Today

- Power rule for $y=x^{m/n}$
- Second Exponential review (brief 2 CQs)
- The derivative of exponential functions
- Ø Reminders:

Midterm 2 is in less than 2 weeks.
OSH 5 due Monday

For $y=x^n$, $y'=nx^{n-1}$ when n is an integer. What if n is rational?

For $y = x^{1/m}$ with m an integer, what is y'?

Rewrite the equation as $y^m = x$ and take derivatives:

(A) m $y^{m-1} = 1$ (B) m $y^{m-1} y' = 1$ (C) m $y^{m-1} = x$ (D) $y'^m = 1$

For $y = x^{1/m}$ with m an integer, what is y'?

Rewrite the equation as $y^m = x$ and take derivatives:

- (A) m $y^{m-1} = 1$
- (B) m $y^{m-1}y' = 1$
- (C) m $y^{m-1} = x$
- (D) $y'^{m} = 1$

For y = x^{1/m} with m an integer, what is y'?

Solve m $y^{m-1} y' = 1$ for y': (A) $y' = 1/(m y^{m-1})$ (B) $y' = 1/(m x^{m-1})$ (C) $y' = 1/(m x^{(m-1)/m})$ (D) $y' = (1/m) x^{1-1/m}$

For $y = x^{1/m}$ with m an integer, what is y'?

Solve m $y^{m-1} y' = 1$ for y': (A) $y' = 1/(m y^{m-1})$ <---- ok but we know y! (B) $y' = 1/(m x^{m-1})$ (C) $y' = 1/(m x^{(m-1)/m})$ (D) $y' = (1/m) x^{1-1/m}$

For y = x^{1/m} with m an integer, what is y'?

Solve m $y^{m-1} y' = 1$ for y': (A) $y' = 1/(m y^{m-1})$ <---- ok but we know y! (B) $y' = 1/(m x^{m-1})$ (C) $y' = 1/(m x^{(m-1)/m}) = (1/m) x^{(1/m)-1}$ (D) $y' = (1/m) x^{1-1/m}$

Power rule for differentiation – summary

Power rule for differentiation – summary

• When p is an integer and $y = x^p$, $y' = px^{p-1}$.

We showed this using the def. of deriv.

Power rule for differentiation - summary When p is an integer and $y = x^p$, $y' = px^{p-1}$. We showed this using the def. of deriv. \oslash When p=1/n and y = x^p, y'=px^{p-1}. We just used implicit diff. to show this.

Power rule for differentiation - summary When p is an integer and $y = x^p$, $y' = px^{p-1}$. We showed this using the def. of deriv. \oslash When p=1/n and y = x^p, y'=px^{p-1}. We just used implicit diff. to show this. • When p=m/n and $y = x^p$, $y'=px^{p-1}$. You do this (exercise in course notes).

Which of the following is an exponential function?

- (A) xⁿ
- (B) 2×
- (C) e^{2}
- (D) ln(x)

Which of the following is an exponential function?

- (A) xⁿ
- (B) 2×
- (C) e^{2}
- (D) ln(x)

Which of the following is an exponential function?

(A) xⁿ <--power function

(B) 2×

(C) e^{2}

(D) ln(x)

Which of the following is an exponential function?

(A) xⁿ <--power function

(B) 2×

(C) e² <--an exp. calculation but not an exp. function
(D) ln(x)

Which of the following is an exponential function?

(A) xⁿ <--power function

(B) 2×

(C) e² <--an exp. calculation but not an exp. function
(D) ln(x) <--the INVERSE of an exp. function

Which of the following is an exponential function?

