Today

- \odot ln(x) as inverse function for e^x.
- Derivative of ln(x).
- **O** Derivative of a^x .
- \bullet Converting between a^x and e^{kx}.
- Note that topics covered on Midterm 1 might reappear on Midterm 2 in the context of exponential and logarithmic functions. (definition of derivative, product/quotient rules, tangent lines, linear approximation, Newton's method)

Friday, October 24, 2014

e is a "pure" number without units, called dimensionless.

e is a "pure" number without units, called dimensionless.

This means e^a for any a is also dimensionless.

- e is a "pure" number without units, called dimensionless.
- This means e^a for any a is also dimensionless.
- Furthermore, the exponent, a, must also be dimensionless.

- e is a "pure" number without units, called dimensionless.
- **This means e^a for any a is also dimensionless.**
- Furthermore, the exponent, a, must also be dimensionless.
- \odot If y(t) = y₀e^{-kt}, and t is time in seconds, what must be the units of k ?

(A) The function $g(x)$ for which $g(f(x))=x$.

- (B) The mirror image of graph of f(x) in the line y=x.
- (C) 1/ $f(x)$
- $(D) f(x)$

(A) The function $g(x)$ for which $g(f(x))=x$.

- (B) The mirror image of graph of f(x) in the line y=x.
- (C) 1/ $f(x)$
- $(D) f(x)$

(A) The function g(x) for which g(f(x))=x. $g(x) = f^{-1}(x)$

- (B) The mirror image of graph of f(x) in the line y=x.
- (C) 1/ $f(x)$
- $(D) f(x)$

(A) The function g(x) for which g(f(x))=x. $g(x) = f^{-1}(x)$ (B) The mirror image of graph of $f(x)$ in the line y=x. (C) 1/ $f(x)$ $(D) - f(x)$ <---might not be a function.

(A) The function g(x) for which g(f(x))=x. $g(x) = f^{-1}(x)$ (B) The mirror image of graph of $f(x)$ in the line y=x. (C) 1/ $f(x)$ $(D) - f(x)$ <--- might not be a function.

(A) The function g(x) for which g(f(x))=x. $g(x) = f^{-1}(x)$ (B) The mirror image of graph of $f(x)$ in the line y=x. (C) 1/ $f(x)$ $(D) - f(x)$ <--- might not be a function.

(A) The function g(x) for which g(f(x))=x. $g(x) = f^{-1}(x)$ (B) The mirror image of graph of f(x) in the line y=x. (C) 1/ $f(x)$ $(D) - f(x)$ <--- might not be a function.

 $f^{-1}(x)$ is the function that goes backwards through $f(x)$. If you plug the output of $f(x)$ into $f^{-1}(x)$, you will get back to x.

Let f(x)=ex. Define ln(x) to be f-1(x).

Which of the following is false? (A) If a= e^b and c= e^d then $ln(a/c) = b-d$. (B) If a=e^b and c=e^d then $ln(a-c) = b/d$. (C) If $c=a^d$ then $ln(c) = d ln(a)$. (D) If a= e^b and c=a^d then $ln(c)$ = bd. (E) If a= e^b and c= e^d then $ln(ac) = b+d$.

Let f(x)=ex. Define ln(x) to be f-1(x).

Which of the following is false? (A) If a= e^b and c= e^d then $ln(a/c) = b-d$. (B) If a= e^b and c= e^d then $ln(a-c) = b/d$. (C) If $c=a^d$ then $ln(c) = d ln(a)$. (D) If a= e^b and c=a^d then $ln(c)$ = bd. (E) If a= e^b and c= e^d then $ln(ac) = b+d$.

Let f(x)=ex. Define ln(x) to be $f^{-1}(x)$.

Which of the following is false? (A) If a= e^b and c= e^d then $ln(a/c) = b-d$. (B) If a= e^b and c= e^d then $ln(a-c) = b/d$. (C) If $c=a^d$ then $ln(c) = d ln(a)$. (D) If a= e^b and c=a^d then $ln(c)$ = bd. (E) If a= e^b and c= e^d then $ln(ac) = b + d$. $ln(x)$ = natural logarithm of $x = log_e(x)$)

Friday, October 24, 2014

 \odot If y = ln(x) then $e^y = e^{\ln(x)} =$

Derivative of ln(x) If $y = ln(x)$ then $e^y = e^{ln(x)} =$ (A) 1 (B) x (C) 1/x (D) e

If $y = ln(x)$ then $e^y = e^{ln(x)} =$

(C) 1/x

(A) 1

(B) x

(D) e

 \odot If y = ln(x) then $e^y = e^{\ln(x)} = f(f^{-1}(x)) = x$.

