Which of the following four graphs is the graph of the function

\[f(x) = 7x^5 - 3x^2? \]
Let f be the function

$$f(x) = \frac{4x^4 - 5.5x^2 + x}{3x^7 - 5x^2}.$$

Then $f(0.02)$ is approximately:

(A) 3 (B) -10 (C) -0.0008 (D) $\frac{5.5}{5}$
Which of the following limits do not exist?

(A) \(\lim_{x \to -2} \frac{x^2-4}{x-2} \)

(B) \(\lim_{x \to 2} \frac{x^2-4}{x-2} \)

(C) \(\lim_{x \to 2} \frac{x+2}{x-2} \)

(D) More than one.

(E) All three exist.
Lecture 3: Ch. 2, Question 10

For which number a is the function

$$f(x) = \begin{cases}
ax + 1 & , x > 1 \\
-3 & , x \leq 1
\end{cases}$$

continuous?

(A) -4

(B) -3

(C) 3

(D) For some other value of a.

(E) For no number a.
Lecture 3: Related exam problem

Let \(f(x) = \sqrt{x} \). Calculate \(f'(x) \) from the definition of the derivative at \(x \). Hint:

\[
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} + \sqrt{b}} (\sqrt{a} + \sqrt{b}) = \frac{a - b}{\sqrt{a} + \sqrt{b}}
\]
Lecture 4: Ch. 3, Question 4

For any function g, answer the following questions with (A) true or (B) false.

a) If g is continuous at a, then g has a tangent at a.

b) If g has a tangent at a, then g is continuous at a.

For any function g, answer the following questions with (A) true or (B) false.

a) If g is continuous at a, then g has a tangent at a.

b) If g has a tangent at a, then g is continuous at a.
For any function g, answer the following questions with (A) true or (B) false.

a) A tangent of g can intersect the graph of g in several points.
For any function g, answer the following questions with (A) true or (B) false.

a) A tangent of g can intersect the graph of g in several points.
b) Suppose that g is increasing. A tangent of g has to stay on the same side of the graph of g.
Lecture 4: Related exam problem

The following three graphs represent position $x(t)$, velocity $v(t)$ and acceleration $a(t)$. Label them.
Suppose that the energy expenditure of a fish swimming at velocity v is $E(v) = \alpha \left(\frac{1}{v} + \beta v \right)$, where $\alpha, \beta > 0$ are constant. The derivative of E with respect to v is

(A) $\alpha (v + \beta)$
(B) $\alpha \left(\frac{1}{v^2} + \beta \right)$
(C) $\alpha \left(-\frac{1}{v^2} + \beta v \right)$
(D) $\alpha \left(-\frac{1}{v^2} + \beta \right)$
(E) $\alpha (1 + \beta)$
Suppose that

\[f(x) = (3 + x^2)g(x) \]

and that

\[g(2) = 2, \quad g'(2) = -1. \]

Compute \(f'(2) \).
Let $f(x) = 3x - 2$, $g(x) = -2x + 1$ and $h(x) = g(f(x))$. Which of the following statements is true?

(A) $h(x) = -6x + 5$
(B) $h(x) = -6x^2 + 7x - 2$
(C) $h(x)$ is a quadratic polynomial
(D) More than one of the above.
(E) None of the above.
Lying on a 10 meter platform, you are throwing down a ball. The ball leaves your hand with a downwards speed of 3 m/s. Which function $y(t)$ describes the height of the ball in meters at time t in seconds?

(A) $y(t) = -\frac{9.81}{2} \frac{m}{s^2} t^2 + 10m$

(B) $y(t) = -\frac{9.81}{2} \frac{m}{s^2} t^2 - 3 \frac{m}{s} t + 10m$

(C) $y(t) = -\frac{9.81}{2} \frac{m}{s^2} t^2 + 3 \frac{m}{s} t + 10m$

(D) $y(t) = \frac{9.81}{2} \frac{m}{s^2} t^2 + 3 \frac{m}{s} t + 10m$
5. (2 pts) Consider the function $h(x) = f(g(x))$ where the graphs of f and g are shown in the figure below.

Circle the letter next to the true statement.

(a) $h'(0.5) > 0$.
(b) $h'(1.5) > 0$.
(c) $h'(2.5) = 0$.
(d) None of the above.
Let \(f(x) = x^3 \) and \(x_0 \neq 0 \). We use linear approximation to estimate \(f(x) \) for \(x \) close to \(x_0 \). Which of the following statements is true?

(A) Our approximation overestimates \(f(x) \).

(B) Our approximation is an overestimate if \(x_0 > 0 \).