- (A) xⁿ <--power function
- (B) 2[×] <--variable in the exponent!
- (C) e² <--an exp. calculation but not an exp. function (D) ln(x) <--the INVERSE of an exp. function

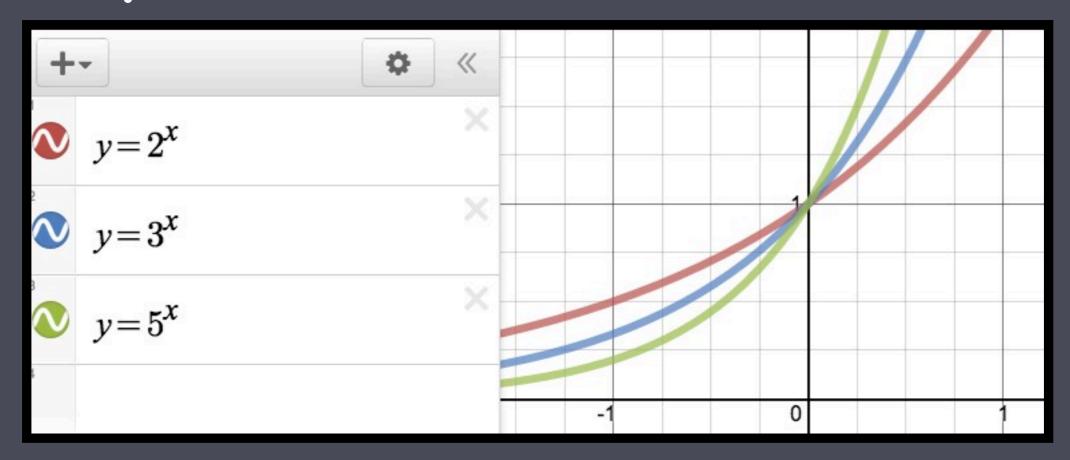
Exponential functions a[×] where a>1...

- (A) All go through the point (1,1).
- (B) All go through the point (0,0).
- (C) All go through the point (1,0).
- (D) If a<b then a[×]<b[×] for all x>0 and a[×]>b[×] for all x<0.</p>
- (E) If a<b then a[×]<b[×] for all x>1 and a[×]>b[×] for all x<1.</p>

Exponential functions a[×] where a>1...

- (A) All go through the point (1,1).
- (B) All go through the point (0,0).
- (C) All go through the point (1,0).
- (D) If a<b then a[×]<b[×] for all x>0 and a[×]>b[×] for all x<0.</p>
- (E) If a<b then a[×]<b[×] for all x>1 and a[×]>b[×] for all x<1.</p>

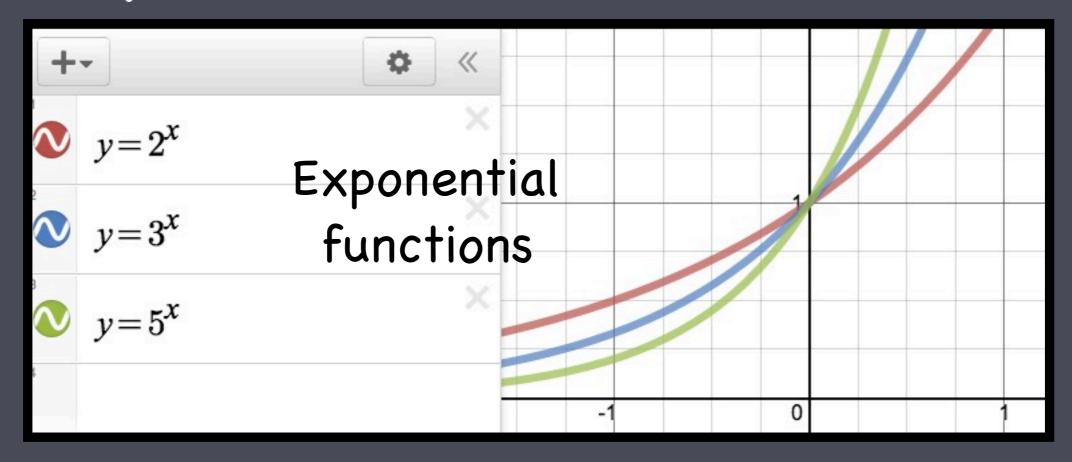
Exponential functions a[×]

