Today

- Introduction to Differential Equations
- Linear DE (\(y' = ky \))
- Nonlinear DE (e.g. \(y' = y (1-y) \))
- Qualitative analysis (phase line)
Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time \(t \).

(A) \(\frac{dC}{dt} = k \cdot C(t) \) where \(k > 0 \).

(B) \(\frac{dC}{dt} = k \cdot C(t) \) where \(k < 0 \).

(C) \(C(t) = C_0 e^{kt} \).

(D) \(\frac{dC}{dt} = C_0 e^{-kt} \).
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

(A) $C'(t) = k \ C(t)$ where $k>0$.

(B) $C'(t) = k \ C(t)$ where $k<0$.

(C) $C(t) = C_0 e^{kt}$.

(D) $C'(t) = C_0 e^{-kt}$.
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

(A) \(C'(t) = k \ C(t) \) where \(k > 0 \). \hfill \text{<---solution grows!}

(B) \(C'(t) = k \ C(t) \) where \(k < 0 \).

(C) \(C(t) = C_0 e^{kt} \).

(D) \(C'(t) = C_0 e^{-kt} \).
Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

(A) $C'(t) = k \, C(t)$ where $k>0$. \text{<---solution grows!}

(B) $C'(t) = k \, C(t)$ where $k<0$.

(C) $C(t) = C_0 e^{kt}$. \text{<---if $k<0$, this might be the solution but it’s not a DE.}

(D) $C'(t) = C_0 e^{-kt}$. \text{<---solution grows!}
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

(A) $C'(t) = k \cdot C(t)$ where $k>0$. \hspace{1cm}<---solution grows!

(B) $C'(t) = k \cdot C(t)$ where $k<0$.

(C) $C(t) = C_0e^{kt}$. \hspace{1cm}<---if $k<0$, this might be the solution but it’s not a DE.

(D) $C'(t) = C_0e^{-kt}$. \hspace{1cm}<---this is not a DE either.
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

$$C'(t) = -r C(t) \quad \text{where} \quad r > 0.$$

Solution:

(A) $C(t) = e^{-rc}$
(B) $C(t) = 17e^{-rt}$
(C) $C(t) = -rC^2/2$
(D) $C(t) = 5e^{rt}$
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

$$C'(t) = -r \ C(t) \quad \text{where} \quad r > 0.$$

Solution:

(A) $C(t) = e^{-rt}$

(B) $C(t) = 17e^{-rt}$

(C) $C(t) = -rC^2/2$

(D) $C(t) = 5e^{rt}$
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

\[C'(t) = -r \, C(t) \quad \text{where} \quad r > 0. \]

Solution:

(A) $C(t) = e^{-rc}$
(B) $C(t) = 17e^{-rt}$
(C) $C(t) = -rC^2/2$
(D) $C(t) = 5e^{rt}$

In fact, $C(t) = C_0e^{-rt}$ is a solution for all values of C_0 – show on board.
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

Solution:
(A) $C(t) = e^{-rt}$
(B) $C(t) = 17e^{-rt}$
(C) $C(t) = -rC^2/2$
(D) $C(t) = 5e^{rt}$

$C'(t) = -r C(t)$ where $r > 0$.

In fact, $C(t) = C_0e^{-rt}$ is a solution for all values of C_0 - show on board.

DEs are often given with an initial condition (IC) e.g. $C(0)=17$ which can be used to determine C_0.
Differential equations (DE)

Carbon dating: The amount of Carbon-14 in a sample decreases at a rate proportional to how much C-14 is present. Write down a DE for the amount of C-14 at time t.

Solution:

(A) $C(t) = e^{-rt}$
(B) $C(t) = 17e^{-rt}$
(C) $C(t) = -rC^2/2$
(D) $C(t) = 5e^{rt}$

$C'(t) = -r\ C(t)$ where $r > 0$.

In fact, $C(t) = C_0e^{-rt}$ is a solution for all values of C_0 - show on board.

DEs are often given with an initial condition (IC) e.g. $C(0)=17$ which can be used to determine C_0.