(C) Our approximation is an underestimate if \(x_0 < 0 \).

(D) More than one is true.

(E) None is true.
Using linear approximation to estimate \(\sqrt{99} \), you would calculate the tangent line at:

(A) 100
(B) 99
(C) 10
(D) 1
(E) 0
Using linear approximation to estimate $\sqrt{99}$, the equation of the tangent line at 100 yields

(A) an overestimate.

(B) an underestimate.

(C) I don’t know.
Consider the function $f(x) = \frac{3}{x-2}$. At which points $(a, f(a))$ does the graph of this function have a tangent line parallel to the line $y = -x$? What is the equation of the tangent line at each of these points?
Which of the following statements is true?

(A) Newton’s method can fail because the derivative at some x_n can be zero.

(B) Newton’s method never fails.

(C) If Newton’s method converges, then it finds the zero closest to the initial guess x_0.

(D) Newton’s method can fail because the calculated approximations x_n can start repeating themselves in a loop.

(E) More than one of the above.
[4 pts] Consider each of the labeled points (solid dot) on the graph of $f(x)$ as a starting point for Newton’s method. To which zero of the function $f(x)$ (empty dots Z_1, Z_2, or neither) will Newton’s method converge for each one? You may assume that the graph of the function continues off the edges of the graph with no significant change in direction.

<table>
<thead>
<tr>
<th>Initial point</th>
<th>zero (Z_1, Z_2, or neither)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>
Suppose that the second derivative of a certain function f can be written in the factored form $f''(x) = x^2(1 - x)(x - 2)^2(x^2 - 9)$. Then f has inflection points at

(A) $x = -3, 0, 1, 2, 3$
(B) $x = 0, 1, 2, 3$ only
(C) $x = 1$ only
(D) $x = 1, 3$ only
(E) $x = -3, 1, 3$ only
Let $f(x)$ be a continuous function at $x = 0$. Which of the following statements is correct? Recall that if there exists any function for which a statement is false then the statement is false.

(A) If $f'(0)$ exists and $f'(0) = 0$ then $x = 0$ is an extremum.

(B) If $x = 0$ is an extremum then $f'(0)$ exists and $f'(0) = 0$.

(C) If $f'(x)$ exists for all x and $f'(0) = 0$, $f'(1) > 0$, and $f'(-1) < 0$ then $x = 0$ is a minimum.

(D) If $f'(0)$ and $f''(0)$ exist and $f'(0) = f''(0) = 0$ then $x = 0$ is not an extremum.

(E) None of the above are true.
Suppose that the energy expenditure of a fish swimming at velocity v is $E(v) = \alpha\left(\frac{1}{v} + \beta v\right)$, where $\alpha, \beta > 0$ are constant. At which velocity does the fish minimize its energy expenditure?

(A) $v = \frac{1}{\sqrt{\beta}}$

(B) $v = \sqrt{\beta}$

(C) $v = \alpha \sqrt{\beta}$

(D) $v = \alpha \beta$

(E) $v = \beta$
C.4 [6 pts.] Shown in the figure below is the view from above of the path taken by a penguin from point A to a feeding area on the shore at point C. The penguin must choose the point B toward which it starts walking. It takes twice as much energy per unit distance for a penguin to walk over land (AB) as to swim through water (BC). The distance AD is 300 m and the distance DC is 400 m. Calculate the value of the distance x (and hence the location of the point B - see figure) that minimizes the energy spent on the entire trip.
Kepler wants to find out for which shape of the barrel he can buy the most wine. Assume that the cost is proportional to the length L measuring the wet portion of the rod. What are possible strategies?

(A) Maximize the volume for fixed L with the constraint $V = hr^2\pi$.

(B) Maximize the volume for fixed L with the constraint $L^2 = \left(\frac{h}{2}\right)^2 + (2r)^2$.

(C) Minimize L for fixed volume V with the constraint $V = hr^2\pi$.

(D) Minimize L for fixed volume V with the constraint $L^2 = \left(\frac{h}{2}\right)^2 + (2r)^2$.

(E) More than one of the above.
An architect is designing a house in the form of a cylinder covered by a roof in the shape of half a sphere (extending above the cylinder). Suppose the material used to build the cylindrical wall is half the price of the material that is used to build the roof per unit area. If the total volume of the house is fixed, what ratio between the height of the wall and the radius of the roof will minimize the cost?
Lecture 12: Ch. 7, Question 6

Let $f(t)$ denote the energy gained up to time t in a food patch. Which graph represents the following food patch? The energy gained is proportional to the time in the food patch.

