$g(x) = 12x^3 - 12x^2$ has...

(A) a maximum at x=0 and a minimum at x=1/3.
(B) a minimum at x=0 and a maximum at x=1/3.
(C) a maximum at x=0 and an inflection pt at x=1/3.
(D) an inflection pt at x=0 and a minimum at x=1/3.

$g(x) = 12x^3 - 12x^2$ has...

(A) a maximum at x=0 and a minimum at x=1/3.
(B) a minimum at x=0 and a maximum at x=1/3.
(C) a maximum at x=0 and an inflection pt at x=1/3.
(D) an inflection pt at x=0 and a minimum at x=1/3.

$f(x) = 3x^4 - 4x^3$ has...

(A) a maximum at x=0 and a minimum at x=1.
(B) a minimum at x=0 and a maximum at x=1.
(C) a maximum at x=0 and an inflection pt at x=1.
(D) an inflection pt at x=0 and a minimum at x=1.

$f(x) = 3x^4 - 4x^3$ has...

(A) a maximum at x=0 and a minimum at x=1.
(B) a minimum at x=0 and a maximum at x=1.
(C) a maximum at x=0 and an inflection pt at x=1.
(D) an inflection pt at x=0 and a minimum at x=1.

How do you know? Next few slides will explain...

 $f(x) = 3x^4 - 4x^3$

$f'(x) = 12 (x^3 - x^2) = 0 --> x=0, x=1.$

 $f(x) = 3x^4 - 4x^3$

If $f'(x) = 12(x^3 - x^2) = 0 \longrightarrow x=0, x=1.$ If $f''(x) = 12(3x^2 - 2x).$

 $f(x) = 3x^4 - 4x^3$

f'(x) = 12 (x³ - x²) = 0 --> x=0, x=1.
f''(x) = 12 (3x² - 2x).
SDT: f''(1) = 1 > 0

 $f(x) = 3x^4 - 4x^3$

◊ f'(x) = 12 (x³ - x²) = 0 --> x=0, x=1.
◊ f''(x) = 12 (3x² - 2x).
◊ SDT: f''(1) = 1 > 0
--> f'(x) is increasing near x=1.

 $f(x) = 3x^4 - 4x^3$

f'(x) = 12 (x³ - x²) = 0 --> x=0, x=1.
f''(x) = 12 (3x² - 2x).
SDT: f''(1) = 1 > 0

--> f'(x) is increasing near x=1.
--> f'(x) goes from - to 0 to + near x=1.

 $f(x) = 3x^4 - 4x^3$

f'(x) = 12 (x³ - x²) = 0 --> x=0, x=1.
f"(x) = 12 (3x² - 2x).
SDT: f"(1) = 1 > 0

--> f'(x) is increasing near x=1.
--> f'(x) goes from - to 0 to + near x=1.
--> f(x) has a minimum at x=1.

 $f(x) = 3x^4 - 4x^3$

 $f'(x) = 12 (x^3 - x^2) = 0 --> x=0, x=1.$ $f''(x) = 12 (3x^2 - 2x).$ \odot SDT: f''(1) = 1 > 0--> f'(x) is increasing near x=1. --> f'(x) goes from - to 0 to + near x=1. --> f(x) has a minimum at x=1. SDT: f''(0) = 0 --> Min/max? Inflection point?

 $f(x) = 3x^4 - 4x^3$

 $f'(x) = 12 (x^3 - x^2) = 0 --> x=0, x=1.$ $f''(x) = 12 (3x^2 - 2x).$ Could also do FDT: \odot SDT: f''(1) = 1 > 0 $f'(0^{+/-})$ --> f'(x) is increasing near x=1. --> f'(x) goes from - to 0 to + near x=1. --> f(x) has a minimum at x=1. SDT: f''(0) = 0 --> Min/max? Inflection point?

Is x=0 an inflection point of $f(x) = 3x^4 - 4x^3$? (A) Yes because f''(0) = 0. (B) Yes because f''(0) = 0 and f'''(0) < 0. (C) No because f''(-1) = 60 and f''(1) = 12. (D) Yes because f''(-1) = 60 and f''(1/2) = -3.

Is x=0 an inflection point of $f(x) = 3x^4 - 4x^3$? (A) Yes because f''(0) = 0. (B) Yes because f''(0) = 0 and f'''(0) < 0. (C) No because f''(-1) = 60 and f''(1) = 12. (D) Yes because f''(-1) = 60 and f''(1/2) = -3.

> Note: $f'(x) = g(x) = 12x^3-12x^2$ from earlier and we agreed that g(x) had a max at x=0!

Is x=0 an inflection point of $f(x) = 3x^4 - 4x^3$? (A) Yes because f''(0) = 0. (B) Yes because f''(0) = 0 and f'''(0) < 0. (C) No because f'(-1) = 60 and f''(1) = 12. (D) Yes because f''(-1) = 60 and f''(1/2) = -3.

×	0	2/3	
f"(x)			

X	0	2/3	
f"(x)	0	0	

X	(-∞,0)	0	(0,2/3)	2/3	(2/3,∞)
f"(x)		0		0	

X	(-∞,0)	0	(0,2/3)	2/3	(2/3,∞)
f"(x)	+	0		0	

X	(-∞,0)	0	(0,2/3)	2/3	(2/3,∞)
f"(x)	t	0		0	+

X	(-∞,0)	0	(0,2/3)	2/3	(2/3,∞)
f"(x)	t	0	-	0	+

X	(-∞,0)	0	(0,2/3)	2/3	(2/3,∞)
f"(x)	+	0	-	0	+

 $f''(x) + \theta - 0 + f'''(0) < 0$