

Ø Reminders:

OSH 3 on Monday, Assign 4a on Tues 7am,
Midtern 1 on Tues 6pm.
S.101 - HENN 200,
S.103 - Last name A-K: BUCH A203
S.103 - Last name L-Z: BUCH A103

Today

How to choose x₀ for Newton's method.
Inc/dec, critical points and extrema.
First and Second derivative test.
Concavity, potential IPs and actual IPs.

How to choose xo

Desmos:

https://www.desmos.com/calculator/hf5ll3di1l

We say a function is increasing on some interval if for any points a and b with a < b we have that fail < f(b).</p>

We say a function is increasing on some interval if for any points a and b with a < b we have that fall < f(b).</p>

We say a function is decreasing on some interval if for any points a and b with a < b we have that f(a) > f(b).

We say a function is increasing on some interval if for any points a and b with a < b we have that if a < ib.</p>

We say a function is decreasing on some interval if for any points a and b with a < b we have that f(a) > f(b).

Notice – no reference to f'(x)!!

We say a function is increasing on some interval if for any points a and b with a < b we have that it is increasing on some

When f' exists, same as f'(x)>0.
 We say a function is decreasing on some interval if for any points a and b with a < b we have that f(a) > f(b).

Notice - no reference to f'(x)!!

We say a function is increasing on some interval if for any points a and b with a < b we have that f(a) < f(b).</p>

When f' exists, same as f'(x)>0.
We say a function is decreasing on some interval if for any points a and b with a < b we have that f(a) > f(b).
When f' exists, same as f'(x)<0.
Notice - no reference to f'(x)!!

A point is a local minimum of a function f(x) provided that f(x) = f(a) for all x on an interval around a (excluding a, of course).

A point a is a local maximum of a function f(x) provided that f(x) < f(a) for all x on an interval around a (excluding a, of course).

A point is a function of a function f(x) provided that f(x) is f(a) for all x on an interval around a (excluding a, of course).

Which of the following is a local minimum? A point a is a local minimum? (A) a function (A) all x on an interval around a (excluding a, of course).

A point is a point of a function f(x) provided that f(x) is f(a) for all x on an interval around a (excluding a, of course).

Which of the following is a local minimum? A point a is a local minimum? (Ai(x) provided that is a for all x on an interval around a (excluding a, of course).

A point is a function of a function f(x) provided that for all x on an interval around a (excluding a, of course).

Which of the following is a local minimum?
A point a is a local minimum?
(A) for all x on an interval around a (excluding a, of course).
If the function is differentiable at the minimum, then it must look like (A).

A point is a local minimum of a function f(x) provided that f(x) = f(a) for all x on an interval around a (excluding a, of course).

A point a is a local maximum of a function f(x) provided that f(x) < f(a) for all x on an interval around a (excluding a, of course).

A CP of f(x) is a point a at which f (a)=0 or
 f (a) is not defined even though f(a) is defined.

A CP of f(x) is a point a at which f(a)=0 or f(a) is not defined even though f(a) is defined.

Our Use of CPs of f(x):

A CP of f(x) is a point a at which f(a)=0 or f(a) is not defined even though f(a) is defined.

Ise of CPs of f(x):

If f'(x) changes sign at a CP, then the CP is an extremum (min/max) of f(x).

A CP of f(x) is a point a at which f(a)=0 or f(a) is not defined even though f(a) is defined.

Our Use of CPs of f(x):

If f'(x) changes sign at a CP, then the CP is an extremum (min/max) of f(x).

If f'(x) does not change sign at a CP, then the CP is not an extremum of f(x)!

Critical points examples

Desmos

https://www.desmos.com/calculator/nyquvpptn5

First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.

First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
If f'(x) goes from - to 0 to + then x=a is a min of f(x).

First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
If f'(x) goes from - to 0 to + then x=a is a min of f(x).

First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.

If f'(x) goes from - to 0 to + then x=a is a min of f(x).

First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.

If f'(x) goes from - to 0 to + then x=a is a min of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

- First derivative test: A critical point x=a is an extremum when f'(x) changes sign at x=a.
 - If f'(x) goes from to 0 to + then x=a is a min of f(x).
 - If f'(x) goes from + to 0 to then x=a is a max of f(x).

Second derivative test: If f'(x) is differentiable at x=a, then x=a is an extremum when $f''(a) \neq 0$.