(A)
(B)
(C)
(D)
(E)
Lecture 12: Ch. 7, Question 6

Let $f(t)$ denote the energy gained up to time t in a food patch. Which graph represents the following food patch? The energy gained is proportional to the time in the food patch. e.g. bear salmon fishing

(A) ![Graph A](image1)

(B) ![Graph B](image2)

(C) ![Graph C](image3)

(D) ![Graph D](image4)

(E) ![Graph E](image5)
Lecture 12: Ch. 7, Question 6

Let $f(t)$ denote the energy gained up to time t in a food patch. Which graph represents the following food patch? At first I gain energy rapidly, but then I slow down.

(A)
(B)
(C)
(D)
(E)
Lecture 12: Ch. 7, Question 6

Let $f(t)$ denote the energy gained up to time t in a food patch. Which graph represents the following food patch? At first I gain energy rapidly, but then I slow down. e.g. bear eating berries

(A) ![Graph A](image)

(B) ![Graph B](image)

(C) ![Graph C](image)

(D) ![Graph D](image)

(E) ![Graph E](image)
Lecture 12: Ch. 7, Question 6

Let $f(t)$ denote the energy gained up to time t in a food patch. Which graph represents the following food patch? All the energy is gained right at the beginning.

(A) \hspace{1cm} (B) \hspace{1cm} (C)

(D) \hspace{1cm} (E)
Lecture 12: Ch. 7, Question 6

Let \(f(t) \) denote the energy gained up to time \(t \) in a food patch. Which graph represents the following food patch? All the energy is gained right at the beginning. e.g. fox eating eggs.
Lecture 12: Ch. 7, Question 6

Let \(f(t) \) denote the energy gained up to time \(t \) in a food patch. Which graph represents the following food patch? At first it is difficult to reach the food, then I gain energy rapidly and afterwards I slow down.

(A) \[f(t) \]
(B) \[f(t) \]
(C) \[f(t) \]
(D) \[f(t) \]
(E) \[f(t) \]
Lecture 12: Ch. 7, Question 6

Let \(f(t) \) denote the energy gained up to time \(t \) in a food patch. Which graph represents the following food patch? At first it is difficult to reach the food, then I gain energy rapidly and afterwards I slow down. e.g. bear eating ant larvae from colonies in logs

(A) \[
\begin{array}{c}
\text{\(f(t) \)} \\
\text{\(t \)}
\end{array}
\]
(B) \[
\begin{array}{c}
\text{\(f(t) \)} \\
\text{\(t \)}
\end{array}
\]
(C) \[
\begin{array}{c}
\text{\(f(t) \)} \\
\text{\(t \)}
\end{array}
\]
(D) \[
\begin{array}{c}
\text{\(f(t) \)} \\
\text{\(t \)}
\end{array}
\]
(E) \[
\begin{array}{c}
\text{\(f(t) \)} \\
\text{\(t \)}
\end{array}
\]
Lecture 12: Ch. 7, Question 6

Let \(f(t) \) denote the energy gained up to time \(t \) in a food patch. Which graph represents the following food patch? After some gain, I lose energy.

(A) \[\begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} \]

(B) \[\begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} \]

(C) \[\begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} \]

(D) \[\begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} \]

(E) \[\begin{array}{c}
\text{ } \\
\text{ } \\
\end{array} \]
Lecture 12: Ch. 7, Question 6

Let \(f(t) \) denote the energy gained up to time \(t \) in a food patch. Which graph represents the following food patch? After some gain, I lose energy. e.g. booby gets its fish stolen by a frigatebird.

\[
\begin{align*}
(A) & \quad (B) & \quad (C) \\
(D) & \quad (E)
\end{align*}
\]
OSH 4, part 1: Optimal length of shifts for medical residents.
Suppose that \(f \) is a differentiable function. What is the derivative of \((f(x))^2 - 7f(x)\)?

(A) \(2f(x) - 7\)
(B) \(2f'(x) - 7f'(x)\)
(C) \((f'(x))^2 - 7f'(x)\)
(D) \(2f(x)f'(x) - 7f'(x)\)
(E) \(2f(x) - 7f'(x)\)
Suppose that f is a differentiable function. What is the derivative of $f(x^2 - 7x)$?

(A) $f'(x^2 - 7x)$
(B) $f'(x)(2x - 7)$
(C) $f(x^2 - 7x)(2x - 7)$
(D) $f'(2x - 7)$
(E) $f'(x^2 - 7x)(2x - 7)$
Population of carnivores \(C \), prey \(P \), and vegetation \(V(r) \) are given by

\[
\frac{dC}{dr} = C'(P(V(r)))P'(V(r))V'(r)
\]

where \(r \) denotes the rainfall. What is the rate of change \(\frac{dC}{dr} \) of the carnivore population with respect to the rain?

