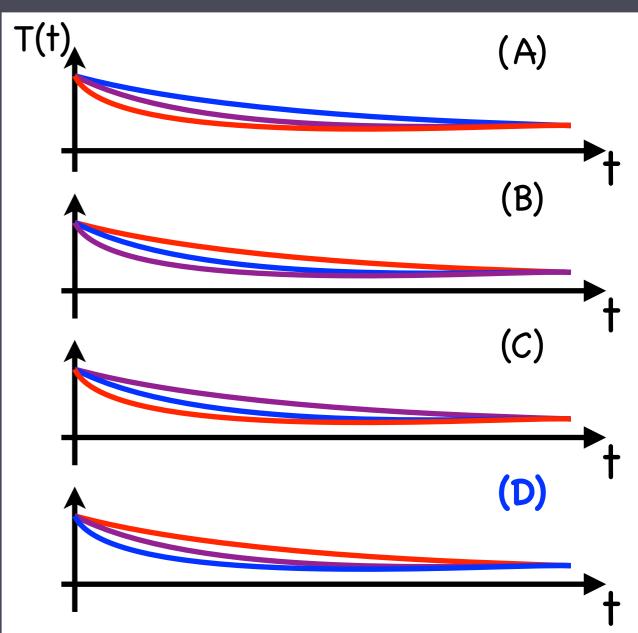
$$\frac{dT}{dt} = k(E - T)$$



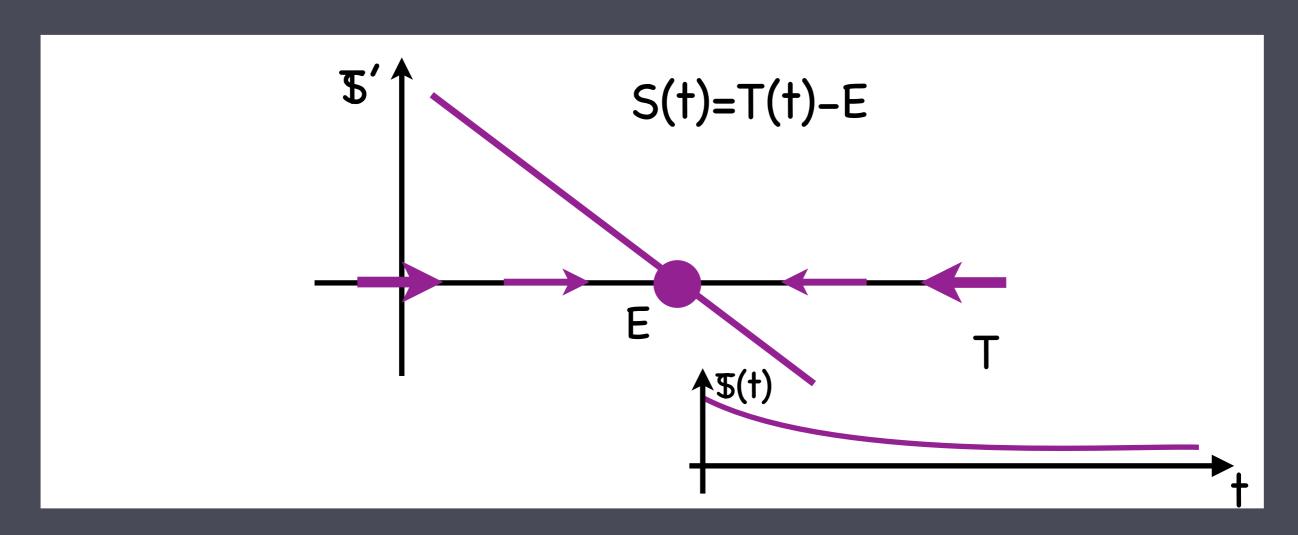


$$\frac{dT}{dt} = k(E - T)$$



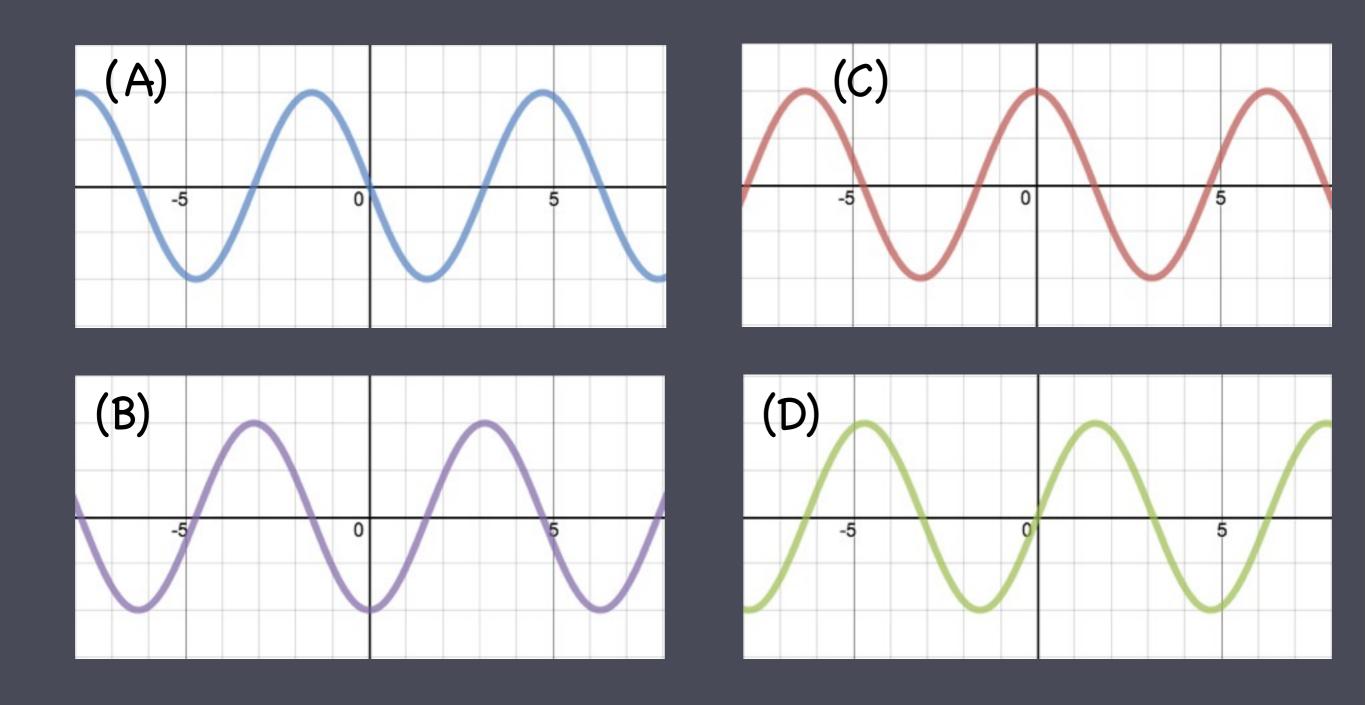


$$\frac{dT}{dt} = k(E - T)$$

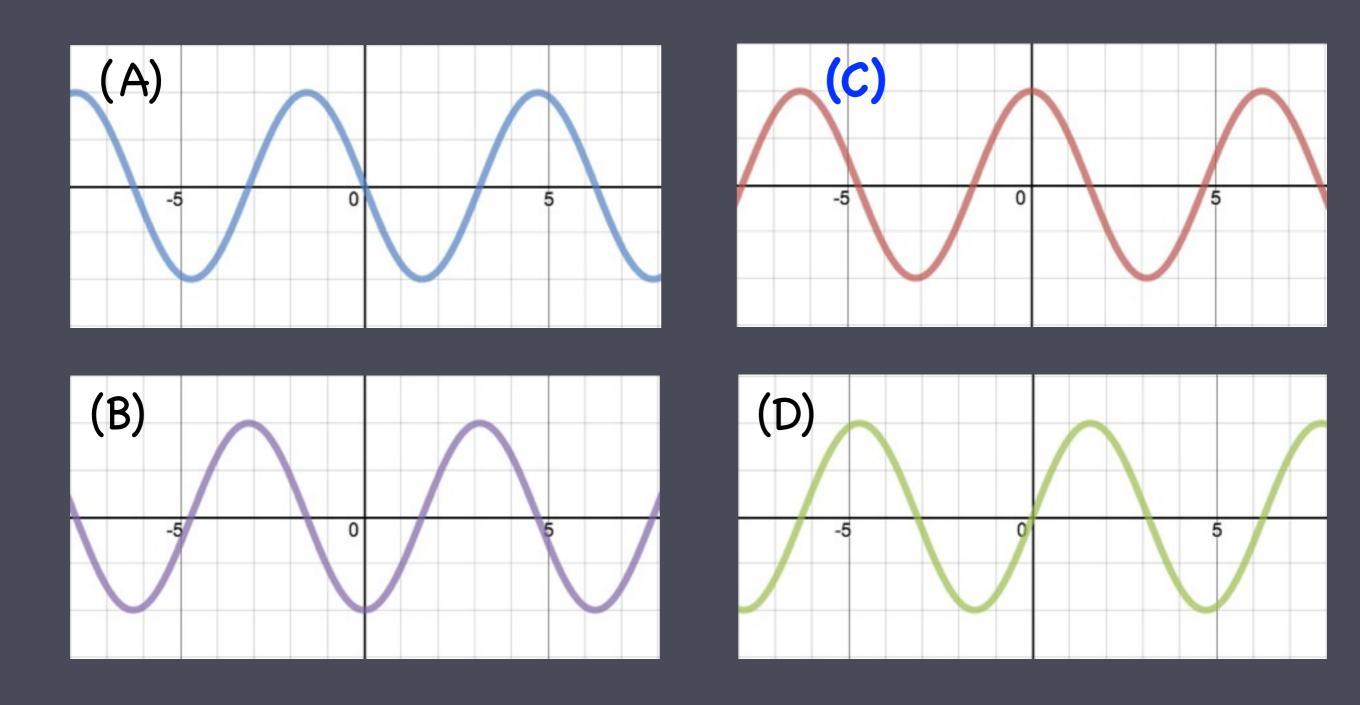


Notice that the arrows are always the same for any E, just shifted left or right.