Second derivative test. If f'(x) is differentiable at x=a, then x=a is an extremum when f"(a) ≠ 0.
If f"(a) > 0, then f'(x) goes from - to 0 to + so x=a is a min of f(x).
Second derivative test. If f'(x) is differentiable at x=a, then x=a is an extremum when f"(a) ≠ 0.
If f"(a) > 0, then f'(x) goes from - to 0 to + so x=a is a min of f(x).

Second derivative test. If f'(x) is differentiable at x=a, then x=a is an extremum when f"(a) ≠ 0.
If f"(a) > 0, then f'(x) goes from - to 0 to + so x=a is a min of f(x).

Second derivative test. If f'(x) is differentiable at x=a, then x=a is an extremum when f"(a) ≠ 0.
If f"(a) > 0, then f'(x) goes from - to 0 to + so x=a is a min of f(x).

- Second derivative test: If f'(x) is differentiable at x=a, then x=a is an extremum when $f''(a) \neq 0$.
 - If f"(a) > 0, then f'(x) goes from to 0 to + so x=a is a min of f(x).
 - If f"(a) < 0, then f'(x) goes from + to 0 to so x=a is a max of f(x).</p>

- Second derivative test: If f'(x) is differentiable at x=a, then x=a is an extremum when $f''(a) \neq 0$.
 - If f"(a) > 0, then f'(x) goes from to 0 to + so x=a is a min of f(x).
 - If f"(a) < 0, then f'(x) goes from + to 0 to so x=a is a max of f(x).</p>

- Second derivative test: If f'(x) is differentiable at x=a, then x=a is an extremum when $f''(a) \neq 0$.
 - If f"(a) > 0, then f'(x) goes from to 0 to + so x=a is a min of f(x).
 - If f"(a) < 0, then f'(x) goes from + to 0 to so x=a is a max of f(x).</p>

- Second derivative test: If f'(x) is differentiable at x=a, then x=a is an extremum when $f''(a) \neq 0$.
 - If f"(a) > 0, then f'(x) goes from to 0 to + so x=a is a min of f(x).

If f"(a) < 0, then f'(x) goes from + to 0 to - so x=a is a max of f(x).</p>

$$\odot$$
 Ex.: f(x) = x³

The First derivative lest FAILS: A critical point x=a is NOT an extremum when f'(x) does not change sign at x=a. In this case, f(x) keeps going in the same direction after the flat spot.

 \odot Ex.: f(x) = x³ --> f'(x)=3x²

The First derivative lest FAILS: A critical point x=a is NOT an extremum when f'(x) does not change sign at x=a. In this case, f(x) keeps going in the same direction after the flat spot.

The First derivative test FAILS: A critical point x=a is NOT an extremum when f'(x) does not change sign at x=a. In this case, f(x) keeps going in the same direction after the flat spot.

Solution Example: $f(x) = x^3 \longrightarrow f'(x) = 3x^2 \longrightarrow f'(0) = 0$ $f'(0) = 0 \longrightarrow f'(0^-) > 0$

The First derivative test FAILS: A critical point x=a is NOT an extremum when f'(x) does not change sign at x=a. In this case, f(x) keeps going in the same direction after the flat spot.

The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Sex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

- The Second derivative test FAILS: If f"(a) = 0 then we can't be certain whether or not x=a is an extremum.

 - Second Ex.2: g(x)=x⁵ --> g"(0)=0 but x=0 is neither a min nor a max.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.

Note 1: asymptotics gives you a good start! Note 2: g(x) is odd.

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$.
(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$. g'(x) = 5x⁴-3x²=0 when

(A) a maximum at x=0 and a minimum at x= $\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at x= $\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$. (D) a mystery pt at x=0 and a minimum at x= $\sqrt{3/5}$. $\underline{q'(x)} = 5x^4-3x^2=0$ when x=0 or x= $\sqrt{3/5}$.

(A) a maximum at x=0 and a minimum at $x=\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at $x=\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$ (D) a mystery pt at x=0 and a minimum at $x=\sqrt{3/5}$. $g'(x) = 5x^4 - 3x^2 = 0$ when x=0 or x= $\sqrt{3}/5$. (i) FDT: $g'(x) \approx -3x^2$ near x=0 so g'(x) doesn't change sign!

