Today

- \oslash ln(x) as inverse function for e^{x} .
- o Derivative of ln(x).
- Ø Derivative of a[×].
- \oslash Converting between a^{\times} and $e^{k \times}$.
- Note that topics covered on Midterm 1 might reappear on Midterm 2 in the context of exponential and logarithmic functions. (definition of derivative, product/quotient rules, tangent lines, linear approximation, Newton's method)

Friday, October 24, 2014

e is a "pure" number without units, called dimensionless.

e is a "pure" number without units, called dimensionless.

This means e^a for any a is also dimensionless.

- e is a "pure" number without units, called dimensionless.
- \oslash This means e^a for any a is also dimensionless.
- Furthermore, the exponent, a, must also be dimensionless.

- e is a "pure" number without units, called dimensionless.
- \oslash This means e^a for any a is also dimensionless.
- Surthermore, the exponent, a, must also be dimensionless.
- If y(t) = y₀e^{-kt}, and t is time in seconds, what must be the units of k?

(A) The function g(x) for which g(f(x))=x.

- (B) The mirror image of graph of f(x) in the line y=x.
- (C) 1/f(x)
- (D) -f(x)

(A) The function g(x) for which g(f(x))=x.

- (B) The mirror image of graph of f(x) in the line y=x.
- (C) 1/f(x)
- (D) -f(x)

(A) The function g(x) for which g(f(x))=x. g(x) = f⁻¹(x)
(B) The mirror image of graph of f(x) in the line y=x.

- (C) 1/f(x)
- (D) -f(x)

(A) The function g(x) for which g(f(x))=x. g(x) = f⁻¹(x)
(B) The mirror image of graph of f(x) in the line y=x. <--might not be a function.
(C) 1/f(x)
(D) -f(x)

(A) The function g(x) for which g(f(x))=x. g(x) = f⁻¹(x)
(B) The mirror image of graph of f(x) in the line y=x. <--might not be a function.
(C) 1/f(x)
(D) -f(x)

(A) The function g(x) for which g(f(x))=x. g(x) = f⁻¹(x)
(B) The mirror image of graph of f(x) in the line y=x. <--might not be a function.
(C) 1/f(x)
(D) -f(x)

(A) The function g(x) for which g(f(x))=x. g(x) = f⁻¹(x)
(B) The mirror image of graph of f(x) in the line y=x. <--might not be a function.
(C) 1/f(x)
(D) -f(x)

 $f^{-1}(x)$ is the function that goes backwards through f(x). If you plug the output of f(x) into $f^{-1}(x)$, you will get back to x.

Let $f(x)=e^{x}$. Define ln(x)to be $f^{-1}(x)$.

Which of the following is false? (A) If $a=e^{b}$ and $c=e^{d}$ then ln(a/c) = b-d. (B) If $a=e^{b}$ and $c=e^{d}$ then ln(a-c) = b/d. (C) If $c=a^d$ then ln(c) = d ln(a). (D) If $a=e^{b}$ and $c=a^{d}$ then ln(c) = bd. (E) If $a=e^{b}$ and $c=e^{d}$ then ln(ac) = b+d.

Let $f(x)=e^{x}$. Define ln(x)to be $f^{-1}(x)$.

Which of the following is false? (A) If $a=e^{b}$ and $c=e^{d}$ then ln(a/c) = b-d. (B) If $a=e^{b}$ and $c=e^{d}$ then ln(a-c) = b/d. (C) If $c=a^d$ then ln(c) = d ln(a). (D) If $a=e^{b}$ and $c=a^{d}$ then ln(c) = bd. (E) If $a=e^{b}$ and $c=e^{d}$ then ln(ac) = b+d.

Let $f(x)=e^{x}$. Define ln(x)to be $f^{-1}(x)$.

