Name: Solution

Quiz Score:____/10

Student Number:_____

Answer questions in the space provided. Show your work. No calculators or notes.

- 1. For x > 0, $x^n = e^{\ln(x^n)} = e^{n \ln(x)}$. We can use this identity to show that $\frac{d}{dx}(x^n) = nx^{n-1}$, for x > 0 with constant n.
 - (a) (2 points) Determine $\frac{d}{dx} \left(e^{n \ln(x)} \right)$. [Do not convert back to x^n and use the power rule]

set
$$u = n \ln(x)$$
, then $\frac{d}{dx} \left(e^{n \ln(x)} \right) = \frac{d}{du} \left(e^{u} \right) \cdot \frac{du}{dx}$

by the chain rule.

$$\frac{\partial}{\partial x}\left(e^{h\ln(x)}\right) = e^{4}\left(\frac{h}{x}\right) = \frac{ne^{n\ln(x)}}{x}$$

(b) (1 point) Rewrite your answer from part (a) in a form that does not contain e or \ln .

$$e^{h \ln(x)} = x^h$$

$$\Rightarrow \frac{d}{dx} \left(e^{h \ln(x)} \right) = \frac{h x^h}{x} = n x^{h-1}$$

2. (3 points) Is $y(t) = (\frac{2}{3}t+1)^{\frac{3}{2}}$ a solution to the following differential equation? [You must show work to receive marks]

$$\frac{dy}{dt} = y^{\frac{1}{3}}, \ y(0) = 1$$

$$\frac{dy}{dt} = \frac{3}{2} \left(\frac{2}{3} + 1 \right)^{1/2} \cdot \frac{2}{3} = \left(\frac{2}{3} + 1 \right)^{1/2}$$

$$\left(\frac{by}{the} \right)^{1/2} = \left(\frac{2}{3} + 1 \right)^{1/2} = \left(\frac{2}{3} + 1 \right)^{1/2} = \left(\frac{2}{3} + 1 \right)^{1/2} = \frac{1}{3}$$

$$\frac{dy}{dt} = y^{\frac{1}{3}}, \ y(0) = \left(\frac{2}{3} + 1 \right)^{1/2} = \left(\frac{2}{3} + 1 \right)^{1/2} = \frac{1}{3}$$

$$\frac{dy}{dt} = y^{\frac{1}{3}}, \ y(0) = \left(\frac{2}{3} + 1 \right)^{1/2} = \frac{1}{3}$$

$$\frac{dy}{dt} = y^{\frac{1}{3}}, \ y(0) = \left(\frac{2}{3} + 1 \right)^{1/2} = \frac{1}{3}$$

$$\frac{dy}{dt} = y^{\frac{1}{3}}, \ y(0) = 1$$

$$\frac{dy}{dt} = \frac{2}{3} + \frac{1}{3} +$$

So y(t) satisfies the differential equation and the initial condition and is thus a solution.

3. For constant C, $y(t) = \sqrt{2t+C}$ is a solution to the differential equation

$$\frac{dy}{dt} = \frac{1}{y}$$

(a) (1 point) Determine the value of C so that y(t) satisfies the initial condition $y(0) = y_0$, where y(0) > 0.

(b) (1 point) For y(0) > 0, determine the time it takes for y(t) to become three times its initial value.

4.

$$\frac{dy}{dt} = 3 - y, \quad y(0) = 2$$

(a) (1 point) Determine the solution to the differential equation.

A differential equation of the form
$$\frac{dy}{dt} = a - by, \quad y(0) = y_0 \quad has \quad the$$
Solution
$$y(t) = \frac{q}{b} - \left(\frac{a}{b} - y_0\right)e^{-bt}$$

$$\Rightarrow$$
 when $a=3$, $b=1$, and $y_0=2$
 $y(t)=3-(3-2)e^{-t}=3-e^{-t}$

(b) (1 point) Determine $\lim_{t\to\infty} y(t)$.

$$\lim_{t\to\infty}y(t)=\lim_{t\to\infty}\left(3-e^{-t}\right)=3,$$

as
$$\lim_{t\to\infty} (e^{-t}) = 0$$
.