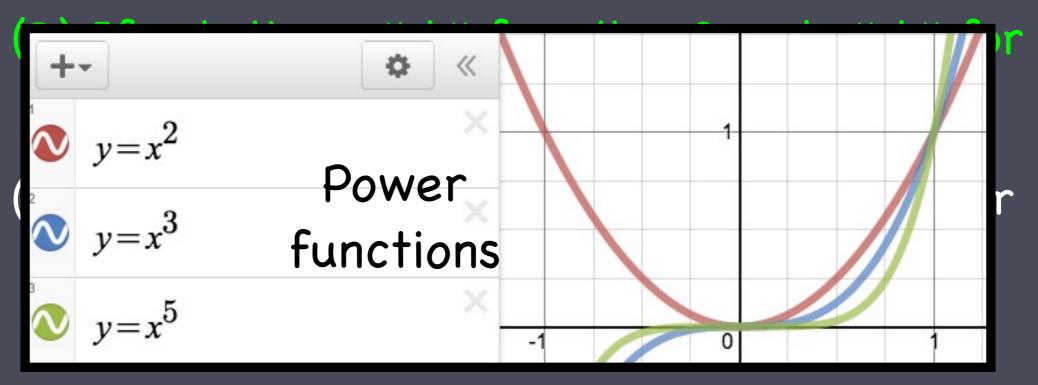


(D) If a<b then a×<b× for all x>0 and a×>b× for all x<0.

(E) If a<b then a[×]<b[×] for all x>1 and a[×]>b[×] for all x<1.</p>

Exponential functions a[×]





The derivative of $f(x)=a^{x}$ is...

(A) $f'(x) = xa^{x-1}$. (B) $f'(x) = ax^{a-1}$. (C) $f'(x) = (a^{x+h}-a^x)/h$ (D) $f'(x) = a^x$. (E) $f'(x) = Ca^x$.

The derivative of $f(x)=a^{x}$ is...

Checking your high

school memory here.

(A) $f'(x) = xa^{x-1}$. (B) $f'(x) = ax^{a-1}$. (C) $f'(x) = (a^{x+h}-a^x)/h$ (D) $f'(x) = a^x$. (E) $f'(x) = Ca^x$.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h} = \lim_{h \to 0} \frac{2^x (2^h - 1)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h} = \lim_{h \to 0} \frac{2^x (2^h - 1)}{h}$$
$$= 2^x \lim_{h \to 0} \frac{2^h - 1}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h} = \lim_{h \to 0} \frac{2^x (2^h - 1)}{h}$$
$$= 2^x \lim_{h \to 0} \frac{2^h - 1}{h}$$
$$\lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.69338746258$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h} = \lim_{h \to 0} \frac{2^x (2^h - 1)}{h}$$
$$= 2^x \lim_{h \to 0} \frac{2^h - 1}{h}$$
$$\lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.69338746258 = C_2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{2^{x+h} - 2^x}{h} = \lim_{h \to 0} \frac{2^x (2^h - 1)}{h}$$
$$= 2^x \lim_{h \to 0} \frac{2^h - 1}{h} = C_2 2^x$$
$$\lim_{h \to 0} \frac{2^h - 1}{h} \approx 0.69338746258 = C_2$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$\lim_{h \to 0} \frac{a^h - 1}{h} \approx ??$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

$$\lim_{h \to 0} \frac{a^h - 1}{h} \approx ?? \quad = C_a$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h} = C_a a^x$$

$$\lim_{h \to 0} \frac{a^h - 1}{h} \approx ?? \qquad = C_a$$

When is $C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$?

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1?$$

Want
$$\frac{a^h-1}{h} pprox 1$$
 (for h small)

• When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?