(A) a maximum at x=0 and a minimum at $x=\sqrt{3/5}$. (B) a minimum at x=0 and a maximum at $x=\sqrt{3/5}$. (C) no extremum at x=0 and a minimum at x= $\sqrt{3/5}$ (D) a mystery pt at x=0 and a minimum at $x=\sqrt{3/5}$. $g'(x) = 5x^4 - 3x^2 = 0$ when x=0 or x= $\sqrt{3/5}$. (i) FDT: $g'(x) \approx -3x^2$ near x=0 so g'(x) doesn't change sign! (ii) SDT: $g''(x) = 20x^3 - 6x = 2x(10x^2 - 3)$ so g''(0)=0 --> mystery!

We say a function is concernent on some interval if f'(x) is increasing on that interval.

We say a function is concare up on some interval if f'(x) is increasing on that interval.

We say a function is concave down on some interval if f'(x) is decreasing on that interval.

We say a function is concare is on some interval if f'(x) is increasing on that interval.

When f''(x) exists, same as f''(x)>0.

We say a function is concave down on some interval if f'(x) is decreasing on that interval.

We say a function is concare is on some interval if f'(x) is increasing on that interval.

When f"(x) exists, same as f"(x)>0.

We say a function is concave down on some interval if f'(x) is decreasing on that interval.

When f''(x) exists, same as f''(x)<0.

An inflection point of f(x) is a point at which the concavity changes from up to down or down to up.

An inflection point of f(x) is a point at which the concavity changes from up to down or down to up.

A point a is an inflection point of a function f(x) provided that a is a local minimum or a local maximum of f'(x).

An inflection point of f(x) is a point at which the concavity changes from up to down or down to up.

better!!

A point a is an inflection point of a function f(x) provided that a is a local minimum or a local maximum of f'(x).

Match f'(x) to f(x)

(A) 1d, 2b, 3a, 4c
(C) 1b, 2d, 3c, 4a
(B) 1b, 2d, 3a, 4c
(D) 1c, 2a, 3d, 4b
(E) Don't know.

Match f'(x) to f(x)

(A) 1d, 2b, 3a, 4c
(B) 1b, 2d, 3a, 4c
(C) 1b, 2d, 3c, 4a
(D) 1c, 2a, 3d, 4b
(E) Don't know.

Match f'(x) to f(x)

(A) f'(x) = 0. (B) f'(x) = 0 and $f''(x) \neq 0$. (C) f''(x) = 0. (D) f''(x) = 0 and $f'''(x) \neq 0$. (E) Don't know.

(A) f'(x) = 0. --> potential extremum of f(x)
(B) f'(x) = 0 and f''(x) ≠ 0.
(C) f''(x) = 0.
(D) f''(x) = 0 and f'''(x) ≠ 0.
(E) Don't know.

(A) f'(x) = 0. --> potential extremum of f(x)
(B) f'(x) = 0 and f''(x) ≠ 0. --> extremum of f(x)
(C) f''(x) = 0.
(D) f''(x) = 0 and f'''(x) ≠ 0.
(E) Don't know.

(A) f'(x) = 0. --> potential extremum of f(x)(B) f'(x) = 0 and $f''(x) \neq 0$. --> extremum of f(x)(C) f''(x) = 0. --> potential extremum of f'(x)(D) f''(x) = 0 and $f'''(x) \neq 0$. (E) Don't know.

(A) f'(x) = 0. --> potential extremum of f(x)(B) f'(x) = 0 and $f''(x) \neq 0$. --> extremum of f(x)(C) f''(x) = 0. --> potential extremum of f'(x)(D) f''(x) = 0 and $f'''(x) \neq 0$. --> extremum of f'(x)(E) Don't know.

(A) f'(x) = 0. --> potential extremum of f(x)(B) f'(x) = 0 and $f''(x) \neq 0$. --> extremum of f(x)(C) f''(x) = 0. --> potential extremum of f'(x)(D) f''(x) = 0 and $f''(x) \neq 0$. --> extremum of f'(x)(E) Don't know.

--> potential extremum of f(x)(A) f'(x) = 0. (B) f'(x) = 0 and $f''(x) \neq 0$. --> extremum of f(x)(C) f''(x) = 0. --> potential extremum of f'(x)(D) f''(x) = 0 and $f''(x) \neq 0$. --> extremum of f'(x)(E) Don't know. This is "SDT" where the function considered is f'instead of f! Would usually use "FDT".