

Derivative of a[×].
Converting between a[×] and e^{k×}.
Bacterial growth example
Doubling time, half life, characteristic time

$f(x)=a^{x}$. $f'(x)=C_{a}a^{x}$. $C_{a}=??$

Recall that we got stuck on this derivative.
 Time to get unstuck...

30s

 $f(x) = e^{\ln(2)x}.$

(A) $f'(x) = e^{\ln(2)x}$. (B) $f'(x) = \ln(2)e^{\ln(2)x}$. (C) $f'(x) = \ln(2) \cdot 1/2 \cdot e^{\ln(2)x}$. (D) $f'(x) = \ln(2)xe^{\ln(2)x-1}$.

$f(x) = e^{\ln(2)x}$.

(A) $f'(x) = e^{\ln(2)x}$. (B) $f'(x) = \ln(2)e^{\ln(2)x}$. (C) $f'(x) = \ln(2) \cdot 1/2 \cdot e^{\ln(2)x}$. (D) $f'(x) = \ln(2)xe^{\ln(2)x-1}$.

30s

 $f(x) = e^{\ln(2)x}$.

(A) f(x) = 2x. (B) $f(x) = (e^{\ln(2)})^x = 2^x$. (C) $f(x) = e^{\ln(2)} e^x = 2e^x$. (D) $f(x) = e^{\ln(x^2)} = x^2$.

$f(x) = e^{\ln(2)x}$.

(A) f(x) = 2x. (B) $f(x) = (e^{\ln(2)})^{x} = 2^{x}$. (C) $f(x) = e^{\ln(2)} e^{x} = 2e^{x}$. (D) $f(x) = e^{\ln(x^{2})} = x^{2}$.

$f(x) = e^{\ln(2)x} --> f'(x) = \ln(2)e^{\ln(2)x}$.

If $f(x) = e^{\ln(2)x} - -> f'(x) = \ln(2)e^{\ln(2)x}$.
If $f(x) = e^{\ln(2)x} - -> f(x) = 2^x$.

Image of the function of t

f(x) = e^{ln(2)x} --> f'(x) = ln(2)e^{ln(2)x}.
f(x) = e^{ln(2)x} --> f(x) = 2^x.
So f(x) = 2^x --> f'(x) = 2^x ln(2).
In general, f(x) = a^x --> f'(x) = a^x ln(a).

What value of k makes a[×] = e^{k×}?

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k=ln(-a)

What value of k makes a[×] = e^{k×}?

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k=ln(-a)

Rough estimate:

(A) ~1 week.

(B) ~2 weeks.

(C) ~1 year.

(D) ~10⁴ days ≈ 27 years.

(E) ~10⁵ days \approx 270 years.

Rough estimate:

(A) ~1 week.

(B) ~2 weeks.

(C) ~1 year.

(D) ~10⁴ days \approx 27 years.

(E) ~10⁵ days \approx 270 years.

(A) $p(t) = e^{t/24}$. (B) $p(t) = 100,000 \ 2^{t/24}$. (C) $p(t) = e^{\ln(2)t}$. (D) $p(t) = 2^{-t/24}$. (E) $p(t) = 2^{t/24}$.

(A) $p(t) = e^{t/24}$. (B) $p(t) = 100,000 \ 2^{t/24}$. (C) $p(t) = e^{1n(2)t}$. (D) $p(t) = 2^{-t/24}$. (E) $p(t) = 2^{t/24}$.

(A) $p(t) = e^{t/24}$. (B) $p(t) = 100,000 \ 2^{t/24}$. (C) $p(t) = e^{11(2)t}$. $= 2^{t}$ (D) $p(t) = 2^{-t/24}$. (E) $p(t) = 2^{t/24}$.

(A) $p(t) = e^{t/24}$. (B) $p(t) = 100,000 \ 2^{t/24}$. (C) $p(t) = e^{\ln(2)t}$ = $2^{t} < --t$ measured in days. (D) $p(t) = 2^{-t/24}$. (E) $p(t) = 2^{t/24}$. <--- t measured in hours.

(A) t=ln(10⁵)/ln(2)
(B) t=10⁵/ln(2)
(C) t=ln(10⁵)/2
(D) t=100,000/24 days

(A) $t=ln(10^{5})/ln(2) \approx 16.6 \text{ days}$ (B) $t=10^{5}/ln(2)$ (C) $t=ln(10^{5})/2$ (D) t=100,000/24 days

Doubling time

Let c(t) = c₀e^{kt}. At t=0, c(0) = c₀e⁰ = c₀.
If k>0, c(t) is increasing and doubles when c₀e^{kt} = 2c₀.
That is when t=ln(2)/k.
This is called the doubling time.

Half-life

Let c(t) = c₀e^{kt}. At t=0, c(0) = c₀e⁰ = c₀.
If k<0, c(t) is decreasing and halves when c₀e^{kt} = c₀/2.
That is when t=-ln(2)/k.
This is called the half-life.

Characteristic time

If k<0, c(t) is decreasing and reaches</p> 1/e its original value when $c_0e^{kt} = c_0/e$. That is when t=-1/k. This is called the characteristic time or mean life.

Log-log and semi-log plots

- A log-log plot is a plot on which you plot log(y) versus log(x) instead of y versus x.
- A semi-log plot is a plot on which you plot log(y) versus x instead of y versus x.

Log-log plot of power function

Suppose y = ax^p.
Define new variable V=ln(y).
V = ln(y) = ln(ax^p) = ln(a) + p ln(x).
V = A + pU where A=ln(a), U=ln(x).
On a log-log plot, y=ax^p looks linear.

Semi-log plot of exponential function

 \oslash Suppose y = ae^{kx} . Define new variable V=ln(y). $OV = ln(y) = ln(ae^{kx}) = ln(a) + kx.$ $\oslash V = A + kx$ where A = ln(a). On a semi-log plot, y= ae^{kx} looks linear.

Regular, log-log and semilog plots

Two data sets.

Power function?

Exponential function?

Regular x-y plot.

Plot $Y_i = ln(y_i)$ versus X_i .

Conclude that:

(A) Blue is power function.
(B) Blue is exponential.
(C) Orange is power function.
(D) Orange is exponential.

Semi-log plot.

Plot $Y_i = ln(y_i)$ versus X_i .

Conclude that:

(A) Blue is power function.
(B) Blue is exponential.
(C) Orange is power function.
(D) Orange is exponential.

Semi-log plot.

Plot $Y_i = ln(y_i)$ versus $X_i = ln(x_i)$.

Conclude that:

(A) Blue is power function.
(B) Blue is exponential.
(C) Orange is power function.
(D) Orange is exponential.

Log-log plot.

Plot $Y_i = ln(y_i)$ versus $X_i = ln(x_i)$.

Conclude that: (A) Blue is power function. (B) Blue is exponential.

(C) Orange is power function.(D) Orange is exponential.

Log-log plot.