Today

- Euler’s method for approximating DE solutions
- Logistic equation in many contexts
 - Classic example of the power of mathematics – one unifying description for many apparently unrelated phenomena.
Euler’s method
Euler’s method

A “numerical” method for IVPs.
Euler’s method

- A “numerical” method for IVPs.
- “Numerical” means finding a sequence of numbers that approximate $y(t)$ at specific t values.
Euler’s method

A “numerical” method for IVPs.

“Numerical” means finding a sequence of numbers that approximate $y(t)$ at specific t values.

Instead of the actual solution to NLC
Euler’s method

- A “numerical” method for IVPs.
- “Numerical” means finding a sequence of numbers that approximate $y(t)$ at specific t values.

Instead of the actual solution to NLC

$$\text{T}(t) = E + (T_0 - E)e^{-kt},$$
Euler’s method

- A “numerical” method for IVPs.
- “Numerical” means finding a sequence of numbers that approximate \(y(t) \) at specific \(t \) values.
- Instead of the actual solution to NLC

\[
T(t) = E + (T_0 - E)e^{-kt},
\]

we find \(T_1, T_2, T_3, \ldots \) which approximate \(T(0.1), T(0.2), T(0.3), \ldots \)
Euler's method for
\[T'(t) = 0.02 \left(14 - T(t) \right) \]
with \(T(0)=37 \).

What is the slope of the solution at \(t=0 \)?

(A) -0.02 (C) 0.02
(B) -0.46 (D) -0.28

Forensic calculus!
Euler's method for

\[T'(t) = 0.02 \left(14 - T(t) \right) \]

with \(T(0) = 37 \).

What is the slope of the solution at \(t=0 \)?

(A) -0.02 \quad (C) 0.02

(B) -0.46 \quad (D) -0.28
Euler’s method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0) = T_0 \).

What is the slope of the solution at \(t=0 \)?

(A) \(k(E-T) \)

(B) \(k(E-T_0) \)

(C) \(T'(0) \)

(D) \(kE \)
Euler’s method for

\[T'(t) = k (E - T(t)) \]

with \(T(0) = T_0 \).

What is the slope of the solution at \(t=0 \)?

(A) \(k(E-T) \)
(B) \(k(E-T_0) \)
(C) \(T'(0) \)
(D) \(kE \)
Euler's method for
\[T'(t) = 0.02 \left(14 - T(t) \right) \]
with \(T(0)=37 \).

What is the equation of the tangent line to \(T(t) \) at \(t=0 \)?

(A) \(y = 37 - 0.46t \)
(B) \(y = 14 + 23e^{-0.02t} \)
(C) \(y = 37 - 0.28t \)
(D) \(y = 37 + 0.46t \)
Euler’s method for
\[T'(t) = 0.02 \left(14 - T(t) \right) \]
with \(T(0) = 37 \).

What is the equation of the tangent line to \(T(t) \) at \(t=0 \)?

(A) \(y = 37 - 0.46t \)

(B) \(y = 14 + 23e^{-0.02t} \)

(C) \(y = 37 - 0.28t \)

(D) \(y = 37 + 0.46t \)
Euler’s method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0) = T_0 \).

What is the equation of the tangent line to \(T(t) \) at \(t=0 \)?

(A) \[y = T(0) + T'(0)(t-0) \] (C) \[y = T_0 + T_0' \ t \]

(B) \[y = E + (T_0-E)e^{-kt} \] (D) \[y = T_0 + k(E-T_0)t \]
Euler’s method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0) = T_0 \).

What is the equation of the tangent line to \(T(t) \) at \(t=0 \)?

(A) \(y = T(0) + T'(0)(t-0) \)
(B) \(y = E + (T_0 - E)e^{-kt} \)
(C) \(y = T_0 + T_0' \cdot t \)
(D) \(y = T_0 + k(E-T_0)t \)
Euler’s method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0)=T_0 \).

Use the tangent line at \(t=0 \) to estimate \(T(0.1) \):

(A) \(T_1 = T(0) + 0.1 \ T'(0) \)

(B) \(T_1 = T_0 + 0.1 \ k(E-T_0) \)

(C) \(T_1 = E + (T_0-E)e^{-0.1k} \)

(D) \(T_1 = T_0 + 0.1 \ k \)
Euler’s method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0)=T_0 \).