Want $\frac{a^h-1}{h} \approx 1$ (for h small)

 $a^h - 1 \approx h$

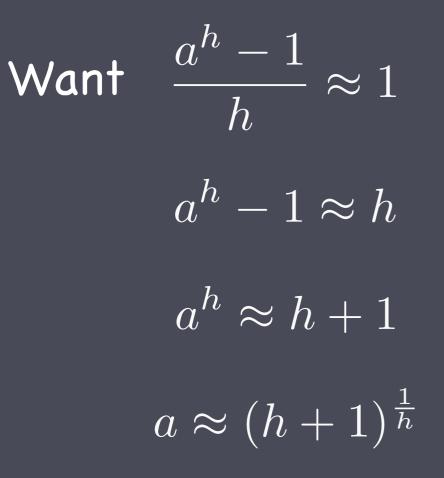
• When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?

Want $\frac{a^h - 1}{h} \approx 1$ (for h small) $a^h - 1 \approx h$ $a^h \approx h + 1$

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1?$$

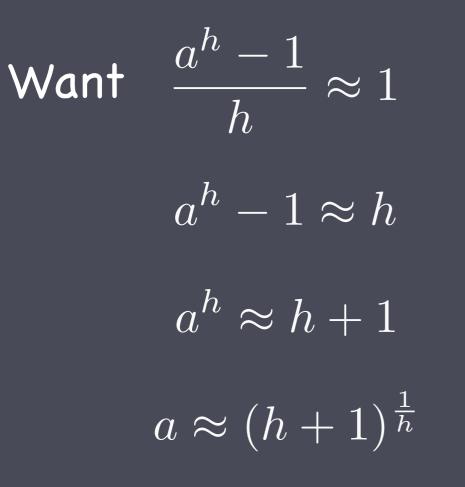
Want $\frac{a^h - 1}{h} \approx 1$ (for h small) $a^h - 1 \approx h$ $a^h \approx h + 1$ $a \approx (h + 1)^{\frac{1}{h}}$

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



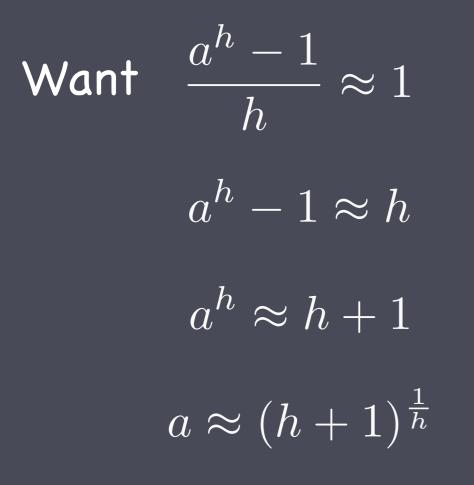
With h=0.1, a≈2.5937424601.

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



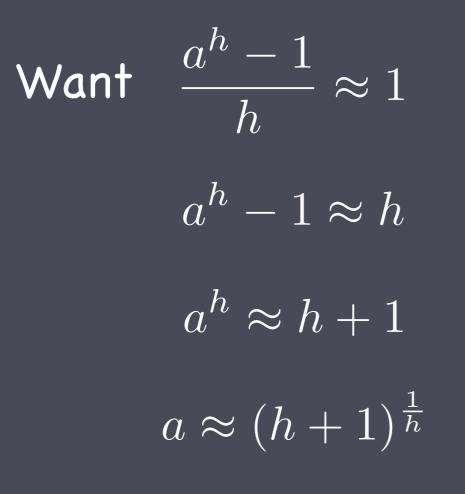
With h=0.1, a≈2.5937424601. With h=0.01, a≈2.70481382942.

