Review for Midterm 1

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -00
- (E) Does not exist

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -\infty
- (E) Does not exist

Indeterminate form "0/0".

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -X
- (E) Does not exist

$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -00
- (E) Does not exist

$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -\infty
- (E) Does not exist

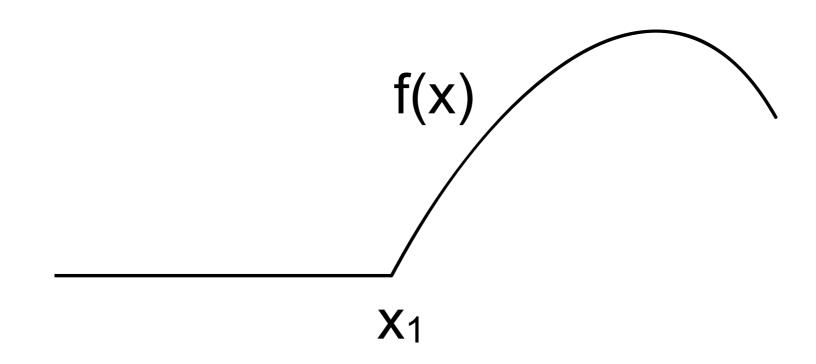
Indeterminate form "0/0".

$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x - 2}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -00
- (E) Does not exist

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4x + 4}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -\infty
- (E) Does not exist

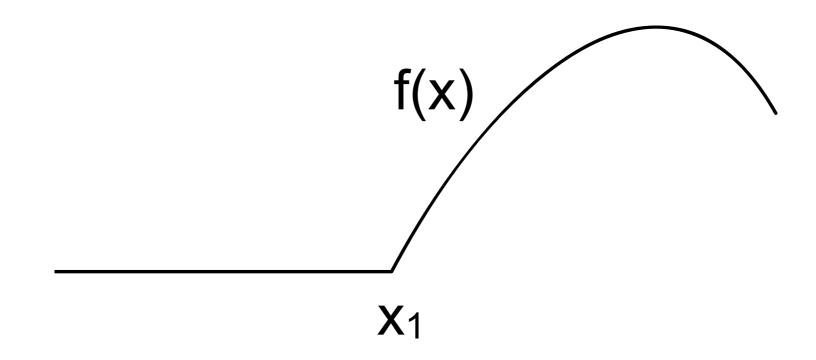

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4x + 4}$$

- (A) 0
- (B) 4
- (C) ∞
- (D) -\infty
- (E) Does not exist

Indeterminate form "0/0".

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4x + 4}$$

- (A) O
- (B) 4
- (C) ∞
- (D) -\infty
- (E) Does not exist

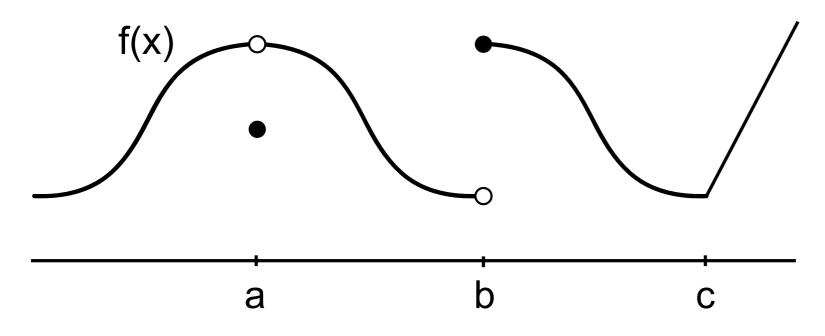


(A)
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x_1)}{h} = m > 0$$

(B)
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x_1)}{h} = 0$$

(C) Both (A) and (B)

(D) The limit does not exist.



(A)
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x_1)}{h} = m > 0$$

(B)
$$\lim_{h\to 0} \frac{f(x_1+h)-f(x_1)}{h} = 0$$

(C) Both (A) and (B)

(D) The limit does not exist.

