Midterm Practice:

1. Exactly one of the following statement about the derivative is true:

 (a) When \(f''(a) = 0 \), \(f(x) \) has an inflection point at \(x = a \).

 (b) When \(f''(a) = 0 \), \(f(x) \) has a saddle point at \(x = a \).

 (c) If \(f(x) \) has both a critical point and an inflection point at \(a \), then \(f(x) \) has a saddle point at \(x = a \).

 (d) If \(f'(x) < 0 \) for all points around \(x = a \), and \(f'(a) = 0 \), then \(f(x) \) has a local minimum.

 (e) If \(f(x) \) has a local maximum at \(x = a \), then \(f'(a) = 0 \) and \(f''(a) < 0 \).

2. Use the definition of the derivative to compute \(f'(x) \) where \(f(x) = 3x^2 - 6x + 3 \):

3. Find the all the tangent lines of

 \[f(x) = x^3 - x \]

 that pass through the points \((0,2)\).

4. When \(x = 1000 \), the function \(h(x) = \frac{8x^3 - 12x^2 + x - 1}{2x^3 - 3x^4 + 4x^2 - x + 7} \) is closest to

 (a) 4 (b) 4000000 (c) 4000 (d) 0.000004 (e) .004.

5. Bonus: Suppose that at \(x = a \), \(f(x) \) changes from concave up to concave down, does \(f'(x) \) has a local minimum at \(x = a \)?
Partial Solutions:

1. (c) is the only true statement about derivatives.
 For (a), note that for \(f(x) = x^4 \), \(f''(0) = 0 \) but \(f(x) \) has a local minimum at \(x = 0 \), indeed \(f(x) \) is concave up everywhere.
 For (e), while it is true that “if \(f'(a) = 0 \) and \(f''(a) < 0 \) than \(f(x) \) has a local max,” it is not true that “if \(f(x) \) has a local maximum at \(x = a \), then \(f'(a) = 0 \) and \(f''(a) < 0 \).” The counterexample again is \(f(x) = -x^4 \), which has a local maximum at \(x = 0 \) even though \(f''(0) = 0 \).
 In general, when being asked about the classification of critical point via the second derivative, \(x^4 \) is a great test case to keep in mind.

2.
 \[
 \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{3(x + h)^2 - 6(x + h) + 3 - 3x^2 + 6x - 3}{h}
 = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 - 6x - 6h + 3 - 3x^2 + 6x - 3}{h}
 = \lim_{h \to 0} \frac{6xh + 3h^2 - 6h}{h}
 = \lim_{h \to 0} 6x + 3h - 6
 = 6x - 6
 \]

3. Note that the point \((0, 2)\) is not a point on the graph of the function \(y = f(x) \). SO we need to find a general equation for the tangent line at any point \(x = a \) and figure out which of those tangent lines passes though \((0, 2)\). The equation of the line through the point \((a, f(a))\) is
 \[
 y = f(a) + f'(a)(x - a)
 = a^3 - a + (3a^2 - 1)(x - a)
 \]
 To see for what value of \(a \) (if any) this line passes through \((0, 2)\), we simply plug the point into the equation for the line and solve for \(a \)

 \[
 2 = a^3 - a + (3a^2 - 1)(-a)
 \Rightarrow
 2 = -2a^3
 \Rightarrow
 -1 = a
 \]
 Therefore, the tangent line through \((-1, 0)\) passes through the point \((0, 2)\). The equation of the tangent line at this point it
 \[
 y = 2(x + 1)
 \]

Try throwing both into Desmos to see this explicitly.

4. (d)