Today

Requests for Friday/Monday (so far): (A) Biggest cone inside a cone. (B) Linear regression. (C) Differential equation example. Solving linear differential equations. Requested examples (if there's time).
 A drug delivered by IV accumulates at a constant rate k. The body metabolizes the drug proportional to the amount of the drug.

(A) $d'(t) = k_{IV} - k_m d(t)$ (B) $d'(t) = (k_{IV} - k_m) d(t)$ (C) $d'(t) = k_{IV} d(t) - k_m$ (D) $d'(t) = -k_{IV} + k_m d(t)$ A drug delivered by IV accumulates at a constant rate k. The body metabolizes the drug proportional to the amount of the drug.

(A) d'(t) = $k_{IV} - k_m d(t)$ (B) d'(t) = $(k_{IV} - k_m) d(t)$ (C) d'(t) = $k_{IV} d(t) - k_m$ (D) d'(t) = $-k_{IV} + k_m d(t)$

A drug delivered by IV accumulates at a constant rate k. The body metabolizes the drug proportional to the amount of the drug. $d'(t) = k_{IV} - k_m d(t), d(0) = 0.$ (A) $d(t) = k_{IV}/k_m (1 - exp(k_m t))$ (B) $d(t) = k_{IV}/k_m (1 - exp(-k_m t))$ (C) $d(t) = k_{IV}/k_m - exp(k_m t)$ (D) $d(t) = k_{IV}/k_m - exp(-k_m t)$ (E) $d(t) = k_{IV}/k_m - (k_{IV}-k_m)exp(-k_mt))$

Note: $exp(x)=e^{x}$.

Make related equation that looks like p'=kp.

Make related equation that looks like p'=kp.
c(t) = k_{IV} - k_m d(t)

Make related equation that looks like p'=kp.
c(t) = k_{IV} - k_m d(t)
c'(t) = -k_m d'(t)

 \oslash Make related equation that looks like p'=kp. $o c(t) = k_{IV} - k_m d(t)$ $c'(t) = -k_m d'(t)$ Solution New equation (in c(t) with no d(t) appearing): (A) $c'(t) = -k_m c(t)$ (C) $c'(t) = k_m c(t)$ (B) $c'(t) = -k_{IV} c(t)$ (D) $c'(t) = -k_m (k_{IV} - k_m d(t))$

 \oslash Make related equation that looks like p'=kp. $o c(t) = k_{IV} - k_m d(t)$ $c'(t) = -k_m d'(t)$ Solution New equation (in c(t) with no d(t) appearing): (A) $c'(t) = -k_m c(t)$ (C) $c'(t) = k_m c(t)$ (B) $c'(t) = -k_{IV} c(t)$ (D) $c'(t) = -k_m (k_{IV} - k_m d(t))$

Make related equation that looks like p'=kp. $o c(t) = k_{IV} - k_m d(t)$ $c'(t) = -k_m d'(t)$ Solution New equation (in c(t) with no d(t) appearing): (A) $c'(t) = -k_m c(t)$ (C) $c'(t) = k_m c(t)$ (B) $c'(t) = -k_{IV} c(t)$ (D) $c'(t) = -k_m (k_{IV} - k_m d(t))$ What about the initial condition, c(0) = ?

Make related equation that looks like p'=kp.
c(t) = k_{IV} - k_m d(t)
c'(t) = -k_m d'(t)
New equation: c'(t) = -k_m c(t), c(0)=k_{IV}.

Make related equation that looks like p'=kp. $c(t) = k_{IV} - k_m d(t)$ $o c'(t) = -k_m d'(t)$ Solution New equation: $c'(t) = -k_m c(t), c(0) = k_{IV}$. \odot Which means the solution to the d(t) eq. is (A) $d(t) = k_{IV} exp(-k_m t)$ (C) $d(t) = k_{IV}/k_m (1 - exp(-k_m t))$ (D) $d(t) = k_{IV}/k_m \exp(-k_m t)$ (B) $d(t) = k_{IV} \exp(k_m t)$

Make related equation that looks like p'=kp. $c(t) = k_{IV} - k_m d(t)$ $o c'(t) = -k_m d'(t)$ Solution New equation: $c'(t) = -k_m c(t), c(0) = k_{IV}$. \odot Which means the solution to the d(t) eq. is (A) $d(t) = k_{IV} \exp(-k_m t)$ (C) $d(t) = k_{IV}/k_m (1-exp(-k_m t))$ (D) $d(t) = k_{IV}/k_m \exp(-k_m t)$ (B) $d(t) = k_{IV} \exp(k_m t)$

 \oslash Make related equation that looks like p'=kp.

What happens to d(t) as $t \rightarrow \infty$?

Solution New equation: $c'(t) = -k_m c(t), c(0)=k_{IV}$.

Which means the solution to the d(t) eq. is
(A) d(t) = k_{IV} exp(-k_mt)
(C) d(t) = k_{IV}/k_m (1-exp(-k_mt))
(B) d(t) = k_{IV} exp(k_mt)
(D) d(t) = k_{IV}/k_m exp(-k_mt)

 \oslash Make related equation that looks like p'=kp.

What happens to d(t) as t--> ∞ ? d(t) --> k_{IV}/k_m

Solution New equation: $c'(t) = -k_m c(t), c(0)=k_{IV}$.