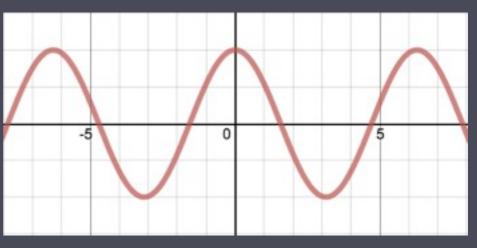
f(y) = cos(y)



f(y) = cos(y)



$$y' = cos(y)$$



A solution satisfying the initial condition $y(0)=y_0$ will approach y^* as t --> ∞. Which y_0 and y^* pair is correct?

(A)
$$y_0 = 0$$
, $y^* = \pi$. $---> y^* = \pi/2$

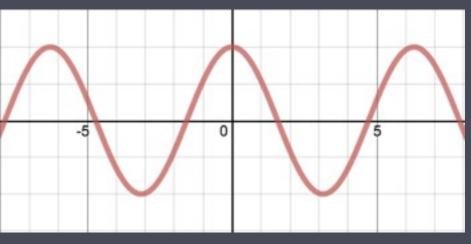
(B)
$$y_0 = -\pi$$
, $y^* = -\pi/2$. $---> y^* = -3\pi/2$

(C)
$$y_0 = 2\pi$$
, $y^* = 3\pi/2$, $---> y^* = 5\pi/2$

(D)
$$y_0 = \pi/4$$
, $y^* = 0$. $---> y^* = \pi/2$

(E)
$$y_0 = \pi/4$$
, $y^* = \pi/2$.

$$y' = cos(y)$$



A solution satisfying the initial condition $y(0)=y_0$ will approach y^* as t --> ∞. Which y_0 and y^* pair is correct?

