
Find tangent line to f(x)=x2 
that goes through (1,-1).
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Power rule
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Find f’ at x=2 (using the definition of the 
derivative).
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Find f’ at all points x at the same time 
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Power rule
f(x) = x3
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Power rule

f(x) = xn

f �(x) = nxn−1
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Derivative properties

Notation:
y = f(x)

dy

dx
= f �(x)

NewtonLeibniz