Which of the following is false? (A) If $a=e^{b}$ and $c=e^{d}$ then ln(a/c) = b-d. (B) If $a=e^{b}$ and $c=e^{d}$ then ln(a-c) = b/d. (C) If $c=a^d$ then ln(c) = d ln(a). (D) If $a=e^{b}$ and $c=a^{d}$ then ln(c) = bd. (E) If $a=e^{b}$ and $c=e^{d}$ then ln(ac) = b+d. $ln(x) = natural logarithm of x = log_e(x))$

Friday, October 24, 2014

 \oslash If y = ln(x) then $e^y = e^{ln(x)} =$

Derivative of ln(x) If y = ln(x) then e^y = e^{ln(x)} = $(A) \quad 1$ (B) x (C) 1/x (D) e

If y = ln(x) then $e^{y} = e^{\ln(x)} =$ (A) 1
(B) x
(C) 1/x
(D) e

If y = ln(x) then $e^y = e^{\ln(x)} = f(f^{-1}(x)) = x.$

If y = ln(x) then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x.$

Implicit differentiation:

(A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$

If y = ln(x) then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x.$

Implicit differentiation:

(A) e^{y'} = 1
(B) e^yy' = 1
(C) e^y = x'
(D) ye^{y-1} = 1
Solve for y':

If y = ln(x) then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x.$

Implicit differentiation:

(A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y': $y' = e^{-y}$

If y = ln(x) then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x.$

Implicit differentiation:

(A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y': $y' = e^{-y} = 1/x$

If y = ln(x) then $e^y = e^{ln(x)} = f(f^{-1}(x)) = x.$

Implicit differentiation:

(A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y': $y' = e^{-y} = 1/x$

$f(x)=a^{x}$. $f'(x)=C_{a}a^{x}$. $C_{a}=??$

Recall that we got stuck on this derivative.
 Time to get unstuck...

(A) $f'(x) = e^{\ln(2)x}$. (B) $f'(x) = \ln(2)e^{\ln(2)x}$. (C) $f'(x) = \ln(2) \cdot 1/2 \cdot e^{\ln(2)x}$. (D) $f'(x) = \ln(2)xe^{\ln(2)x-1}$.

$$f(x) = e^{\ln(2)x}.$$

 $f(x) = e^{\ln(2)x}$

(A) $f'(x) = e^{\ln(2)x}$. (B) $f'(x) = \ln(2)e^{\ln(2)x}$. (C) $f'(x) = \ln(2) \cdot 1/2 \cdot e^{\ln(2)x}$. (D) $f'(x) = \ln(2)xe^{\ln(2)x-1}$.

 $f(x) = e^{\ln(2)x}$.

(A) f(x) = 2x. (B) $f(x) = (e^{\ln(2)})^x = 2^x$. (C) $f(x) = e^{\ln(2)} e^x = 2e^x$. (D) $f(x) = e^{\ln(x^2)} = x^2$.

 $f(x) = e^{\ln(2)x}$.

(A) f(x) = 2x. (B) $f(x) = (e^{\ln(2)})^{x} = 2^{x}$. (C) $f(x) = e^{\ln(2)} e^{x} = 2e^{x}$. (D) $f(x) = e^{\ln(x^{2})} = x^{2}$.

Friday, October 24, 2014

$f(x) = e^{\ln(2)x} --> f'(x) = \ln(2)e^{\ln(2)x}.$

If $f(x) = e^{\ln(2)x} - -> f'(x) = \ln(2)e^{\ln(2)x}$.
If $f(x) = e^{\ln(2)x} - -> f(x) = 2^x$.

f(x) =
$$e^{\ln(2)x} --> f'(x) = \ln(2)e^{\ln(2)x}$$
f(x) = $e^{\ln(2)x} --> f(x) = 2^x$.
So f(x) = $2^x --> f'(x) = 2^x \ln(2)$.

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a)

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a)

What value of k makes $a^{\times} = e^{k \times}$?