Use the tangent line at \(t=0 \) to estimate \(T(0.1) \):

(A) \(T_1 = T(0) + 0.1 \ T'(0) \)
(B) \(T_1 = T_0 + 0.1 \ k(E-T_0) \)
(C) \(T_1 = E + (T_0-E)e^{-0.1k} \)
(D) \(T_1 = T_0 + 0.1 \ k \)
Euler's method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0) = T_0 \).
Euler's method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0) = T_0 \).
Euler's method for
$T'(t) = k \left(E - T(t) \right)$
with $T(0) = T_0$.
Euler's method for
\[T'(t) = k (E - T(t)) \]
with \(T(0)=T_0 \).

\[T(0.1) \approx T_0 + 0.1 \, k \, (E-T_0) \]
Euler's method for

\[T'(t) = k (E - T(t)) \]

with \(T(0)=T_0 \).

\[T(0.1) \approx T_0 + 0.1 \, k \, (E-T_0) = T_1 \]
Euler’s method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0)=T_0 \).

\[T(0.1) \approx T_0 + 0.1 \ k \ (E-T_0) = T_1 \]
Euler’s method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0) = T_0 \).

\[
T(0.1) \approx T_0 + 0.1 \ k \ (E-T_0) = T_1
\]

\[
T_2 = T_1 + 0.1 \ k \ (E-T_1)
\]
Euler's method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0) = T_0 \).

\[T(0.1) \approx T_0 + 0.1 \ k \ (E-T_0) = T_1 \]

\[T_2 = T_1 + 0.1 \ k \ (E-T_1) \]

\[T_3 = T_2 + 0.1 \ k \ (E-T_2) \]
Euler's method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0)=T_0 \).

\[
T(0.1) \approx T_0 + 0.1 \ k \ (E-T_0) = T_1
\]

\[
T_2 = T_1 + 0.1 \ k \ (E-T_1)
\]

\[
T_3 = T_2 + 0.1 \ k \ (E-T_2)
\]
Euler’s method for
\[T'(t) = k \left(E - T(t) \right) \]
with \(T(0)=T_0 \).

\[
T(0.1) \approx T_0 + \Delta t \, k \, (E-T_0) = T_1
\]

\[
T_2 = T_1 + \Delta t \, k \, (E-T_1)
\]

\[
T_3 = T_2 + \Delta t \, k \, (E-T_2)
\]
Euler’s method for
$T'(t) = k \left(E - T(t) \right)$
with $T(0) = T_0$.

$T(0.1) \approx T_0 + \Delta t \ k \left(E - T_0 \right) = T_1$

$T_2 = T_1 + \Delta t \ k \left(E - T_1 \right)$

$T_3 = T_2 + \Delta t \ k \left(E - T_2 \right)$
Euler’s method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0)=T_0 \).

\[
\begin{align*}
T(0.1) & \approx T_0 + \Delta t \ k \ (E-T_0) = T_1 \\
T_2 & = T_1 + \Delta t \ k \ (E-T_1) \\
T_3 & = T_2 + \Delta t \ k \ (E-T_2)
\end{align*}
\]
Euler's method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0) = T_0 \).

\[
\begin{align*}
T(0.1) &\approx T_0 + \Delta t \, k \left(E - T_0 \right) = T_1 \\
T_2 &= T_1 + \Delta t \, k \left(E - T_1 \right) \\
T_3 &= T_2 + \Delta t \, k \left(E - T_2 \right)
\end{align*}
\]
Euler’s method for

\[T'(t) = k \left(E - T(t) \right) \]

with \(T(0) = T_0 \).

Making \(\Delta t \) smaller improves the estimate.

\[T(0.1) \approx T_0 + \Delta t \cdot k \left(E - T_0 \right) = T_1 \]

\[T_2 = T_1 + \Delta t \cdot k \left(E - T_1 \right) \]

\[T_3 = T_2 + \Delta t \cdot k \left(E - T_2 \right) \]
When will Euler’s method underestimate the true solution?

(A) When the derivative of the true solution is positive.

(B) When the derivative of the true solution is negative.

(C) When the second derivative of the true solution is positive.

(D) When the second derivative of the true solution is negative.
When will Euler’s method underestimate the true solution?

(A) When the derivative of the true solution is positive.

(B) When the derivative of the true solution is negative.

(C) When the second derivative of the true solution is positive.

(D) When the second derivative of the true solution is negative.
Euler’s method

Spreadsheet demo – NLC with a varying environment (fore):

\[T'(t) = k \ (E(t) - T(t)) \]

with \(T(0) = 37^\circ C \),

\[k=0.15 \] and

\[E(t) = 14 + 3 \cos(2 \pi t /24). \]

https://docs.google.com/spreadsheets/d/1JohOzqQ6TeKjt43HGchwoKsRWJ-htMHakaXUMv8ICQ/edit?usp=sharing
Euler's method

Spreadsheet demo – NLC with a varying environment (fore):

\[T'(t) = k \left(E(t) - T(t) \right) \]

with \(T(0) = 37^\circ C \),

\(k = 0.15 \) and

\[E(t) = 14 + 3 \cos\left(\frac{2 \pi t}{24}\right). \]

https://docs.google.com/spreadsheets/d/1JohOzqQ6TeKjt43HGchwgoKsRWJ-htMHakaXUMv8ICQ/edit?usp=sharing

Think about how you would determine time of death if given body temp at two later times.
Rates of change that are proportional to two things
Rates of change that are proportional to two things

A chemical reaction with only one reactant occurs at a rate proportional to the how much reactant is present (e.g. radioactive decay):

\[\frac{dR}{dt} = -kR \]
Rates of change that are proportional to two things

A chemical reaction with only one reactant occurs at a rate proportional to the how much reactant is present (e.g. radioactive decay):

\[
\frac{dR}{dt} = -kR
\]