(A) \(C'(P(V(r)))P'(V(r))V'(r) \)

(B) \(C'(P(V(r)))P'(V(r)) \)

(C) \(\frac{dC}{dP} \frac{dP}{dV} \frac{dV}{dr} \)

(D) \(\frac{dC}{dP} \frac{dP}{dV} \)

(E) More than one of the above.
Population of carnivores C, prey P, and vegetation $V(r)$ are given by

$$
C, P, \text{ and } V(r) \text{ are given by }
$$

where r denotes the rainfall. What’s $\frac{dC}{dr} \bigg|_{r=9}$ if $V = \sqrt{r}$, $P = 2V$ and $\frac{dC}{dP} \bigg|_{P=6} = 12$?

(A) 12

(B) 4

(C) 6

(D) 3

(E) Not enough information.
5. Which of the following lines $y = ax + b$ provides the best fit to the data in the least squares sense?
In the figure shown here, there are two people walking away or towards the street corner. The distances of the individuals from the corner at time t are $x(t)$ and $y(t)$. The distance L is then

(A) $L = x + y$
(B) $L = y/x$
(C) $L = x/y$
(D) $L = \sqrt{x + y}$
(E) $L = \sqrt{x^2 + y^2}$
Lecture 14: Ch. 9, Question 2

If in this diagram one person walks towards the corner at the rate 1 m/s and the other walks away at rate 2 m/s then in m/s:

(A) $\frac{dx}{dt} = 1, \frac{dy}{dt} = 2$
(B) $\frac{dx}{dt} = -1, \frac{dy}{dt} = 2$
(C) $\frac{dx}{dt} = 1, \frac{dy}{dt} = -2$
(D) $\frac{dx}{dt} = 2, \frac{dy}{dt} = 1$
(E) $\frac{dx}{dt} = 2, \frac{dy}{dt} = -1$
If one person walks towards the corner at the rate 1m/s and the other walks away at rate 2m/s then how fast (in m/s) is L changing at the instant when $x = y = 10 \text{m}$?

(A) 2
(B) $\sqrt{2}$
(C) $\frac{1}{\sqrt{2}}$
(D) $\frac{3}{\sqrt{2}}$
(E) 30
A squirrel sitting 6 m up in a tree is watching a coyote walk past the tree. The squirrel measures the angle formed between a vertical line directly below her and the line connecting her and the coyote and finds that it is changing at a rate of $\frac{1}{12}$ radians per second when the coyote is 8 m away from the base of the tree. How fast is the coyote walking?
Consider the hyperbola with equation

\[y^2 - x^2 = 1. \]

Implicit differentiation with respect to \(x \) yields the equation

(A) \(2y - 2x = 0 \)

(B) \(-2x = 0 \)

(C) \(2y \frac{dy}{dx} - 2x = 1 \)

(D) \(2y \frac{dy}{dx} - 2x = 0 \)

(E) None of the above.
Consider the hyperbola with equation

$$y^2 - x^2 = 1.$$

What is the best approximation to the slope of the tangent at (x, y) with $x = 1010010001$ and $y < 0$?

(A) -2

(B) -1

(C) 0

(D) 1

(E) 2.
The derivative of the exponential function $f(x) = a^x$ is $f'(x) = C_a \cdot a^x$. One of the following exponential functions has $C_a \approx 1.386$. Which one?

(A) red (B) blue (C) orange (D) purple (E) black
Find the tangent line of $y^2 = e^{(x^2)} + 5x$ at the point $(0, 1)$.
The red line passes through the points (0, 8.2), (20, 3). Which equation provides the best description of how BMR relates to M?

(A) \(BMR = \frac{20}{-5.2} M + 8.2 \)

(B) \(\ln(BMR) = \frac{20}{-5.2} \ln(M) + 8.2 \)

(C) \(BMR = \frac{-5.2}{20} M + 8.2 \)

(D) \(\ln(BMR) = \frac{-5.2}{20} \ln(M) + 8.2 \)

(E) \(\ln(BMR) = \frac{-5.2}{20} M + 8.2 \)
The red line passes through the points (0, 8.2), (20, 3). As a function of M, the basal metabolic rate BMR is best described as