DE + IC is called an Initial Value Problem (IVP)
Summary of what you should be able to do
Summary of what you should be able to do

- Take a word problem of the form “Quantity blah changes at a rate proportional to how much blah there is” and write down the DE:
Summary of what you should be able to do

- Take a word problem of the form “Quantity blah changes at a rate proportional to how much blah there is” and write down the DE:

 \[Q'(t) = k \cdot Q(t) \]
Summary of what you should be able to do

- Take a word problem of the form “Quantity blah changes at a rate proportional to how much blah there is” and write down the DE:

 \[Q'(t) = k \ Q(t) \]

- Write down the solution to this equation:
Take a word problem of the form “Quantity blah changes at a rate proportional to how much blah there is” and write down the DE:

$$Q'(t) = k \times Q(t)$$

Write down the solution to this equation:

$$Q(t) = Q_0 e^{kt}$$
Summary of what you should be able to do

- Take a word problem of the form “Quantity blah changes at a rate proportional to how much blah there is” and write down the DE:
 \[Q'(t) = k \ Q(t) \]
- Write down the solution to this equation:
 \[Q(t) = Q_0 e^{kt} \]
- Determine \(k \) and \(Q_0 \) from given values or %ages of \(Q \) at two different times (i.e. data).
Summary of what you should be able to do

- Take a word problem of the form “Quantity blah changes at a rate proportional to how much blah there is” and write down the DE:
 \[Q'(t) = k \, Q(t) \]

- Write down the solution to this equation:
 \[Q(t) = Q_0 e^{kt} \]

- Determine k and \(Q_0 \) from given values or %ages of \(Q \) at two different times (i.e. data).

- Determine half-life/doubling time from data or k.
DEs – a broad view
DEs – a broad view

We have talked about linear DEs so far:

\[y' = ky \]
DEs – a broad view

We have talked about linear DEs so far:

\[y' = ky \]

A linear DE is one in which the \(y' \) and the \(y \) appear linearly (more later about \(y' = a + ky \)).
DEs – a broad view

- We have talked about linear DEs so far:
 - \(y' = ky \)

- A linear DE is one in which the \(y' \) and the \(y \) appear linearly (more later about \(y' = a + ky \)).

- Some nonlinear equations:
 - \(v' = g - v^2 \), \(y' = -\sin(y) \), \((h')^2 = bh \).
DEs - a broad view

We have talked about linear DEs so far:

\[y' = ky \]

A linear DE is one in which the \(y' \) and the \(y \) appear linearly (more later about \(y' = a + ky \)).

Some nonlinear equations:

\[v' = g - v^2, \quad y' = -\sin(y), \quad (h')^2 = bh. \]

- Object falling through air
- Pendulum under water
- Water draining from a vessel
DEs – a broad view
DEs – a broad view

Where do nonlinear equations come from?
Where do nonlinear equations come from?

Population growth:

\[N' = bN - dN = kN \] (linear)

where \(b \) is per-capita birth rate, \(d \) is per-capita death rate and \(k = b - d \).
DEs – a broad view

Where do nonlinear equations come from?

Population growth:

\[N' = bN - dN = kN \quad \text{(linear)} \]

where \(b \) is per-capita birth rate, \(d \) is per-capita death rate and \(k = b - d \).

Suppose the per-capita death rate is not constant but increases with population size (more death at high density) so \(d = cN \).
Where do nonlinear equations come from?

Population growth:

\[N' = bN - dN = kN \] (linear)

where \(b \) is per-capita birth rate, \(d \) is per-capita death rate and \(k = b - d \).

Suppose the per-capita death rate is not constant but increases with population size (more death at high density) so \(d = cN \).

\[N' = bN - (cN)N = bN - cN^2 \]
DEs – a broad view
DEs – a broad view

\[\frac{dN}{dt} = bN - cN^2 \]
DEs – a broad view

\[\frac{dN}{dt} = bN - cN^2 \]

This is called the logistic equation, usually written as

\[\frac{dN}{dt} = rN \left(1 - \frac{N}{K} \right) \]
DEs - a broad view

\[\frac{dN}{dt} = bN - cN^2 \]

This is called the logistic equation, usually written as

\[\frac{dN}{dt} = rN \left(1 - \frac{N}{K} \right) \]

where \(r=b \) and \(K=1/c \). This is a nonlinear DE because of the \(N^2 \).
Qualitative analysis
Qualitative analysis

Finding a formula for a solution to a DE is ideal but what if you can’t?
Qualitative analysis

Finding a formula for a solution to a DE is ideal but what if you can’t?