 $a^{\times} = (e^k)^{\times}$

(A) $k = e^a$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a)

 $a^{\times} = (e^k)^{\times}$ (A) $k = e^a$ $a = e^{k}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a)

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a)

 $a^{\times} = (e^{k})^{\times}$ $a = e^{k}$ $\ln(a) = \ln(e^{k})$

(A) $k=e^{a}$ (B) $k=e^{-a}$ (C) k=ln(a) $a^{\times} = (e^{k})^{\times}$ $a = e^{k}$ $ln(a) = ln(e^{k})$ ln(a) = k ln(e)

(D) k = -ln(a)

(E) k = ln(-a)

What value of k makes

 $a^{x} = e^{kx}$?

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a) $a^{\times} = (e^{k})^{\times}$ $a = e^{k}$ $ln(a) = ln(e^{k})$ ln(a) = k ln(e)ln(a) = k

 $(A) k = e^{a}$ (B) $k = e^{-a}$ (C) k=ln(a) (D) k = -ln(a)(E) k = ln(-a)

 $a^{\times} = (e^k)^{\times}$ $a = e^{k}$ $ln(a) = ln(e^k)$ ln(a) = k ln(e)ln(a) = k $f(x) = a^{\times} = e^{\ln(a) \times n}$ $--> f'(x) = a^{x} ln(a).$

Which of following is the graph of ln(x)?

Log-log and semi-log plots

- A log-log plot is a plot on which you plot log(y) versus log(x) instead of y versus x.
- A semi-log plot is a plot on which you plot log(y) versus x instead of y versus x.

Log-log and semi-log plots

- A log-log plot is a plot on which you plot log(y) versus log(x) instead of y versus x.
- A semi-log plot is a plot on which you plot log(y) versus x instead of y versus x.

Suppose y = ae^{kx} . a and k are constants.

Suppose y = ae^{kx}. a and k are constants.
Define new variable V=ln(y).

Suppose y = ae^{kx}. a and k are constants.
 Define new variable V=ln(y).
 V = ln(y) = ln(ae^{kx}) = ln(a) + kx.

Suppose y = ae^{kx}. a and k are constants.
Define new variable V=ln(y).
V = ln(y) = ln(ae^{kx}) = ln(a) + kx.
V = A + kx where A=ln(a).

Suppose y = ae^{kx}. a and k are constants.
Define new variable V=ln(y).
V = ln(y) = ln(ae^{kx}) = ln(a) + kx.
V = A + kx where A=ln(a).
On a semi-log plot, y= ae^{kx} looks linear.

 \oslash Suppose y = ax^p .

Suppose y = ax^p.

Define new variable V=ln(y).

Suppose y = ax^p.
Define new variable V=ln(y).
V = ln(y) = ln(ax^p) = ln(a) + p ln(x).

Suppose y = ax^p.
Define new variable V=ln(y).
V = ln(y) = ln(ax^p) = ln(a) + p ln(x).
V = A + pU where A=ln(a), U=ln(x).

Suppose y = ax^p.
Define new variable V=ln(y).
V = ln(y) = ln(ax^p) = ln(a) + p ln(x).
V = A + pU where A=ln(a), U=ln(x).
On a log-log plot, y=ax^p looks linear.

Regular, log-log and semilog plots

Two data sets.

Power function?

Exponential function?

Regular x-y plot.

Plot $Y_i = ln(y_i)$ versus x_i .

Conclude that:

- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function.(D) Orange is exponential.

Semi-log plot.

Plot $Y_i = ln(y_i)$ versus x_i .

Conclude that:

- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function.(D) Orange is exponential.

Semi-log plot.

Plot $Y_i = ln(y_i)$ versus $X_i = ln(x_i)$.

Conclude that:

- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function.(D) Orange is exponential.

Log-log plot.

Plot $Y_i = ln(y_i)$ versus $X_i = ln(x_i)$.

- Conclude that:
- (A) Blue is power function.
- (B) Blue is exponential.
- (C) Orange is power function.(D) Orange is exponential.

Log-log plot.