Today

- Solving linear DEs: $y' = ay + b$.
- Note: office hour today is either in my office 12-1 pm or in MATX 1102 from 12:30-1:30 pm due to construction.
Solution method analogy

Document camera...
Solution method analogy

Solve $x^2-4x-12 = 0$ by substituting $y = x-2$.

Plug in $x = y+2$:

- $0 = (y+2)^2 - 4(y+2) - 12$
- $0 = y^2 + 4y + 4 - 4y - 8 - 12 = y^2 - 16$
- $y = 4, -4$.

Idea: Shift so the vertex of the parabola is at $y=0$ instead of at $x=2$.

Idea: For $y'=ay+b$, shift so that steady state is at $z=0$.
Example: solve $y' = 2y + 10$
General case: solving $y' = ay + b$

$y' = ay + b$

$z' = az$
General case: solving $y' = ay + b$

$y' = ay + b$

$z' = az$

- Want to solve y eqn. Know solution to z eqn.
General case: solving $y' = ay + b$

$y' = ay + b$

$z' = az$

- Want to solve y eqn. Know solution to z eqn.
- Velocities are exactly the same, just shifted.
Want to solve y eqn. Know solution to z eqn.

Velocities are exactly the same, just shifted.

Shift $y(t)$ down by $-b/a$: $z(t) = y(t) - (-b/a)$
General case: solving $y' = ay + b$

$y' = ay + b$

$z' = az$

- Want to solve y eqn. Know solution to z eqn.
- Velocities are exactly the same, just shifted.
- Shift $y(t)$ down by $-b/a$: $z(t) = y(t) - (-b/a)$
- The equation for $z(t)$ is $z' = az$. Solve it.
General case: solving $y' = ay + b$

$y' = ay + b$

$z' = az$

- Want to solve y eqn. Know solution to z eqn.
- Velocities are exactly the same, just shifted.
- Shift $y(t)$ down by $-b/a$: $z(t) = y(t) - (-b/a)$
- The equation for $z(t)$ is $z' = az$. Solve it.
- Substitute back to get $y(t)$ which solves $y' = ay + b$.
To solve $y' = ay + b$ with $y(0) = y_0$, define a new function

$$z(t) = y(t) - (-b/a) \quad \text{(subtract steady st.)}$$

What equation does $z(t)$ solve?

Note that

$$z'(t) = y'(t)$$

So we can replace y' by z' and $ay + b$ by az

New equation: $z' = az$. Solved by $z(t) = z_0 e^{at}$.

$y(t) = z_0 e^{at} - b/a$. What is z_0? Set $t = 0$. . . $z_0 = y_0 + b/a$

Solution: $y(t) = (y_0 + b/a) e^{at} - b/a$.

General case: solving $y' = ay + b$
Where do these equations come from?
An application...
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

\begin{align*}
(A) \quad d'(t) &= k_{IV} - k_m \, d(t) \\
(B) \quad d'(t) &= (k_{IV} - k_m) \, d(t) \\
(C) \quad d'(t) &= k_{IV} \, d(t) - k_m \\
(D) \quad d'(t) &= -k_{IV} + k_m \, d(t)
\end{align*}
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

\[(A) \quad d'(t) = k_{IV} - k_m \, d(t)\]

\[(B) \quad d'(t) = (k_{IV} - k_m) \, d(t)\]

\[(C) \quad d'(t) = k_{IV} \, d(t) - k_m\]

\[(D) \quad d'(t) = -k_{IV} + k_m \, d(t)\]
\[d'(t) = k_{IV} - k_m d(t) \text{ with IC } d(0)=0 \]

You measure the mass of drug in the patient’s body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_{IV} \).

(A) \(k_{IV} = 1 \)
(B) \(k_{IV} = 2 \)
(C) \(k_{IV} = 3 \)
(D) \(k_{IV} = 6 \)
\[d'(t) = k_{IV} - k_m d(t) \text{ with IC } d(0) = 0 \]

You measure the mass of drug in the patient's body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_{IV} \).

(A) \(k_{IV} = 1 \)
(B) \(k_{IV} = 2 \)
(C) \(k_{IV} = 3 \)
(D) \(k_{IV} = 6 \)
\[d'(t) = k_{IV} - k_m d(t) \text{ with IC } d(0)=0 \]

You measure the mass of drug in the patient's body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_{IV} \).

\[d'(0) = k_{IV} - k_m d(0) \]

(A) \(k_{IV} = 1 \)

(B) \(k_{IV} = 2 \)

(C) \(k_{IV} = 3 \)

(D) \(k_{IV} = 6 \)
\[d'(t) = k_{IV} - k_m d(t) \text{ with IC } d(0)=0 \]

You measure the mass of drug in the patient's body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_{IV} \).

(A) \(k_{IV} = 1 \)

(B) \(k_{IV} = 2 \)

(C) \(k_{IV} = 3 \)

(D) \(k_{IV} = 6 \)
\[d'(t) = k_{IV} - k_m d(t) \text{ with IC } d(0)=0 \]

You measure the mass of drug in the patient’s body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_m \).