(A) $M^{-5.2} - 20$
(B) $\frac{-5.2}{20} \ln(M)$
(C) a power function with exponent $\frac{-5.2}{20}$
(D) an exponential function with base $\frac{-5.2}{20}$
(E) $M \cdot e^{\frac{-5.2}{20}}$
Suppose that $f(x) = \ln(e^{g(x)} + x)$ and that $g(2) = 3$, $g'(2) = 5$. Compute $f'(2)$.
Lecture 17: Ch. 11, Question 2

If the green curve is the function $y = e^{-x}$ then the red curve could be

(A) $y = 3e^{-x}$
(B) $y = e^{-3x}$
(C) $y = e^{-x/3}$
(D) $y = \frac{1}{3}e^{-x}$
(E) $y = e^{-10x}$
Suppose a radioactive atom has probability k per unit time of emitting a particle and decaying. Suppose there are $N(t_0)$ atoms at time t_0. Then the number of remaining radioactive atoms that have not yet decayed at time $t_0 + h$ is approximately

(A) $N(t_0 + h) = k h N(t_0)$
(B) $N(t_0 + h) = N(t_0) - k h N(t_0)$
(C) $N(t_0 + h) = N(t_0) + k h N(t_0)$
(D) $N(t_0 + h) = -k(t_0 + h)$
(E) $N(t_0 + h) = k h$
Given the equation for the number of radioactive atoms remaining at time $t_0 + h$ that we found in the previous problem, $N(t_0 + h) = N(t_0) - khN(t_0)$, we arrive at the differential equation for decay by

(A) Taking a derivative of both sides with respect to t
(B) Taking a derivative of both sides with respect to N
(C) Subtracting $N(t_0)$ from both sides, dividing by h, and letting $h \rightarrow 0$
(D) Factoring out and then dividing both sides by $N(t_0)$
(E) None of the above
Lecture 17: Related exam problem

In the Chernobyl reactor explosion, which occurred on April 26, 1986, substantial amounts of the isotope strontium-90 (\(^{90}\text{Sr}\)) contaminated the area around the nuclear plant. \(^{90}\text{Sr}\) decays at a rate proportional to its quantity. \(^{90}\text{Sr}\) has a half-life of 29 years; that is, it takes 29 years for a quantity of \(^{90}\text{Sr}\) to decrease by half. What is the proportion of \(^{90}\text{Sr}\) originally released which remains on April 26, 2012?
Lecture 18: Ch. 13, Question 1

Which of the following functions is a solution to the differential equation

\[y'(t) = (y(t))^2 \]?

(A) \(y(t) = 2^t \)
(B) \(y(t) = e^t \)
(C) \(y(t) = t^{-1} \)
(D) \(y(t) = -\frac{1}{t} \)
(E) \(y(t) = t^2 \)
Lecture 18: Ch. 13, Question 2

Which slope field corresponds to the DE $y' = ry(1-y)(y-2)$, $r > 0$?
Lecture 18: Ch. 13, Question 3

Which steady states of the differential equation
\[y' = ry(1 - y)(y - 2), \; r > 0, \] are stable and which are unstable?

\[(A) \text{ Stable: } 0,1; \text{ Unstable: } 2 \]
\[(B) \text{ Stable: } 1,2; \text{ Unstable: } 0 \]
\[(C) \text{ Stable: } 2; \text{ Unstable: } 0,1 \]
\[(D) \text{ Stable: } 1; \text{ Unstable: } 0,2 \]
\[(E) \text{ Stable: } 0,2; \text{ Unstable: } 1 \]
Consider the differential equation

\[\frac{dy}{dt} = \frac{y^2 - 1}{y^2 + 1}. \]

a) Find all stable and unstable steady states, if any, for this differential equation.

b) What value will the solution of this differential equation with initial condition \(y(0) = 0 \) approach as \(t \) increases?
Let $y(x)$ be the solution of the initial value problem

$$\frac{dy}{dx} = y^2(y - a), \quad y(0) = 2a,$$

where $a > 0$ is a constant. Then

(A) $\lim_{x \to \infty} y(x) = 0$

(B) $\lim_{x \to \infty} y(x) = \infty$

(C) $\lim_{x \to \infty} y(x) = a$

(D) $\lim_{x \to \infty} y(x) = 2a$

(E) $\lim_{x \to \infty} y(x) = -\infty$
MC 2 A rumour started by one student spreads through UBC according to the model

\[I' = 10I - 0.5I^2, \]

in which \(I(t) \) denotes the number of students who have heard the rumour by time \(t \). Which of the following is the best estimate for the number of students who eventually will hear the rumour?

- [] 10
- [] 200
- [] 0.5
- [] 20