Today

- An optimizatoion example Residuals, SSR, Least squares Ø Reminders: No class on Monday (Thanksgiving) OSH 4 due Wednesday Regular PLQs.
- Wednesday bring laptop/tablet for spreadsheet practice

Two quantities relevant to solving this problem are: (A) x = 5/60 + , y = 5/60 (60-t).(B) x = 5(t-2), y=5(3-t).(C) x = 5-2, y=5+3.(D) x = 5t-2, y=5t-3.

Two quantities relevant to solving this problem are: (A) x = 5/60 + , y = 5/60 (60-t).(B) x = 5(t-2), y=5(3-t).(C) x = 5-2, y=5+3.(D) x = 5t-2, y=5t-3.

Objective function to be minimized: (A) f(t) = 25|t| + 25|60-t|(B) $f(t) = 5/60 \text{ sqrt}(2t^2)$ (C) $f(t) = t^2 + (60-t)^2$ (D) $f(t) = \text{sqrt}(25(t-2)^2 + 25(3-t)^2)$

Objective function to be minimized:

(A)
$$f(t) = 25|t| + 25|60-t|$$

(B)
$$f(t) = 5/60 \text{ sqrt}(2t^2)$$

 $(C) f(t) = t^2 + (60-t)^2$

Figure it out – this is a homework problem, after all.

(D) $f(t) = sqrt(25(t-2)^2 + 25(3-t)^2)$

- When minimizing the function f(t), if the derivatives are easier to calculate, we can minimize the function _____ instead.
 - (A) $g(t) = f(t)^2$
 - (B) h(t) = 1/f(t)
 - (C) $k(t) = f(t)^3$
 - (D) You have to minimize f(t).

When minimizing the function f(t), if the derivatives are easier to calculate, we can minimize the function _____ instead.

Expectation: The boats will be closest together... (A) at 2 pm. (B) at 3 pm. (C) sometime between 2 pm and 3 pm. (D) before 2 pm. (E) after 2 pm.

Constraint:

(A) The minimum distance must occur between 2 pm and 3 pm.

(B) $x(t)^2 + y(t)^2 = t^2/6$.

(C) x(t) = 60-y(t).

(D) There isn't really a constraint for this problem.

How do we find the best line to fit through the data?

Friday, October 10, 2014

How do we find the best line to fit through the data?

Friday, October 10, 2014

Friday, October 10, 2014

Each red bar is called a residual. We want all the residuals to be as small as possible.

The residuals are...

(A) $r_i = y_i^2 + x_i^2$ (B) $r_i = a^2 (y_i^2 + x_i^2)$ (C) $r_i = y_i - ax_i$ (D) $r_i = y_i - x_i$ (E) $r_i = x_i - y_i$

The residuals are...

(A) $r_i = y_i^2 + x_i^2$ (B) $r_i = a^2 (y_i^2 + x_i^2)$ (C) $r_i = y_i - ax_i$ (D) $r_i = y_i - x_i$ (E) $r_i = x_i - y_i$

To minimize the residuals, we define the objective function...

(A) $f(a) = |y_1 - ax_1| + |y_2 - ax_2| + ... + |y_n - ax_n|$ (B) $f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + ... + (y_n - ax_n)^2$ (C) $f(a) = (y_1 - ax_1)(y_2 - ax_2)...(y_n - ax_n)$ (D) $f(a) = (ay_1 - x_1)^2 + (ay_2 - x_2)^2 + ... + (ay_n - x_n)^2$

To minimize the residuals, we define the objective function... (A) $f(a) = |y_1 - ax_1| + |y_2 - ax_2| + ... + |y_n - ax_n|$ (B) $f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2 + ... + (y_n - ax_n)^2$ (C) $f(a) = (y_1 - ax_1)(y_2 - ax_2)...(y_n - ax_n)$ (D) $f(a) = (ay_1 - x_1)^2 + (ay_2 - x_2)^2 + ... + (ay_n - x_n)^2$ (B) is called the "sum of squared residuals". (A) is also reasonable but not as "good" (take a stats class to find out more).

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Define f(a): (A) SSR(a) = |5-4a| + |7-6a|(B) $SSR(a) = (4-5a)^2 + (6-7a)^2$ (C) $SSR(a) = (5-4a)^2 + (7-6a)^2$ (D) $SSR(a) = (5-4-a)^2 + (7-6-a)^2$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Define f(a): (A) SSR(a) = |5-4a| + |7-6a|(B) $SSR(a) = (4-5a)^2 + (6-7a)^2$ (C) $SSR(a) = (5-4a)^2 + (7-6a)^2$ (D) $SSR(a) = (5-4-a)^2 + (7-6-a)^2$ Recall: $f(a) = (y_1 - ax_1)^2 + (y_2 - ax_2)^2$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): (A)a = 7/6(B) a = 5/4(C)a = (7/6 + 5/4) / 2(D)a = 31/26

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): (A)a = 7/6(B) a = 5/4(C)a = (7/6 + 5/4) / 2(D)a = 31/26

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense.

Find the a that minimizes SSR(a):

 $SSR(a) = (5-4a)^2 + (7-6a)^2$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense.

Find the a that minimizes SSR(a):

 $SSR(a) = (5-4a)^{2} + (7-6a)^{2}$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2}$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense.

Find the a that minimizes SSR(a):

 $SSR(a) = (5-4a)^{2} + (7-6a)^{2}$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^2 a - 2 \cdot 6 \cdot 7$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a = 0$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a = 0$ $a = (2 \cdot 4 \cdot 5 + 2 \cdot 6 \cdot 7) /$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a = 0$ $a = (2 \cdot 4 \cdot 5 + 2 \cdot 6 \cdot 7) / (2 \cdot 4^2 + 2 \cdot 6^2)$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a = 0$ $a = (2 \cdot 4 \cdot 5 + 2 \cdot 6 \cdot 7) / (2 \cdot 4^2 + 2 \cdot 6^2)$ $= (4 \cdot 5 + 6 \cdot 7) / (4^2 + 6^2)$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a = 0$ $a = (2 \cdot 4 \cdot 5 + 2 \cdot 6 \cdot 7) / (2 \cdot 4^2 + 2 \cdot 6^2)$ $=(4 \cdot 5 + 6 \cdot 7) / (4^2 + 6^2) = 62/52$

Find a so that y=ax fits (4,5), (6,7) in the "least squares" sense. Find the a that minimizes SSR(a): $SSR(a) = (5-4a)^2 + (7-6a)^2$ $= 5^{2} - 2 \cdot 4 \cdot 5a + 4^{2}a^{2} + 7^{2} - 2 \cdot 6 \cdot 7a + 6^{2}a^{2}$ $SSR'(a) = -2 \cdot 4 \cdot 5 + 2 \cdot 4^{2}a - 2 \cdot 6 \cdot 7 + 2 \cdot 6^{2}a = 0$ $a = (2 \cdot 4 \cdot 5 + 2 \cdot 6 \cdot 7) / (2 \cdot 4^2 + 2 \cdot 6^2)$ $= (4 \cdot 5 + 6 \cdot 7) / (4^2 + 6^2) = 62/52$ $= (x_1 \cdot y_1 + x_2 \cdot y_2) / (x_1^2 + x_2^2)$