If $y = ln(x)$ then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x$.

Implicit differentiation:

 $(A) e^{y'} = 1$ (B) $e^{y}y' = 1$ $(C) e^y = x'$ (D) ye^{y-1} = 1

If $y = ln(x)$ then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x$.

Implicit differentiation:

 $(A) e^{y'} = 1$ (B) $e^{y}y' = 1$ $(C) e^y = x'$ $\overline{(D)}$ ye^{y-1} = 1 Solve for y':

If $y = ln(x)$ then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x$.

Implicit differentiation:

 $(A) e^{y'} = 1$ $(B) e^{y}y' = 1$ $(C) e^y = x'$ (D) ye^{y-1} = 1 s Solve for y' : $y' = e^{-y}$

If $y = ln(x)$ then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x$.

Implicit differentiation:

 $(A) e^{y'} = 1$ $(B) e^{y}y' = 1$ $(C) e^y = x'$ (D) $ye^{y-1} = 1$ \circ Solve for y' : $y' = e^{-y} = 1/x$

If $y = ln(x)$ then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x$.

Implicit differentiation:

 $(A) e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) e^y= x' $\overline{(D) ye^{y-1}} = 1$ \circ Solve for y' : $y' = e^{-y} = 1/x$ $g(x)= ln(x)$ \rightarrow g'(x) = 1/x

$f(x)=a^x. f'(x)=C_a a^x.$ $C_a=??$

Recall that we got stuck on this derivative. Time to get unstuck...

(A) $f'(x) = e^{\ln(2)x}$. (B) $f'(x) = ln(2)e^{\ln(2)x}$. $(C) f'(x) = ln(2) \cdot 1/2 \cdot e^{\ln(2)x}$. (D) $f'(x) = ln(2)xe^{\ln(2)x-1}$.

$$
f(x) = e^{\ln(2)x}.
$$

 $f(x) = e^{\ln(2)x}$.

(A) $f'(x) = e^{\ln(2)x}$. (B) $f'(x) = ln(2)e^{\ln(2)x}$. $(C) f'(x) = ln(2) \cdot 1/2 \cdot e^{\ln(2)x}$. (D) $f'(x) = ln(2)xe^{\ln(2)x-1}$.

 $f(x) = e^{\ln(2)x}$.

 $(A) f(x) = 2x.$ (B) $f(x) = (e^{\ln(2)})^x = 2^x$. (C) $f(x) = e^{\ln(2)} e^x = 2e^x$. (D) $f(x) = e^{\ln(x^2)} = x^2$. 2

 $f(x) = e^{\ln(2)x}$.

 $(A) f(x) = 2x.$ (B) $f(x) = (e^{\ln(2)})^x = 2^x$. (C) $f(x) = e^{\ln(2)} e^x = 2e^x$. (D) $f(x) = e^{\ln(x^2)} = x^2$. 2

Friday, October 24, 2014

$f(x) = e^{\ln(2)x}$ --> $f'(x) = \ln(2)e^{\ln(2)x}$.

 $f(x) = e^{\ln(2)x}$ --> $f'(x) = \ln(2)e^{\ln(2)x}$. $f(x) = e^{\ln(2)x}$ --> $f(x) = 2^x$.

$$
\Phi f(x) = e^{\ln(2)x} \longrightarrow f'(x) = \ln(2)e^{\ln(2)x}.
$$

$$
\Phi f(x) = e^{\ln(2)x} \longrightarrow f(x) = 2^{x}.
$$

$$
\Phi \text{So } f(x) = 2^{x} \longrightarrow f'(x) = 2^{x} \ln(2).
$$

Friday, October 24, 2014

\n- $$
\Phi(f(x)) = e^{\ln(2)x} \longrightarrow f'(x) = \ln(2)e^{\ln(2)x}
$$
.
\n- $\Phi(f(x)) = e^{\ln(2)x} \longrightarrow f(x) = 2^x$.
\n- Φ So $f(x) = 2^x \longrightarrow f'(x) = 2^x \ln(2)$.
\n- Φ In general, $f(x) = a^x \longrightarrow f'(x) = a^x \ln(a)$.
\n

What value of k makes ax = ekx ?

 (A) k= e^a (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

What value of k makes ax = ekx ?