Qualitative analysis - extract information about the general solution without solving.
Qualitative analysis

Finding a formula for a solution to a DE is ideal but what if you can’t?

Qualitative analysis - extract information about the general solution without solving.

- Steady states
- Slope fields
- Stability of steady states
- Plotting y’ versus y (state space/phase line)
Steady state. Where can you stand so that the DE tells you not to move?

(A) $x=-1$

(B) $x=0$

(C) $x=1/2$

(D) $x=1$

This is the logistic eq with $r=1$, $K=1$.

\[x' = x(1 - x) \]
\[x' = x(1 - x) \]

Steady state. Where can you stand so that the DE tells you not to move?

(A) \(x = -1 \)

(B) \(x = 0 \)

(C) \(x = \frac{1}{2} \)

(D) \(x = 1 \)

This is the logistic eq with \(r = 1, K = 1 \).
\[x' = x(1 - x) \]

Steady state. Where can you stand so that the DE tells you not to move?

- (A) \(x = -1 \)
- (B) \(x = 0 \)
- (C) \(x = 1/2 \)
- (D) \(x = 1 \)

A **steady state** is a constant solution.
$y' = -y(y-1)(y+1)$

What are the steady states of this equation?
\[x' = x(1 - x) \]

velocity

position

Slope field
\[x' = x(1 - x) \]

velocity

position

Slope field.

Slope field.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values

When \(x(t) = 1/2 \) what is \(x' \)?

- (A) 0
- (B) 1/4
- (C) 1/2
- (D) 1
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.

When \(x(t) = \frac{1}{2} \) what is \(x' \)?

(A) 0
(B) 1/4
(C) 1/2
(D) 1
\[x' = x(1 - x) \]

- **Slope field.**

- At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

- **Slope field.**
- At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

- **Slope field.**

- At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

- **Slope field.**

- At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values.
\[x' = x(1 - x) \]

- **Velocity**
- **Position**

- **Slope field.**

- At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values

- Now draw them for all \(t \).
\[x' = x \left(1 - x \right) \]

- **Slope field.**
- At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values
- Now draw them for all \(t \).
\[x' = x(1 - x) \]

velocity

position

Slope field

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values

Now draw them for all \(t \).
\[x' = x(1 - x) \]

- **Slope field.**

- At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values

- Now draw them for all \(t \).
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values

Now draw them for all \(t \).
\[x' = x(1 - x) \]

\(x(t) \)

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values

Now draw them for all \(t \).
\[x' = x(1 - x) \]

Slope field.

- At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values

- Now draw them for all \(t \).

- Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values.

Now draw them for all \(t \).

Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

- **Slope field.**

- At any t, don’t know x yet so plot all possible \(x' \) values

- Now draw them for all t.

- Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.

Now draw them for all \(t \).

Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

\[\text{velocity} \]

\[\text{position} \]

Slope field.

At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values.

Now draw them for all \(t \).

Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

- **Slope field.**

- At any t, don't know x yet so plot all possible x' values.

- Now draw them for all t.

- Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.

Now draw them for all \(t \).

Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

Slope field.

At any \(t \), don't know \(x \) yet so plot all possible \(x' \) values.

Now draw them for all \(t \).

Solution curves must be tangent to slope field everywhere.
\[x' = x(1 - x) \]

\[\begin{align*}
\text{velocity} & \quad \uparrow \\
\text{position} & \quad \uparrow
\end{align*} \]

- **Slope field.**
- At any \(t \), don’t know \(x \) yet so plot all possible \(x' \) values
- Now draw them for all \(t \).
- Solution curves must be tangent to slope field everywhere.
\(y' = -y(y-1)(y+1) \)

What are the steady states of this equation?

Draw the slope field for this equation.

Include the steepest slope element in each interval between steady states and two others (roughly).