Name: \qquad Quiz Score: /10

Student Number:

> Answer questions in the space provided. Show your work. No calculators or notes.

1. For $x>0, x^{n}=e^{\ln \left(x^{n}\right)}=e^{n \ln (x)}$. We can use this identity to show that $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$, for $x>0$ with constant n.
(a) (2 points) Determine $\frac{d}{d x}\left(e^{n \ln (x)}\right)$. [Do not convert back to x^{n} and use the power rule]
(b) (1 point) Rewrite your answer from part (a) in a form that does not contain e or \ln.
2. (3 points) Is $y(t)=\left(\frac{2}{3} t+1\right)^{\frac{3}{2}}$ a solution to the following differential equation? [You must show work to receive marks]

$$
\frac{d y}{d t}=y^{\frac{1}{3}}, \quad y(0)=1
$$

3. For constant $C, y(t)=\sqrt{2 t+C}$ is a solution to the differential equation

$$
\frac{d y}{d t}=\frac{1}{y}
$$

(a) (1 point) Determine the value of C so that $y(t)$ satisfies the initial condition $y(0)=y_{0}$, where $y(0)>0$.
(b) (1 point) For $y(0)>0$, determine the time it takes for $y(t)$ to become three times its initial value.
4.

$$
\frac{d y}{d t}=3-y, \quad y(0)=2
$$

(a) (1 point) Determine the solution to the differential equation.
(b) (1 point) Determine $\lim _{t \rightarrow \infty} y(t)$.