(A) \(k_m = 1 \)

(B) \(k_m = 2 \)

(C) \(k_m = 3 \)

(D) \(k_m = 6 \)
\[d'(t) = k_{IV} - k_m d(t) \quad \text{with IC } d(0)=0 \]

You measure the mass of drug in the patient's body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_m \).

(A) \(k_m = 1 \)

(B) \(k_m = 2 \)

(C) \(k_m = 3 \)

(D) \(k_m = 6 \)
\[d'(t) = k_{IV} - k_m d(t) \quad \text{with IC } d(0)=0 \]

You measure the mass of drug in the patient's body as a function of time, \(d(t) \), and plot it. Use the graph to determine the constant \(k_m \).

(A) \(k_m = 1 \)

(B) \(k_m = 2 \)

(C) \(k_m = 3 \)

(D) \(k_m = 6 \)

\[D_{ss} = \frac{k_{IV}}{k_m} = 3 \]
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

\[d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0. \]

(A) $d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{k_m t}$

(B) $d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t}$

(C) $d(t) = \frac{k_{IV}}{k_m} - e^{k_m t}$

(D) $d(t) = \frac{k_{IV}}{k_m} - e^{-k_m t}$

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

\[d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0. \]

(A) \(d(t) = \frac{k_{IV}}{k_m} \left(1 - \frac{k_{IV}}{k_m} e^{k_m t} \right) \)

(B) \(d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t} \)

(C) \(d(t) = \frac{k_{IV}}{k_m} - e^{k_m t} \)

(D) \(d(t) = \frac{k_{IV}}{k_m} - e^{-k_m t} \)

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate \(k_{IV} \). The body metabolizes the drug proportional to the amount of the drug.

\[
d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0.
\]

(A) \(d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{k_m t} \) ← exp growth (unstable s.s.)

(B) \(d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t} \)

(C) \(d(t) = \frac{k_{IV}}{k_m} - e^{k_m t} \)

(D) \(d(t) = \frac{k_{IV}}{k_m} - e^{-k_m t} \)

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

\[d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0. \]

(A) \[d(t) = k_{IV}/k_m - k_{IV}/k_m e^{k_m t} \quad \leftarrow \text{exp growth (unstable s.s.)} \]

(B) \[d(t) = k_{IV}/k_m - k_{IV}/k_m e^{-k_m t} \]

(C) \[d(t) = k_{IV}/k_m - e^{k_m t} \quad \leftarrow \text{exp growth (unstable s.s.)} \]

(D) \[d(t) = k_{IV}/k_m - e^{-k_m t} \]

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

\[d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0. \]

(A) \[d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{k_m t} \quad \leftarrow \text{exp growth (unstable s.s.)} \]

(B) \[d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t} \]

(C) \[d(t) = \frac{k_{IV}}{k_m} - e^{k_m t} \quad \leftarrow \text{exp growth (unstable s.s.)} \]

(D) \[d(t) = \frac{k_{IV}}{k_m} - e^{-k_m t} \quad \leftarrow d(0) = \frac{k_{IV}}{k_m} - 1 \quad \times \]

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

$$d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0.$$

(A) $d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{k_m t}$ ← exp growth (unstable s.s.)

(B) $d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t}$

(C) $d(t) = \frac{k_{IV}}{k_m} - e^{k_m t}$ ← exp growth (unstable s.s.)

(D) $d(t) = \frac{k_{IV}}{k_m} - e^{-k_m t}$ ← $d(0) = \frac{k_{IV}}{k_m} - 1$

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

$$d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0.$$

(A) $d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{k_m t}$ ← exp growth (unstable s.s.)

(B) $d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t}$ ← how quickly does it get there? where is it going?

(C) $d(t) = \frac{k_{IV}}{k_m} - e^{k_m t}$ ← exp growth (unstable s.s.)

(D) $d(t) = \frac{k_{IV}}{k_m} - e^{-k_m t}$ ← $d(0) = \frac{k_{IV}}{k_m} - 1 \ X$

(E) Not sure how to do this one.
A drug delivered by IV accumulates at a constant rate k_{IV}. The body metabolizes the drug proportional to the amount of the drug.

$$d'(t) = k_{IV} - k_m d(t), \quad d(0) = 0.$$

(A) \[d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{k_m t} \quad \leftarrow \text{exp growth (unstable s.s.)} \]

(B) \[d(t) = \frac{k_{IV}}{k_m} - \frac{k_{IV}}{k_m} e^{-k_m t} \quad \text{how quickly does it get there?} \quad \text{where is it going?} \]

(C) \[d(t) = \frac{k_{IV}}{k_m} - e^{k_m t} \quad \leftarrow \text{exp growth (unstable s.s.)} \]

(D) \[d(t) = k_{IV}/k_m - e^{-k_m t} \quad \leftarrow d(0) = k_{IV}/k_m - 1 \quad \times \]

(E) Not sure how to do this one.