Lecture 2 (Sept. 05 2013)
Important Information: OSHI due Monday Sept.09 Lectures Sept.09 - Sept.13 are given by Maxim
Learning Goal: Properties of functions (Power functions, Polynomials, Hill functions)
2 Power functions; y= K·x"
② Symmetry: when n is even, $f(-x) = f(x) \Rightarrow$ even function, symmetrical to the fine $x=0$ when n is odd. $f(-x) = -f(x) \Rightarrow$ odd function, symmetrical to the point $(0,0)$
3 Intersections: Given function $g(x)$, set equation $g(x) = k \cdot x^n$, solve for x (Appendix C.D.1 in lead's notes)
Behaviour of the function for small/large x (set $k=1$) (1) $x \in (0,1)$, $n \neq m$, $x^n < x^m$ e.g. $0.1^2 < 0.1^3$ (2) $x \in (1,+\infty)$, $n \neq m$, $x^n \neq x^m$ e.g. $2^2 < 2^3$ (3) $x \in (1,+\infty)$, $x \neq m$, $x \neq m$ e.g. $x \neq m$
B Function Sketch 9 The flow (n=3) The flow
(3) Inverse function: given $y = f(x)$, can we write x as a function of y ? $y = f(x)$ $y = f(x)$ $y = f(x)$ $y = f(x)$ $y = f(x) = f(x)$
(Question: why can't we find the inverse function for $x \in (-\infty, +\infty)$? * The graph of $f(x)$ is a reflection of $f(x)$ about the line $y=x$
Example: A spherical cell, what's the proper size for a cell to survive? Recall the absorbtion rate: $A = k_1 S = k_1 \cdot 4\pi r^2$
Build up a relationship between A and C: absorbtion rate 7 consuming rate

$$\Rightarrow$$
 &: $4\pi x^2 > k_2 \cdot \frac{4}{3}\pi x^3$
(Solve the inequality for unknown): $Y \le \frac{3k_1}{k_2}$

3. Polynomials:
$$y = anx^n + anx x^{n-1} + \dots + anx + ao$$

 $ao. a., \dots, an - constants, n - positive integer$

(2)
$$x \gg 1$$
, $y \approx an x^n$

4 Rational functions:
$$y = \frac{p(x)}{q(x)}$$
, $p(x)$, $q(x) - polynomials$

Example: Michaelis - Menten kinetics (& 1.6 of Leah's notes)

$$v = \frac{Kx}{k_n + x}$$
 $v - the speed of reaction k , $k_n - positive constants$ $x - the concentration of substrate $v = k$ is called a$$

(2)
$$x \ge kn$$
, $v \approx \frac{kx}{kn}$
 $x \gg kn$, $v \approx \frac{kx}{x} = k$

V = K is called a symptote.

Example: Hill functions (not mention in class, more details are given on Monday)

$$y = \frac{A x^n}{a^n + x^n}$$
, A, a - positive constant
for n=1, we have the same expression as Michaelis-Menten

(1)
$$\times \times a$$
, $y \approx \frac{A}{a^n} \times a^n$ (Compare this with the property of Michaelis-Menten) $\times \times a$, $y \approx \frac{A \times a^n}{x^n} = A$

12) Sketch Junction (See Figure 1.6 of Leah's notes)

(3) Question: At what value of
$$x$$
, y reaches $\frac{A}{2}$?

Solution: $\frac{Ax^n}{a^n + x^n} = \frac{A}{2} \Rightarrow 2x^n = a^n + x^n \Rightarrow x^n = a^n \Rightarrow x = a$

(4) Question: At what value of x, all Hill functions with the same A and a intersect? $x = a \in T_{ny}$ get this by (3)