

- Inverse trig review
- Derivatives of inverse (trig) functions
- Office hours next week: MWTh 1:30-3:30

Relate the two changing quantities: (A) $a^2 = b^2 + c^2$ (B) $a^2 = b^2 + c^2 - 2bc \cos(\theta)$ (C) $a/\sin(A) = b/\sin(B)$ (D) $\sin(\theta) = a/b$

Friday, November 28, 2014

6

Relate the two changing quantities: (A) $a^2 = b^2 + c^2$ (B) $a^2 = b^2 + c^2 - 2bc \cos(\theta)$ (C) $a/\sin(A) = b/\sin(B)$ (D) $\sin(\theta) = a/b$

Inverse trig $f(x) = sin(x) ---> f^{-1}(x) = arcsin(x)$

Friday, November 28, 2014

sin(x)

sin(x)

The domain of arcsin is...

(A) (-π/2, π/2)
(B) [-π/2, π/2]
(C) [0, π]
(D) (-1, 1)
(E) [-1, 1]

The domain of arcsin is...

(A) (-π/2, π/2)
(B) [-π/2, π/2]
(C) [0, π]
(D) (-1, 1)
(E) [-1, 1]

The range for arcsin(x) is...

(A) [-1, 1]
(B) [Ο, π]
(C) [-π, π]
(D) [-π/2, π/2]
(E) (-infinity, infinity)

The range for arcsin(x) is...

(A) [-1, 1]
(B) [Ο, π]
(C) [-π, π]
(D) [-π/2, π/2]
(E) (-infinity, infinity)

The domain for arccos(x) is...

The domain for arccos(x) is...

The range for arccos(x) is...

The range for arccos(x) is...

The domain for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)
(C) [0, pi]
(D) [0, infinity]
(E) (-infinity, infinity)

The domain for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)
(C) [0, pi]
(D) [0, infinity]
(E) (-infinity, infinity)

The range for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)
(C) [0, pi]
(D) [0, infinity]
(E) (-infinity, infinity)

The range for arctan(x) is...

(A) [-pi/2, pi/2]

For ANY inverse function, find its derivative implicitly...

- For ANY inverse function, find its derivative implicitly...

- For ANY inverse function, find its derivative implicitly...
- ostin(y) = x <--- rewrite in inverted mode

- For ANY inverse function, find its derivative implicitly...
- sin(y) = x <--- rewrite in inverted mode
 </pre>
- o cos(y) y' = 1 <--- take implicit derivative

- For ANY inverse function, find its derivative implicitly...
- omega sin(y) = x <--- rewrite in inverted mode
- o cos(y) y' = 1 <--- take implicit derivative

- For any inverse function, find its derivative implicitly...
- sin(y) = x <--- rewrite in inverted mode
 </pre>
- o cos(y) y' = 1 <--- take implicit derivative

- For any inverse function, find its derivative implicitly...
- sin(y) = x <--- rewrite in inverted mode
 </pre>
- o cos(y) y' = 1 <--- take implicit derivative

 $v' = 1/sqrt(1-x^2)$

What is the derivative of y=arccos(x)?

- (A) $sqrt(1-x^2)$
- (B) $1/sqrt(1-x^2)$
- (C) $x/sqrt(1-x^2)$
- (D) $-1/sqrt(1-x^2)$
- (E) 1/x

What is the derivative of y=arccos(x)?