Today

- Optimal foraging
- Intro to least squares
Foraging
Foraging time includes
Foraging time includes
- a commute ($t_0 \rightarrow \text{constant}$),
Foraging time includes
- a commute ($t_0 \rightarrow$ constant),
- a visit to each patch (t_p)
Foraging success is characterized by $f(t_p) = \text{resource collected from a single patch after a time } t_p \text{ spent in the patch.}$

Remember the definition of $f(t_p)$ for an upcoming clicker Q.
Which of the following graphs matches the given description of \(f(t) \)?

Collection goes well at first but gradually slows down as the resource is depleted.
Which of the following graphs matches the given description of $f(t)$?

Collection goes well at first but gradually slows down as the resource is depleted.
Which of the following graphs matches the given description of $f(t)$?

It is initially hard to find nuts but gets easier with time. Eventually, there are none left to collect.
Which of the following graphs matches the given description of \(f(t) \)?

It is initially hard to find nuts but gets easier with time. Eventually, there are none left to collect.
Which of the following graphs matches the given description of f(t)?

Initially, you collect some nuts but the birds figure out what you’re doing and start stealing from you.
Which of the following graphs matches the given description of $f(t)$?

Initially, you collect some nuts but the birds figure out what you’re doing and start stealing from you.
Foraging

What to maximize?

food
Foraging

What to maximize?

- Total amount collected?
Foraging

What to maximize?

- Total amount collected?
- Stay in a patch forever.
Foraging

What to maximize?

- Total amount collected?
 - Stay in a patch forever.
- If you can move to a new patch, move when the returns diminish enough to make the new patch look better.
Foraging

What to maximize?

• Total amount collected?
 • Stay in a patch forever.
• If you can move to a new patch, move when the returns diminish enough to make the new patch look better.
 • Leave right away!
Foraging

What to maximize?

• Total amount collected?
 • Stay in a patch forever.

• If you can move to a new patch, move when the returns diminish enough to make the new patch look better.
 • Leave right away!

Don’t forget travel time!
Foraging

What to maximize?

• Total amount collected?
 • Stay in a patch forever.

• If you can move to a new patch, move when the returns diminish enough to make the new patch look better.

• Leave right away!

Don’t forget travel time!
Foraging

What to maximize?

• Total amount collected?
 • Stay in a patch forever.
• If you can move to a new patch, move when the returns diminish enough to make the new patch look better.
 • Leave right away!

Don’t forget travel time!
Foraging

What to maximize?

- Total amount collected?
 - Stay in a patch forever.
- If you can move to a new patch, move when the returns diminish enough to make the new patch look better.
 - Leave right away!
- Maximize average rate of collection.

food

Don’t forget travel time!
Foraging

food(t)
Foraging

I waited

(A) not long enough.
(B) just the right amount of time.
(C) too long.
Foraging

I waited

(A) not long enough.
(B) just the right amount of time.
(C) too long.
Foraging

I waited

(A) not long enough.
(B) just the right amount of time.
(C) too long.

\[R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0} \]
Foraging

I waited

(A) not long enough.
(B) just the right amount of time.
(C) too long.

\[R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0} \]

Choose \(t \) to maximize \(R(t) \).
Foraging

\[\text{food} \]

\[t \]

\[\text{food} \]
Foraging
Foraging

food(t)
food(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq t_0 \\
\food(t-t_0) & \text{for } t > t_0
\end{cases}
Foraging

$$\text{food}(t) = \begin{cases} 0 & \text{for } 0 \leq t \leq t_0 \\ f(t-t_0) & \text{for } t > t_0 \end{cases}$$

Average Rate of Collection

$$R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0}$$
Foraging

$food(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq t_0 \\
\text{f}(t-t_0) & \text{for } t > t_0
\end{cases}$

Average Rate of Collection

$R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0}$

$R(t)$ maximal at t_{max}.
Foraging

\[\text{food}(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq t_0 \\
\text{f}(t-t_0) & \text{for } t > t_0
\end{cases} \]

Average Rate of Collection

\[R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0} \]

R(t) maximal at \(t_{\text{max}} \).

Optimal \(t_p = t_{\text{max}} - t_0 \).
Foraging

\[\text{food}(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq t_0 \\
\text{f}(t-t_0) & \text{for } t > t_0
\end{cases} \]

Average Rate of Collection

\[R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0} \]

\(R(t) \) maximal at \(t_{\text{max}} \).

Optimal \(t_p = t_{\text{max}} - t_0 \).

Could have maximized \(R(t_p + t_0) = \frac{\text{f}(t_p)}{t_p + t_0} \) to get best \(t_p \).
Least squares model fitting
Least squares model fitting

How do we find the best line to fit through the data?
Least squares model fitting

How do we find the best line to fit through the data?
Least squares model fitting
Least squares model fitting
Least squares model fitting

$y = ax$

(x^n, y^n)

$i = 1, 2, 3, \ldots, n$
Least squares model fitting

\[y = ax \]

i = 1, 2, 3, ..., n

\((x_i, y_i)\)

\((x_1, y_1)\)

\((x_n, y_n)\)
Least squares model fitting

Each red bar is called a residual. We want all the residuals to be as small as possible.

\[y = ax \]

\((x_i, y_i) \quad \text{for} \quad i = 1, 2, 3, \ldots, n \)
The residuals are...

(A) \(r_i = y_i^2 + x_i^2 \)

(B) \(r_i = a^2 (y_i^2 + x_i^2) \)

(C) \(r_i = y_i - ax_i \)

(D) \(r_i = y_i - x_i \)

(E) \(r_i = x_i - y_i \)
The residuals are...

(A) \(r_i = y_i^2 + x_i^2 \)

(B) \(r_i = a^2 (y_i^2 + x_i^2) \)

(C) \(r_i = y_i - ax_i \)

(D) \(r_i = y_i - x_i \)

(E) \(r_i = x_i - y_i \)