A chemical reaction with two reactants occurs at a rate proportional to the how much of both reactants are present:

\[
\frac{dR_1}{dt} = -kR_1 R_2
\]
Rates of change that are proportional to two things

- A chemical reaction with only one reactant occurs at a rate proportional to the amount of reactant present (e.g., radioactive decay):

 \[
 \frac{dR}{dt} = kR
 \]

- A chemical reaction with two reactants occurs at a rate proportional to the amount of both reactants present:

 \[
 \frac{dR_1}{dt} = -kR_1R_2
 \]
Rates of change that are proportional to two things

A chemical reaction with only one reactant occurs at a rate proportional to the amount of reactant present (e.g. radioactive decay):

\[
\frac{dR}{dt} = kR_1
\]

A chemical reaction with two reactants occurs at a rate proportional to the amounts of both reactants present:

\[
\frac{dR_1}{dt} = -kR_1 R_2
\]
Rates of change that are proportional to two things:

A chemical reaction with only one reactant occurs at a rate proportional to the amount of reactant present (e.g. radioactive decay):

\[\frac{dR}{dt} = kR \]

A chemical reaction with two reactants occurs at a rate proportional to the amount of both reactants present:

\[\frac{dR_1}{dt} = -kR_1R_2 \]
Rates of change that are proportional to two things

A chemical reaction with only one reactant occurs at a rate proportional to the amount of reactant present (e.g., radioactive decay):

\[
\frac{dR}{dt} = kR
\]

A chemical reaction with two reactants occurs at a rate proportional to the amount of both reactants present:

\[
\frac{dR_1}{dt} = -kR_1R_2
\]
Rates of change that are proportional to two things

- A chemical reaction with only one reactant occurs at a rate proportional to the how much reactant is present (e.g. radioactive decay):

\[
\frac{dR}{dt} = kR
\]

- A chemical reaction with two reactants occurs at a rate proportional to the how much of both reactants are present:

\[
\frac{dR_1}{dt} = -kR_1R_2
\]

Probability of hitting a blue ball:

\[
\frac{\text{blue area}}{\text{total area}} = \frac{\pi r^2 N}{A} = \text{blue concentration}
\]
Rates of change that are proportional to two things

- A chemical reaction with only one reactant occurs at a rate proportional to the how much reactant is present (e.g. radioactive decay):
 \[\frac{dR}{dt} = kR \]

- A chemical reaction with two reactants occurs at a rate proportional to the how much of both reactants are present:
 \[\frac{dR_1}{dt} = -kR_1 R_2 \]

Probability of hitting a blue ball:

\[\text{blue area/total area} = \frac{\pi r^2 N}{A} \]

\[\frac{N}{A} = \text{blue concentration} \]
Logistic equation in different contexts...
Rates of change that are proportional to two things
Rates of change that are proportional to two things

Infectious disease: bSI (S=susceptible, I=infected)
Rates of change that are proportional to two things

- Infectious disease: \(bSI \) (S=susceptible, I=infected)
- Spread of rumour: \(bNH \) (N = not heard rumour, H = heard rumour)
Rates of change that are proportional to two things

- Infectious disease: \(bSI \) (S=susceptible, I=infected)

- Spread of rumour: \(bNH \) (N = not heard rumour, H = heard rumour)

- Spread of new words: \(bNU \) (use word or not).
Rates of change that are proportional to two things

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).
- Spread of new technologies: bNU (use tech or not).
Rates of change that are proportional to two things

- Infectious disease: \(bSI \) (S=susceptible, I=infected)
- Spread of rumour: \(bNH \) (N = not heard rumour, H = heard rumour)
- Spread of new words: \(bNU \) (use word or not).
- Spread of new technologies: \(bNU \) (use tech or not).
- Active oil exploration sites: \(bUD \) (undiscovered and discovered).
Rates of change that are proportional to two things

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).
- Spread of new technologies: bNU (use tech or not).
- Active oil exploration sites: bUD (undiscovered and discovered).
- Waterlillies in a pond: bSW (waterlillies and space for waterwillies).
...two things that are just different forms of a single thing
...two things that are just different forms of a single thing

- When X meets Y, there's a chance Y turns into X.
...two things that are just different forms of a single thing

- When X meets Y, there's a chance Y turns into X.

- Lose Y: $\frac{dY}{dt} = -bXY$ and gain X: $\frac{dX}{dt} = bXY$
...two things that are just different forms of a single thing

When X meets Y, there’s a chance Y turns into X.

Lose Y: \(\frac{dY}{dt} = -bXY \) and gain X: \(\frac{dX}{dt} = bXY \)

X+Y= constant = C so Y=C−X.
...two things that are just different forms of a single thing

- When X meets Y, there's a chance Y turns into X.
- Lose Y: \[\frac{dY}{dt} = -bXY \] and gain X: \[\frac{dX}{dt} = bXY \]
- \(X+Y= \text{constant} = C \) so \(Y=C-X \).
- \[\frac{dX}{dt} = bX(C-X) \]