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



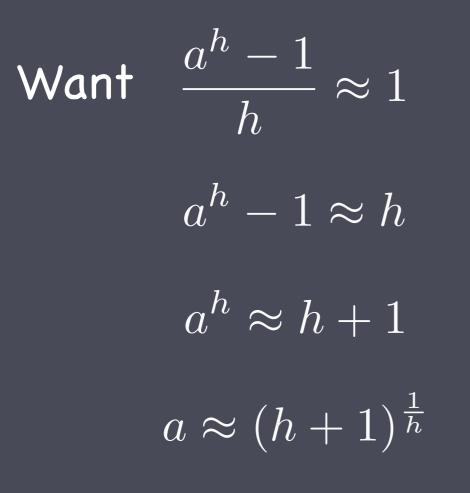
With h=0.1, a≈2.5937424601. With h=0.01, a≈2.70481382942. With h=0.001, a≈2.71692393224.

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



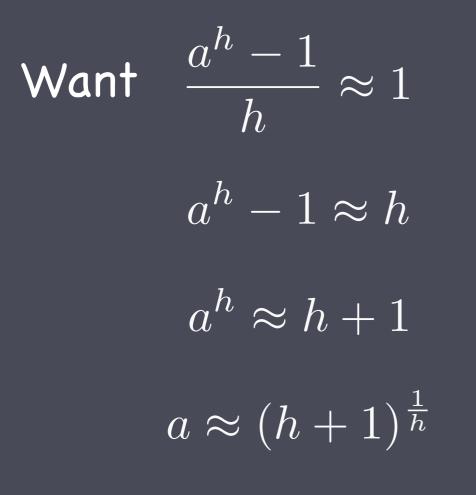
With h=0.1, a≈2.5937424601.
With h=0.01, a≈2.70481382942.
With h=0.001, a≈2.71692393224.
With h=0.0001, a≈2.71814592682.

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



With h=0.1, a≈2.5937424601.
With h=0.01, a≈2.70481382942.
With h=0.001, a≈2.71692393224.
With h=0.0001, a≈2.71814592682.
With h=0.00001, a≈2.71826823719.

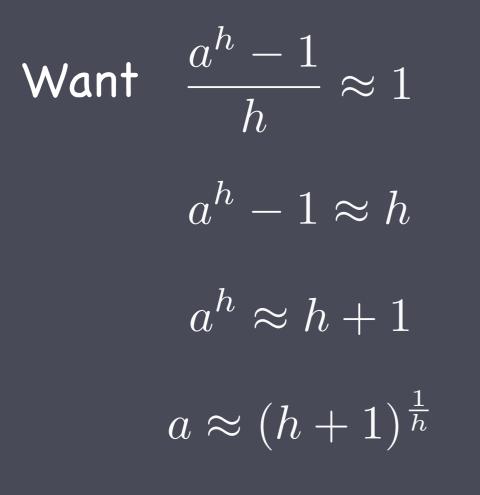
When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



With h=0.1, a≈2.5937424601.
With h=0.01, a≈2.70481382942.
With h=0.001, a≈2.71692393224.
With h=0.0001, a≈2.71814592682.
With h=0.00001, a≈2.71826823719.

What is this special a value?

When is
$$C_a = \lim_{h \to 0} \frac{a^h - 1}{h} = 1$$
?



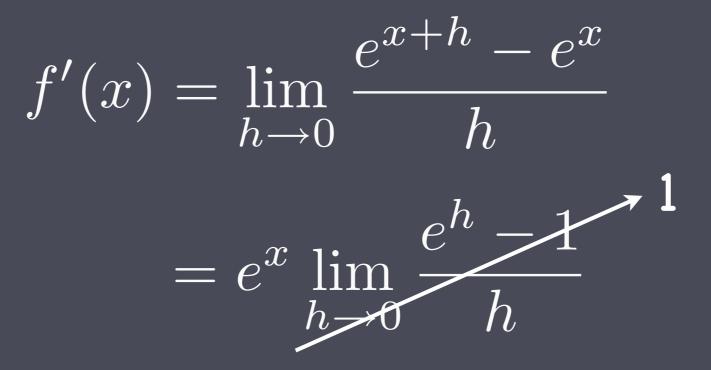
With h=0.1, a≈2.5937424601.
With h=0.01, a≈2.70481382942.
With h=0.001, a≈2.71692393224.
With h=0.0001, a≈2.71814592682.
With h=0.00001, a≈2.71826823719.

