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Increasing/decreasing

We say a function is increasing on some 
interval if for any points a and b with a < b 
we have that f(a) < f(b).

We say a function is decreasing on some 
interval if for any points a and b with a < b 
we have that f(a) > f(b).

Notice - no reference to f’(x)!!



Local minimum/maximum

A point a is a local minimum of a function    
f(x) provided that f(x) > f(a) for all x on an 
interval around a (excluding a, of course).

A point a is a local maximum of a function    
f(x) provided that f(x) < f(a) for all x on an 
interval around a (excluding a, of course).
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Local minimum/maximum

A point a is a local minimum of a function    
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Concave up/down

We say a function is concave up on some 
interval if for any points a and b with a < b 
we have that f’(a) < f’(b).

We say a function is concave down on some 
interval if for any points a and b with a < b 
we have that f’(a) > f’(b).

Notice - no reference to f’’(x)!!



Inflection points

A point a is a 2-like inflection point of a 
function f(x) provided that f’(x) > f’(a) for 
all x on an interval around a (excluding a, of 
course).

A point a is an s-like inflection point of a 
function f(x) provided that f’(x) < f’(a) for 
all x on an interval around a (excluding a, of 
course).
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Concave up/down 
(equivalent)

We say a function is concave up on some 
interval if f’(x) is increasing on that interval.

We say a function is concave down on some 
interval if f’(x) is decreasing on that interval.
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Tools

Using f’(x) to determine intervals of 
increase/decrease.

Using f’(x) to find extrema.

Using f’’(x) to determine intervals of concave 
up/down.

Using f’’(x) to find inflection points.
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Critical points
A critical point of f(x) is a point a at which 
f’(a)=0 or f’(a) is not defined even though 
f(a) is defined.

Use of critical points:

Critical points of f(x) might be minima or 
maxima of f(x). Not always though.

Critical points of f’(x) might be minima or 
maxima of f’(x) and hence inflection points 
of f(x). Not always though.


