Today

- Survey check.
- Annual sunlight (continued)
- Derivatives of sin(x), cos(x)
- Ø Related rates with trig (if time)
- Ø Reminders:
 - Teaching evals

Annual variation in daylight per day in Vancouver (Jan 1 --> t=0)

(A)
$$L(t) = 12 + 4 \sin\left(\frac{2\pi}{365}(t - 172)\right)$$

(B) $L(t) = 12 + 4 \sin\left(\frac{2\pi}{365}(t + 80)\right)$
(C) $L(t) = 12 + 4 \cos\left(\frac{2\pi}{365}(t - 172)\right)$
(D) $L(t) = 12 - 4 \sin\left(\frac{2\pi}{365}(t - 80)\right)$

Note: t=172 is June 21; t=80 is March 21.

Annual variation in daylight per day in Vancouver (Jan 1 --> t=0)

Note: t=172 is June 21; t=80 is March 21.

Derivative of f(x)=sin(x)

- $f'(x) = \lim_{h \to 0} (f(x+h) f(x)) / h$
 - = $\lim_{h\to 0} (\sin(x+h) \sin(x)) / h$
 - = $\lim_{h\to 0} (\sin(x)\cos(h) + \cos(x)\sin(h) \sin(x)) / h$
 - = $\lim_{h\to 0} (\sin(x) (\cos(h)-1)/h + \cos(x)\sin(h) /h)$
 - $= sin(x) \lim_{h \to 0} (cos(h)-1)/h$

See what h=0.0001 gives...

- + $cos(x) \lim_{h \to 0} \frac{sin(h)}{h}$
- $= sin(x) \times 0 + cos(x) \times 1 = cos(x).$

Note: this last step requires a bunch of work to show.

More details on that last step (not shown in class) $f'(x) = sin(x) \lim_{h \to 0} (cos(h)-1)/h$ + $cos(x) \lim_{h \to 0} sin(h) / h$ First, we simplify $\lim_{h\to 0} (\cos(h)-1)/h$ = $\lim_{h\to 0} (\cos^2(h) - 1)/(\cos(h) + 1)h)$ = $\lim_{h\to 0} (-\sin^2(h))/(\cos(h)+1)h)$ = $\lim_{h\to 0} -\sin(h)/(\cos(h)+1) \times \sin(h)/h$ = $\lim_{h\to 0} -\sin(h)/(\cos(h)+1) \times \lim_{h\to 0} \frac{\sin(h)}{h}$

X

1

 \mathbf{O}

Ξ

Monday, November 24, 2014

Why is $\lim_{h\to 0} \frac{\sin(h)}{h} = 1?$

<u>sin(h)/2 < h/2 < tan(h)/2</u> sin(h) < h < tan(h)sin(h)/sin(h) < h/sin(h) < tan(h)/sin(h)</pre> 1 < h/sin(h) < 1/cos(h)cos(h) < sin(h)/h < 1Take lim_{h->0}: sin(h)/h is stuck between! 1 (not shown in class)

Monday, November 24, 2014

Derivative of g(x)=cos(x). Rewrite cos(x) as...

(A) $g(x) = cos(x) = sin(x-\pi/2)$ (B) $g(x) = cos(x) = sin(x+\pi/2)$ (C) $g(x) = cos(x) = sin(x+\pi)$ (D) $g(x) = cos(x) = sin(x-\pi)$ (E) $g(x) = cos(x) = sin(x+3\pi/2)$ Derivative of g(x)=cos(x). Rewrite cos(x) as...

(A) $g(x) = cos(x) = sin(x-\pi/2)$

(B) $g(x) = cos(x) = sin(x+\pi/2)$

(C) $g(x) = cos(x) = sin(x+\pi)$

(D) $g(x) = cos(x) = sin(x-\pi)$

(E) $g(x) = cos(x) = sin(x+3\pi/2)$

Derivative of $g(x)=sin(x+\pi/2)$

(A) $g'(x) = cos(x+\pi/2) = sin(x)$ (B) $g'(x) = cos(x+\pi/2) = -sin(x)$ (C) $g'(x) = cos(x+\pi/2) = sin(x-\pi/2)$ (D) $g'(x) = cos(x+\pi/2) = sin(x+\pi/2)$ (E) $g'(x) = cos(x+\pi/2) = sin(x-3\pi/2)$

Derivative of $g(x)=sin(x+\pi/2)$

(A) $g'(x) = cos(x+\pi/2) = sin(x)$ (B) $g'(x) = cos(x+\pi/2) = -sin(x)$ (C) $g'(x) = cos(x+\pi/2) = sin(x-\pi/2)$ (D) $g'(x) = cos(x+\pi/2) = sin(x+\pi/2)$ (E) $g'(x) = cos(x+\pi/2) = sin(x-3\pi/2)$