(A) 1, 4

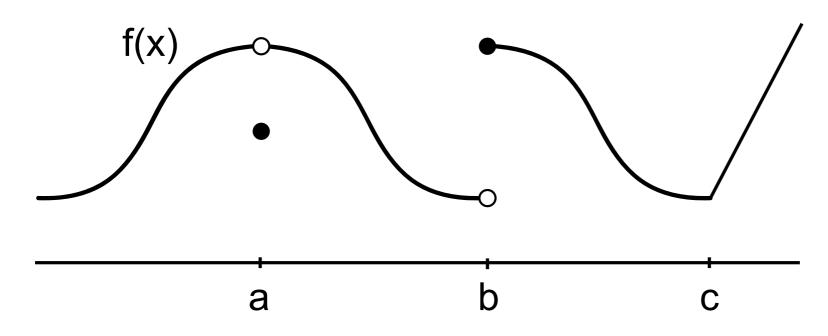
Which of the following are true?

(B) 2, 5

$$\lim_{x \to a} f(x) = f(a)$$

 $\lim_{x \to a} f(x) = f(a)$ 4. $\lim_{x \to a} f(x)$ exists.

(C) 3


2.
$$\lim_{x \to b} f(x) = f(b)$$

 $\lim_{x \to b} f(x) = f(b)$ 5. $\lim_{x \to b} f(x)$ exists.

(D) 4

3.
$$\lim_{x\to c} f(x)$$
 does not exist.

(E) 5

(A) 1, 4

Which of the following are true?

(B) 2, 5

$$\lim_{x \to a} f(x) = f(a)$$

 $\lim_{x \to a} f(x) = f(a)$ 4. $\lim_{x \to a} f(x)$ exists.

(C) 3

2.
$$\lim_{x \to b} f(x) = f(b)$$

 $\lim_{x \to b} f(x) = f(b)$ 5. $\lim_{x \to b} f(x)$ exists.

(D) 4

3.
$$\lim_{x\to c} f(x)$$
 does not exist.

(E) 5

What is $\lim_{x\to -\infty}$

$$\lim_{x \to -\infty} \frac{3x^n + x^2 - 1}{x^3 + 4}?$$

- \circ (A) If n=2, the limit is $-\infty$.
- \odot (B) If n=3, the limit is ∞ .
- \circ (C) If n>3 and even, the limit is $-\infty$.
- \circ (D) If n>3 and odd, the limit is $-\infty$.

What is $\lim_{x\to -\infty}$

$$\lim_{x \to -\infty} \frac{3x^n + x^2 - 1}{x^3 + 4}?$$

- \circ (A) If n=2, the limit is $-\infty$.
- \circ (B) If n=3, the limit is ∞ .
- \circ (D) If n>3 and odd, the limit is $-\infty$.

Find tangent line to $f(x)=x^2$ that goes through (1,-1).

Point of tangency is at

(A)
$$(1 + \sqrt{2}, 3 - 2\sqrt{2})$$

(B)
$$(1 + \sqrt{2}, 3 + 2\sqrt{2})$$

$$(C)$$
 $(1, -1)$

(D)
$$(1-\sqrt{2},3-2\sqrt{2})$$

Find tangent line to $f(x)=x^2$ that goes through (1,-1).

Point of tangency is at

(A)
$$(1 + \sqrt{2}, 3 - 2\sqrt{2})$$

(B)
$$(1 + \sqrt{2}, 3 + 2\sqrt{2})$$

$$(C)$$
 $(1, -1)$

(D)
$$(1 - \sqrt{2}, 3 - 2\sqrt{2})$$

Which is true?

- (A) If f'(1/2)=0, then x=1/2 must be a max or min of f(x).
- (B) If f(0)=0 and f'(x)<0 for 0< x<1, then f(1/2)<0.
- (C) If f''(1/2) = 0, then x=1/2 must be an inflection point of f(x).
- (D) If f'(1/2)=0 and f''(1/2)<0, then x=1/2 must be a min.

Which is true?

- (A) If f'(1/2)=0, then x=1/2 must be a max or min of f(x).
- (B) If f(0)=0 and f'(x)<0 for 0< x<1, then f(1/2)<0.
- (C) If f''(1/2) = 0, then x=1/2 must be an inflection point of f(x).
- (D) If f'(1/2)=0 and f''(1/2)<0, then x=1/2 must be a min.