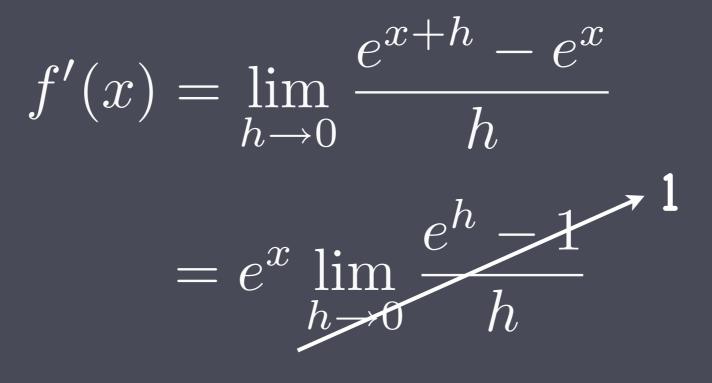
What is this special a value? a=e!

$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

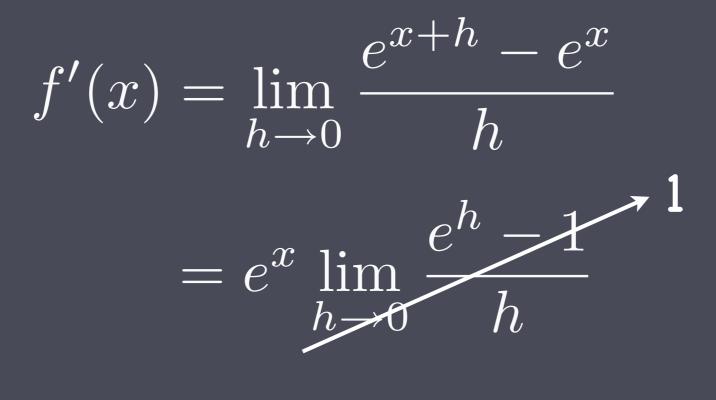
$$f'(x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$
$$= e^x \lim_{h \to 0} \frac{e^h - 1}{h}$$

Friday, October 24, 2014





 $= e^x$



This is precisely how e is defined – the number whose exponential function is its own derivative.

 $= e^x$

What real number is the same as its own square?

- What real number is the same as its own square?
 - Sequivalent to asking "what x satisfies the equation x=x²?"

- What real number is the same as its own square?
 - Sequivalent to asking "what x satisfies the equation x=x²?"
 - Call this an algebraic equation.

- What real number is the same as its own square?
 - Sequivalent to asking "what x satisfies the equation x=x²?"
 - Call this an algebraic equation.
- Ø What function is equal to its own derivative?

- What real number is the same as its own square?
 - Equivalent to asking "what x satisfies the equation x=x²?"
 - Call this an algebraic equation.
- What function is equal to its own derivative?
 Equivalent to asking "what f(x) satisfies f'(x)=f(x)?"

- What real number is the same as its own square?
 - Equivalent to asking "what x satisfies the equation x=x²?"
 - Call this an algebraic equation.
- What function is equal to its own derivative?
 - Sequivalent to asking "what f(x) satisfies f'(x)=f(x)?"
 - Call this a "differential equation". (DE)

DE example: Which of the following satisfies f'(x)=f(x)?

DE example: Which of the following satisfies f'(x)=f(x)?

DE example: Which of the following satisfies $f'(x)=f(x)^2$?

DE example: Which of the following satisfies $f'(x)=f(x)^2$?