Today...

• Analyzing the studying experiment.
• Office hour poll - see email.
• Clicker questions on graphing simple polynomials.
• Hill functions.
• Introduction to the derivative.
• By now, you should have already done the Diagnostic, one or both of the PLs and started OSH1 (we’ll discuss how to write it up on Wed).
Interpreting the experiment

• Retrieval is critical for memory/learning.
• Reading notes or watching a lecture not as good as actively accessing.
• Interleaving versus blocking (did you notice the interleaving? see next point…).
• “Desirable difficulties” improve long term recall.
• If a method of learning feels easier - be skeptical that it’s better!
• Math is not a spectator sport!
Office hour poll

A. Monday 12 pm and Wednesday 1 pm
B. Monday 11 am and Wednesday 1 pm
C. Monday 1 pm and Wednesday 12 pm
D. Monday 11 am and Wednesday 12 pm
The following slides were not shown in class but are useful review...
Even and odd functions

• A function f is called even if $f(-x) = f(x)$ for all values of x.

• A function f is called odd if $f(-x) = -f(x)$ for all values of x.

• For power functions, even/odd-ness of the function is the same as even/odd-ness of the power.

• What about for polynomials?
Which function is odd?

A. \(f(x) = 2 \)
B. \(g(x) = x^2 - 3x^4 \)
C. \(h(x) = x + x^2 \)
D. \(k(x) = 3x + x^5 \)
Which function is odd?

A. $f(x) = 2$
B. $g(x) = x^2 - 3x^4$
C. $h(x) = x + x^2$
D. $k(x) = 3x + x^5$
Even or odd? \[f(x) = \frac{x^n}{a^n + x^n} \].

A. \(f(x) \) is even when \(n \) is even and \(f(x) \) is odd when \(n \) is odd.

B. \(f(x) \) is even when \(n \) is odd and \(f(x) \) is odd when \(n \) is even.

C. \(f(x) \) is even when \(n \) is even and \(f(x) \) is neither even nor odd when \(n \) is odd.

D. \(f(x) \) is even for all values of \(n \).

E. \(f(x) \) is neither even nor odd for any value of \(n \).
Even or odd? \[f(x) = \frac{x^n}{a^n + x^n} \].

A. f(x) is even when \(n \) is even and f(x) is odd when \(n \) is odd.

B. f(x) is even when \(n \) is odd and f(x) is odd when \(n \) is even.

C. f(x) is even when \(n \) is even and f(x) is neither even nor odd when \(n \) is odd.

D. f(x) is even for all values of \(n \).

E. f(x) is neither even nor odd for any value of \(n \).
Which is the graph of the function

\[g(x) = x^5 - x^2 \] ?

(A)

(B)

(C)

(D)
Which is the graph of the function

\[g(x) = x^5 - x^2 \]?
Which is the graph of the function
\[f(x) = x^5 - x^3 \]?
Which is the graph of the function
\[f(x) = x^5 - x^3 \]?

(A)
(B)
(C)
(D)
Hill functions

\[f(x) = \frac{ax^n}{bn + xn} \]

- A useful function for studying saturating phenomena.
- Important functions in biochemistry - Michaelis-Menten kinetics
- We will see these several times this semester.
If $|x| \ll b$, then

$$f(x) = \frac{ax^n}{b^n + x^n}$$

can be approximated by...

A. a

B. $\frac{a}{b^n}$

C. $a \left(\frac{x}{b}\right)^n$

(D) 0

(E) 1
If $|x| \ll b$, then

$$f(x) = \frac{ax^n}{bn + x^n}$$

can be approximated by...

A. a

B. $\frac{a}{b^n}$

C. $a \left(\frac{x}{b} \right)^n$

(D) 0

(E) 1
If $x \gg b$, then
\[f(x) = \frac{ax^n}{bn + x^n} \]
can be approximated by...

A. a
B. $\frac{a}{b^n}$
C. $a \left(\frac{x}{b}\right)^n$

(D) 0
(E) 1

(assume $b>0$)
If $x \gg b$, then

$$f(x) = \frac{ax^n}{b^n + x^n}$$

can be approximated by...

A. a

B. $\frac{a}{b^n}$

C. $a \left(\frac{x}{b}\right)^n$

(D) 0

(E) 1

(assume $b>0$)
Implications for graphing

\[f(x) = \frac{ax^n}{bn + x^n} \]

Why always below the asymptote?

We'll talk about filling in the rest later in the semester.
Comparing Hill functions with different n values

(A) Green: $n=2$, yellow: $n=3$, red: $n=4$, blue: $n=5$.

(B) Green: $n=4$, yellow: $n=3$, red: $n=2$, blue: $n=1$.

(C) Green: $n=5$, yellow: $n=4$, red: $n=3$, blue: $n=2$.

(D) Either (B) or (C) (not enough info).

$$f(x) = \frac{ax^n}{b^n + x^n}$$
Comparing Hill functions with different n values

(A) Green: n=2, yellow: n=3, red: n=4, blue: n=5.

(B) Green: n=4, yellow: n=3, red: n=2, blue: n=1.

(C) Green: n=5, yellow: n=4, red: n=3, blue: n=2.

(D) Either (B) or (C) (not enough info).

\[f(x) = \frac{ax^n}{b^n + x^n} \]
What is the slope of the line connecting the points?

(A) \(m = \frac{x_1 - x_2}{y_1 - y_2} \)

(B) \(m = \frac{x_2 - x_1}{y_1 - y_2} \)

(C) \(m = \frac{y_1 - y_2}{x_1 - x_2} \)

(D) \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
What is the slope of the line connecting the points?

(A) \(m = \frac{x_1 - x_2}{y_1 - y_2} \)

(B) \(m = \frac{x_2 - x_1}{y_1 - y_2} \)

(C) \(m = \frac{y_1 - y_2}{x_1 - x_2} \)

(D) \(m = \frac{y_2 - y_1}{x_2 - x_1} \)
What is the slope of the secant line to the graph of \(f(x) \)?

(A) \(m=\frac{f(x_1)-f(x_2)}{x_2-x_1} \)

(B) \(m=\frac{f(x_2)-f(x_1)}{x_2-x_1} \)

(C) \(m=\frac{x_1-x_2}{f(x_1)-f(x_2)} \)

(D) \(m=\frac{x_2-x_1}{f(x_1)-f(x_2)} \)

Slope of secant line = average rate of change from \(x_1 \) to \(x_2 \).
What is the slope of the secant line to the graph of f(x)?

(A) \(m = \frac{f(x_1) - f(x_2)}{x_2 - x_1} \)

(B) \(m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \)

(C) \(m = \frac{x_1 - x_2}{f(x_1) - f(x_2)} \)

(D) \(m = \frac{x_2 - x_1}{f(x_1) - f(x_2)} \)

Slope of secant line = average rate of change from \(x_1 \) to \(x_2 \).
What if you want the rate of change AT x_1?

Take a point x_2 so that the secant line is closer to the “secant line” AT x_1.

Alternate notation: let $x_2 = x_1 + h$ so that

$$m = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{f(x_1 + h) - f(x_1)}{x_1 + h - x_1}$$
If we take h values closer and closer to 0...

- The secant line approaches the **tangent line**.
- The slope of the secant line approaches the slope of the tangent line.
- We call the resulting slope **the derivative at** x_1.
- We now have to learn how to take **limits**!

\[
\text{slope at } x_1 = f'(x_1) = \lim_{h \to 0} \frac{f(x_1 + h) - f(x_1)}{h}
\]