

In(x) as inverse function for e^x.
Derivative of In(x).

What is the definition of the inverse function of f(x)?

(A) The function g(x) for which g(f(x))=x.
(B) The function whose graph is the mirror image of graph of f(x) in the line y=x.
(C) 1/f(x)
(D) -f(x)

What is the definition of the inverse function of f(x)?

(A) The function g(x) for which g(f(x))=x.

(B) The function whose graph is the mirror image of graph of f(x) in the line y=x.
(C) 1/f(x)
(D) -f(x)

What is the domain of f(x)=e^x?

(A) All real x.
(B) All x>0.
(C) All x≥0.
(D) All x<0.

What is the domain of f(x)=e^x?

(A) All real x.

(B) All x>0.
(C) All x≥0.
(D) All x<0.

What is the range of f(x)=e^x?

(A) All real y.
(B) All y>0.
(C) All y≥0.
(D) All y<0.

What is the range of f(x)=e^x?

(A) All real y.
(B) All y>0.
(C) All y≥0.
(D) All y<0.

Let $f(x)=e^{x}$. Define ln(x)to be $f^{-1}(x)$.

Which of the following is false? (A) If $a=e^{b}$ and $c=e^{d}$ then ln(a/c) = b-d. (B) If $a=e^{b}$ and $c=e^{d}$ then ln(a-c) = b/d. (C) If $c=a^d$ then ln(c) = d ln(a). (D) If $a=e^{b}$ and $c=a^{d}$ then ln(c) = bd. (E) If $a=e^{b}$ and $c=e^{d}$ then ln(ac) = b+d.

Let $f(x)=e^{x}$. Define ln(x)to be $f^{-1}(x)$.

Which of the following is false? (A) If $a=e^{b}$ and $c=e^{d}$ then ln(a/c) = b-d. (B) If $a=e^{b}$ and $c=e^{d}$ then ln(a-c) = b/d. (C) If $c=a^d$ then ln(c) = d ln(a). (D) If $a=e^{b}$ and $c=a^{d}$ then ln(c) = bd. (E) If $a=e^{b}$ and $c=e^{d}$ then ln(ac) = b+d.

What is the domain of f(x)=ln(x)?

(A) All real x.
(B) All x>0.
(C) All x≥0.
(D) All x<0.

What is the domain of f(x)=ln(x)?

(A) All real x.
(B) All x>0.
(C) All x≥0.
(D) All x<0.

What is the range of f(x)=ln(x)?

(A) All real y.
(B) All y>0.
(C) All y≥0.
(D) All y<0.

What is the range of f(x)=ln(x)?

(A) All real y.

(B) All y>0.
(C) All y≥0.
(D) All y<0.

 \odot If y = ln(x) then e^y=x.

 \odot If y = ln(x) then e^y=x. Implicit diff: (A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$

If y = ln(x) then $e^{y} = x$. Implicit diff: (A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y':

If $y = \ln(x)$ then $e^y = x$. Implicit diff: (A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y': $y' = e^{-y}$

If $y = \ln(x)$ then $e^y = x$. Implicit diff: (A) $e^{y'} = 1$ (B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y': $y' = e^{-y} = 1/x$

--> f'(x) = 1/x

If y = ln(x) then $e^{y} = x$. Implicit diff: (A) $e^{y'} = 1$ f(x) = ln(x)(B) $e^{y}y' = 1$ (C) $e^{y} = x'$ (D) $ye^{y-1} = 1$ Solve for y': $y' = e^{-y} = 1/x$