(A)
$$f'(x) = 1 / (2x)$$

(B)
$$f'(x) = (1-x^2) / (1+x^2)^2$$

(C)
$$f'(x) = (1+x^2-2x) / (1+x^2)^2$$

(D)
$$f'(x) = 1/(1+x^2) - 2x / (1+x^2)^2$$

(A)
$$f'(x) = 1 / (2x)$$

(B)
$$f'(x) = (1-x^2) / (1+x^2)^2$$

(C)
$$f'(x) = (1+x^2-2x) / (1+x^2)^2$$

(D)
$$f'(x) = 1/(1+x^2) - 2x / (1+x^2)^2$$

(A)
$$f''(x) = 2x(x^2-3) / (1+x^2)^3$$

(B)
$$f''(x) = x(x^2-3) / (1+x^2)^2$$

(C)
$$f''(x) = x(x^2+1) / (1+x^2)^3$$

(D)
$$f''(x) = 2(x^2-1) / (1+x^2)^3$$

(A)
$$f''(x) = 2x(x^2-3) / (1+x^2)^3$$

(B)
$$f''(x) = x(x^2-3) / (1+x^2)^2$$

(C)
$$f''(x) = x(x^2+1) / (1+x^2)^3$$

(D)
$$f''(x) = 2(x^2-1) / (1+x^2)^3$$

Critical points
$$f'(x) = (1-x^2) / (1+x^2)^2$$

$$f''(x) = 2x(x^2-3) / (1+x^2)^3$$

- (A) x=1 is a min and x=-1 is a max.
- (B) x=1 is a max and x=-1 is a min.
- (C) x=1 is a max and x=-1 is neither.
- (D) x=1 is neither and x=-1 is a max.

Critical points
$$f'(x) = (1-x^2) / (1+x^2)^2$$

$$f''(x) = 2x(x^2-3) / (1+x^2)^3$$

- (A) x=1 is a min and x=-1 is a max.
- (B) x=1 is a max and x=-1 is a min.
- (C) x=1 is a max and x=-1 is neither.
- (D) x=1 is neither and x=-1 is a max.

Inflection points $f''(x) = 2x(x^2-3) / (1+x^2)^3$

- (A) x=0, $x=\sqrt{3}$, $x=-\sqrt{3}$ are all inflection points.
- (B) x=0 is not an inflection because f" doesn't change sign at x=0.
- (C) $x=\sqrt{3}$ is not an inflection point because f" doesn't change sign at $x=\sqrt{3}$.
- (D) Both $\sqrt{3}$ and $-\sqrt{3}$ are not inflection points because f" doesn't change sign at either of them.

Inflection points $f''(x) = 2x(x^2-3) / (1+x^2)^3$

- (A) x=0, $x=\sqrt{3}$, $x=-\sqrt{3}$ are all inflection points.
- (B) x=0 is not an inflection because f'' doesn't change sign at x=0.
- (C) $x=\sqrt{3}$ is not an inflection point because f" doesn't change sign at $x=\sqrt{3}$.
- (D) Both $\sqrt{3}$ and $-\sqrt{3}$ are not inflection points because f" doesn't change sign at either of them.

Inflection points - what if $f''(x) = 2x(x^2-3)^2 / (1+x^2)^3$

- (A) x=0, $x=\sqrt{3}$, $x=-\sqrt{3}$ are all inflection points.
- (B) x=0 is not an inflection because f" doesn't change sign at x=0.
- (C) $x=\sqrt{3}$ is not an inflection point because f" doesn't change sign at $x=\sqrt{3}$.
- (D) Both $\sqrt{3}$ and $-\sqrt{3}$ are not inflection points because f" doesn't change sign at either of them.

Inflection points - what if $f''(x) = 2x(x^2-3)^2 / (1+x^2)^3$

- (A) x=0, $x=\sqrt{3}$, $x=-\sqrt{3}$ are all inflection points.
- (B) x=0 is not an inflection because f" doesn't change sign at x=0.
- (C) $x=\sqrt{3}$ is not an inflection point because f" doesn't change sign at $x=\sqrt{3}$.
- (D) Both √3 and -√3 are not inflection points because f" doesn't change sign at either of them.

Make a table

	$(-10, -\sqrt{3})$	$-\sqrt{3}$	$(-\sqrt{3}, -1)$	-1	(-1,0)	0	(0,1)	1	$(1, \sqrt{3})$	$\sqrt{3}$	$(\sqrt{3}, 10)$
f(x)	-	_	_	-	_	0	+	+	+	+	+
f'(x)	-		-	0	+	+	+	0	-	-	_
f''(x)	_	0	+	+	+	0	_	-	_	0	+