(A)
$$y_0 = 0$$
, $y^* = \pi$. $---> y^* = \pi/2$

(B)
$$y_0 = -\pi$$
, $y^* = -\pi/2$. $---> y^* = -3\pi/2$

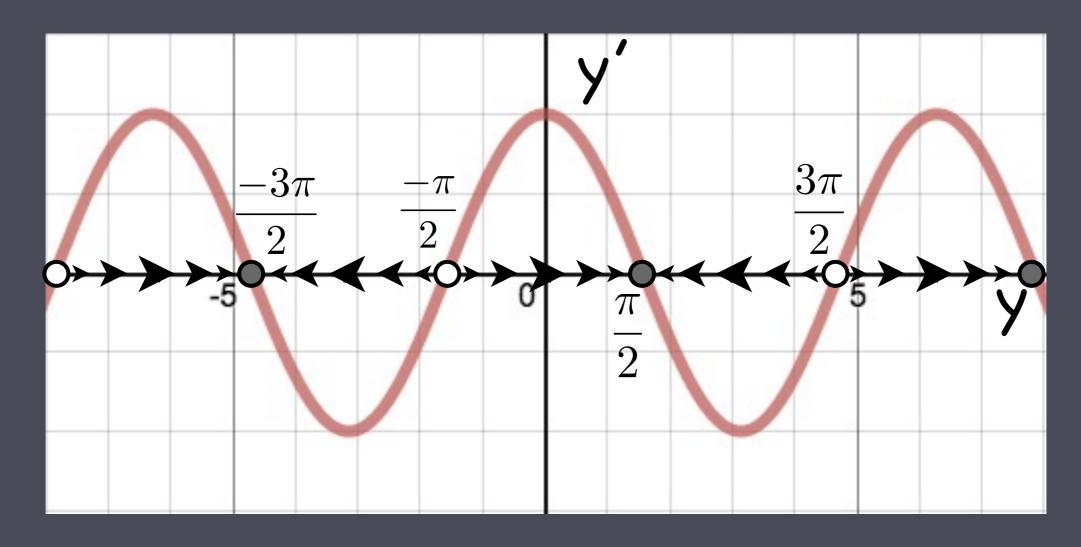
(C)
$$y_0 = 2\pi$$
, $y^* = 3\pi/2$, $---> y^* = 5\pi/2$

(D)
$$y_0 = \pi/4$$
, $y^* = 0$. $---> y^* = \pi/2$

(E)
$$y_0 = \pi/4$$
, $y^* = \pi/2$.

$$y' = cos(y)$$

Fill in the arrows and steady states on the phase line.