 (A) k= e^a (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

What value of k makes $a^x = e^{kx}$?

 $a^x = (e^k)^x$

 (A) k= e^a (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

What value of k makes $a^x = e^{kx}$?

 (A) $k=e^a$ (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$ $a^x = (e^k)^x$ $a = e^{k}$

What value of k makes ax = ekx ?

 (A) k= e^a (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

 $a^x = (e^k)^x$ $ln(a) = ln(e^k)$ $a = e^{k}$

(A) k= e^a (B) k= e^{-a} ax = ekx ? $a^x = (e^k)^x$ $a = e^{k}$

What value of k makes

 (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

 $ln(a) = ln(e^k)$ $ln(a) = k ln(e)$

What value of k makes ax = ekx ?

 (A) k=e^a (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

 $a^x = (e^k)^x$ $ln(a) = ln(e^{k})$ $ln(a) = k ln(e)$ $a = e^{k}$ $ln(a) = k$

What value of k makes $a^x = e^{kx}$?

 (A) k= e^a (B) k= e^{-a} (C) k=ln(a) (D) k=-ln(a) (E) k=ln $(-a)$

 $f(x) = a^x = e^{\ln(a)x}$ \rightarrow $f'(x) = a^x \ln(a)$. $a^x = (e^k)^x$ $ln(a) = ln(e^{k})$ $ln(a) = k ln(e)$ $a = e^{k}$ $ln(a) = k$

Which of following is the graph of ln(x)?

Log-log and semi-log plots

- A log-log plot is a plot on which you plot log(y) versus log(x) instead of y versus x.
- A semi-log plot is a plot on which you plot log(y) versus x instead of y versus x.

Log-log and semi-log plots

- A log-log plot is a plot on which you plot log(y) versus log(x) instead of y versus x.
- A semi-log plot is a plot on which you plot log(y) versus x instead of y versus x.

$$
x^{2}-this is what asks you to use 5
$$

 ∞ Suppose $y = ae^{kx}$. a and k are constants.

 ∞ Suppose $y = ae^{kx}$. a and k are constants. Define new variable V=ln(y).

Suppose y = aekx. a and k are constants. Define new variable V=ln(y). $\textcircled{ }V = \text{In}(y) = \text{In}(ae^{kx}) = \text{In}(a) + kx.$

Suppose y = aekx. a and k are constants. Define new variable V=ln(y). $\textcircled{ }V = \text{In}(y) = \text{In}(ae^{kx}) = \text{In}(a) + kx.$ \odot V = A + kx where A=ln(a).

 \odot Suppose $y = ae^{kx}$. a and k are constants. Define new variable V=ln(y). $\sqrt{\sigma V} = \ln(y) = \ln(ae^{kx}) = \ln(a) + kx.$ $\circ \circ \vee$ = A + kx where A=ln(a). **On a semi-log plot, y= ae^{kx} looks linear.**

Suppose $y = ax^p$.

Suppose $y = ax^p$.

Define new variable V=ln(y).

Suppose $y = ax^p$. Define new variable V=ln(y). $\textcircled{ }V = \text{In}(y) = \text{In}(ax^p) = \text{In}(a) + p \text{In}(x).$

Suppose $y = ax^p$. Define new variable V=ln(y). \textcircled{a} V = ln(y) = ln(ax^p) = ln(a) + p ln(x). $\textcircled{8}$ V = A + pU where A=ln(a), U=ln(x).

Suppose $y = ax^p$. Define new variable V=ln(y). $\circledast \vee = \text{In}(y) = \text{In}(ax^p) = \text{In}(a) + p \text{In}(x).$ $\textcircled{8}$ V = A + pU where A=ln(a), U=ln(x). ⊗ On a log-log plot, y=ax^p looks linear.

Regular, log-log and semilog plots

Two data sets.

Power function?

Exponential function?

Regular x-y plot.

Plot Yi=ln(yi) versus xi.

Conclude that:

- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function. (D) Orange is exponential.

Semi-log plot.

Plot Yi=ln(yi) versus xi.

Conclude that:

- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function. (D) Orange is exponential.

Semi-log plot.

$Plot Y_i=ln(y_i)$ versus $X_i=ln(x_i)$.

Conclude that:

- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function. (D) Orange is exponential.

Log-log plot.

$Plot Y_i=ln(y_i)$ versus $X_i=ln(x_i)$.

- Conclude that:
- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function. (D) Orange is exponential.

Log-log plot.