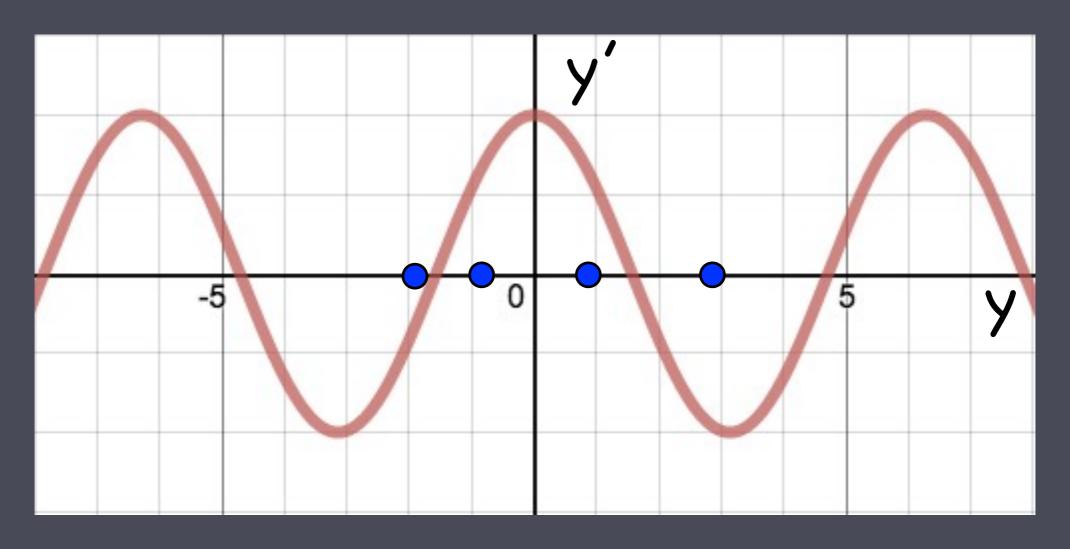


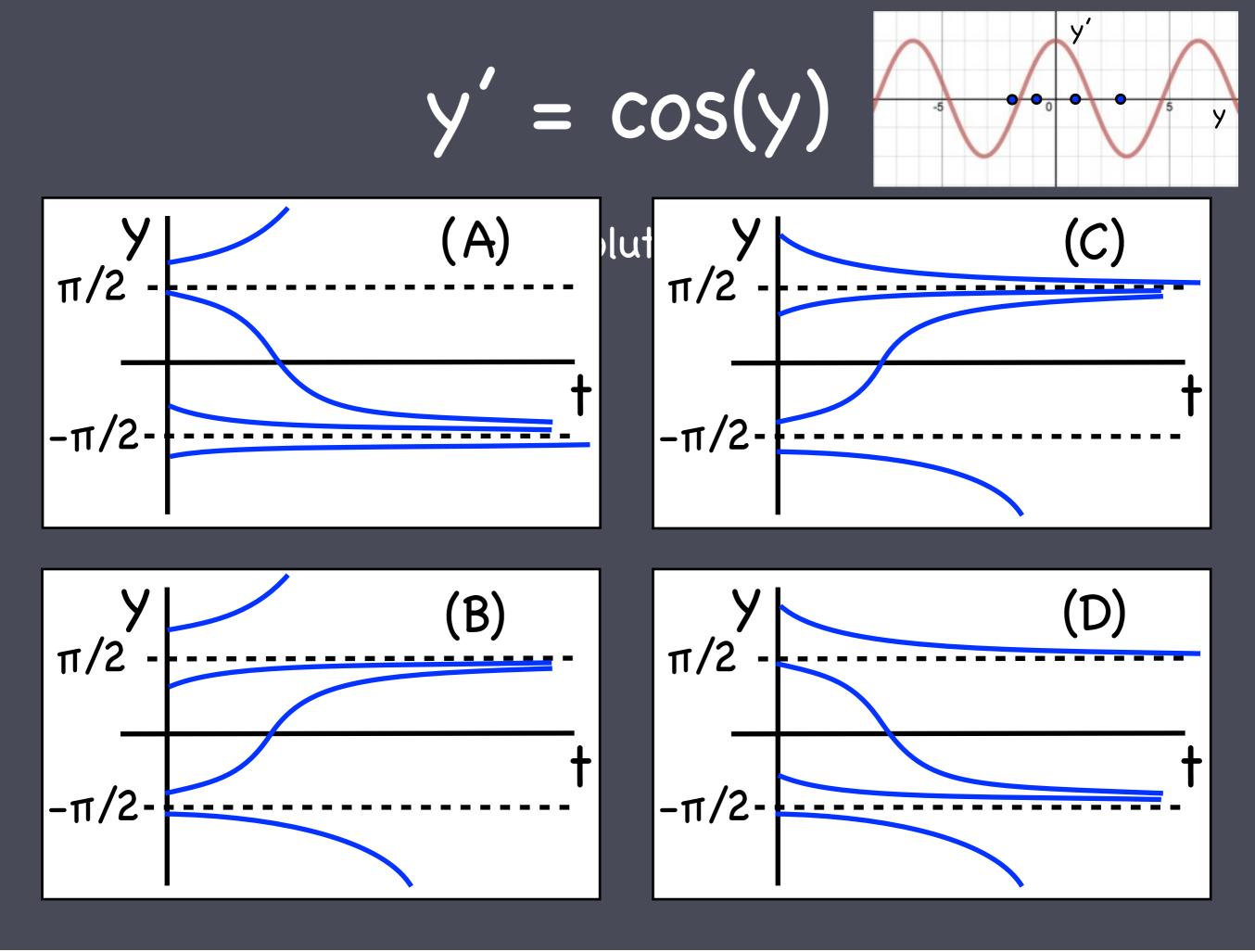
Filled circle • - stable steady state

Empty circle • - unstable steady state

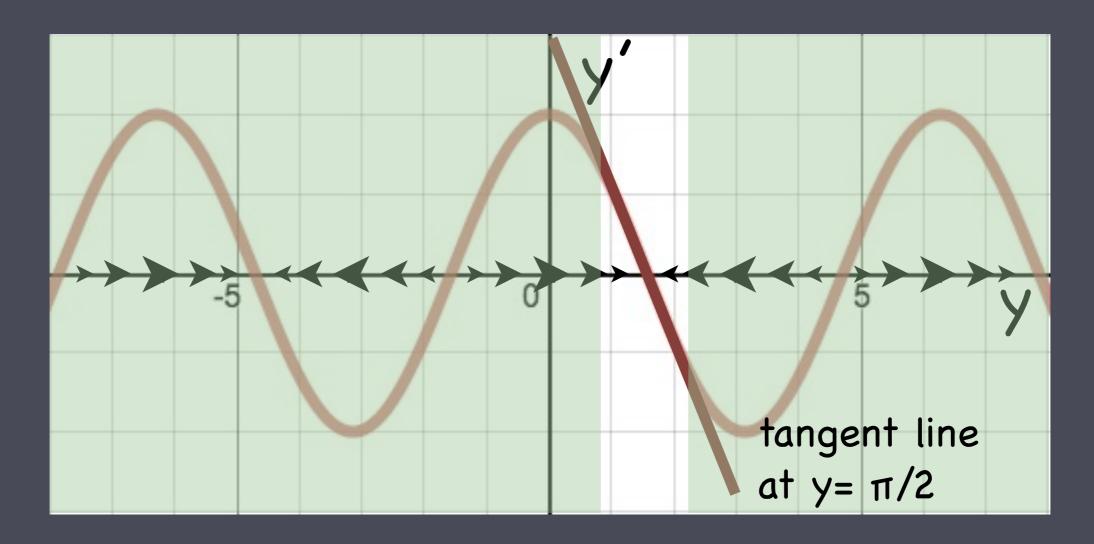
$$y' = cos(y)$$

Sketch a few solutions y(t).





$$y' = cos(y)$$



What does a solution look like as it approaches $\pi/2$?

The equation looks like $y' = -y + \pi/2$ so solutions start to look like $y(t) = \pi/2 + Ce^{-t}$ as they get close.

What you should be able to do:

- Identify steady states for a DE.
- Draw/interpret the phase line for a DE.
- Draw/interpret a slope field for a DE.
- Determine stability of steady states.
- Determine long-term behaviour of solutions.
- Sketch the graphs of solutions using phase line and/or slope fields (slopes, concavity, IPs, hasymptotes).