Which means the solution to the d(t) eq. is
(A) d(t) = k_{IV} exp(-k_mt)
(C) d(t) = k_{IV}/k_m (1-exp(-k_mt))
(B) d(t) = k_{IV} exp(k_mt)
(D) d(t) = k_{IV}/k_m exp(-k_mt)

Any problem of the form y' = a-by with IC y(0)=y₀ has solution

 $rightarrow y(t) = a/b + (y_0 - a/b) e^{-bt}$

Oheck:

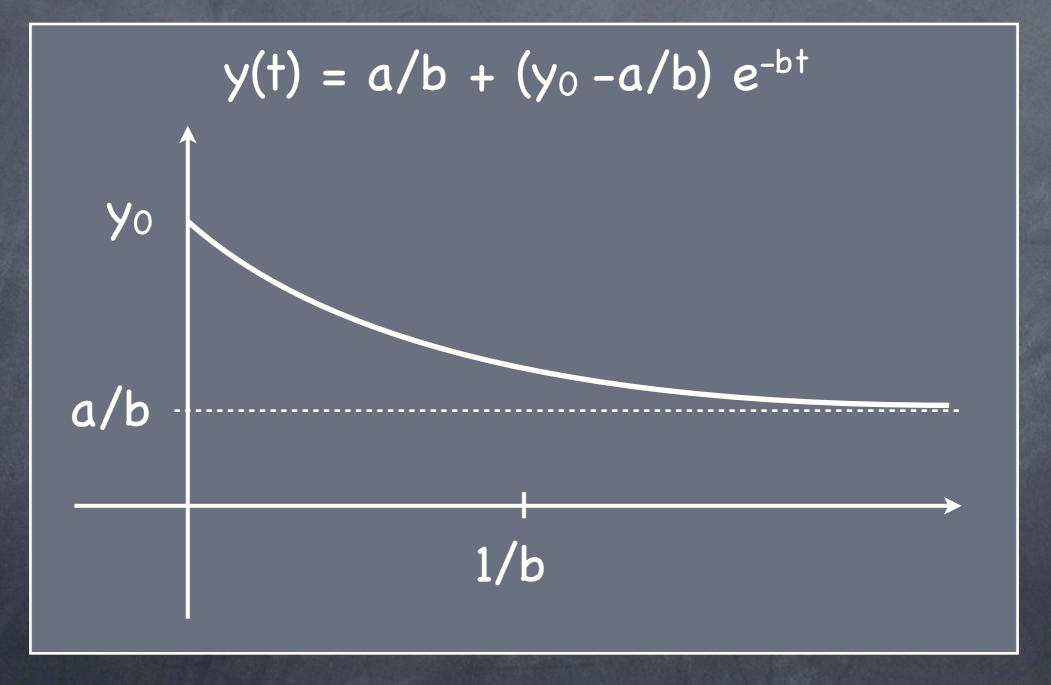
LHS: y'(t) = (on the blackboard)
RHS: a-by = (on the blackboard)
y(0) = a/b + (y₀ - a/b) e⁰ = y₀

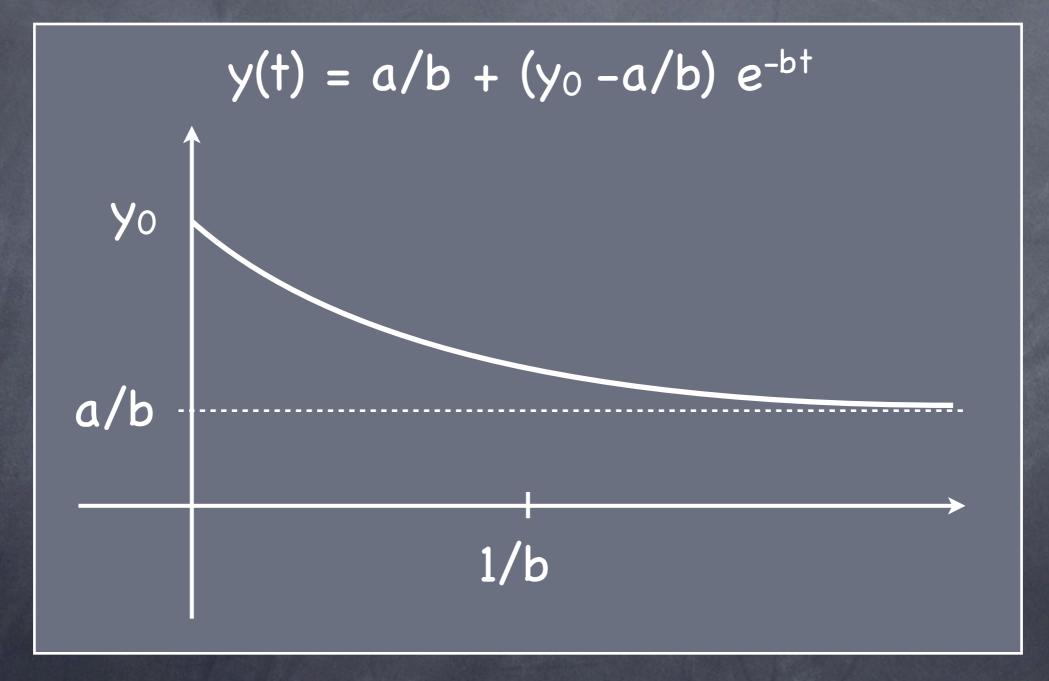
 $y(t) = a/b + (y_0 - a/b) e^{-bt}$

y(t) = a/b + (y₀ -a/b) e^{-bt}
If b>0 then as t--> ∞, y(t) --> a/b.
When b>0, the characteristic time is 1/b.

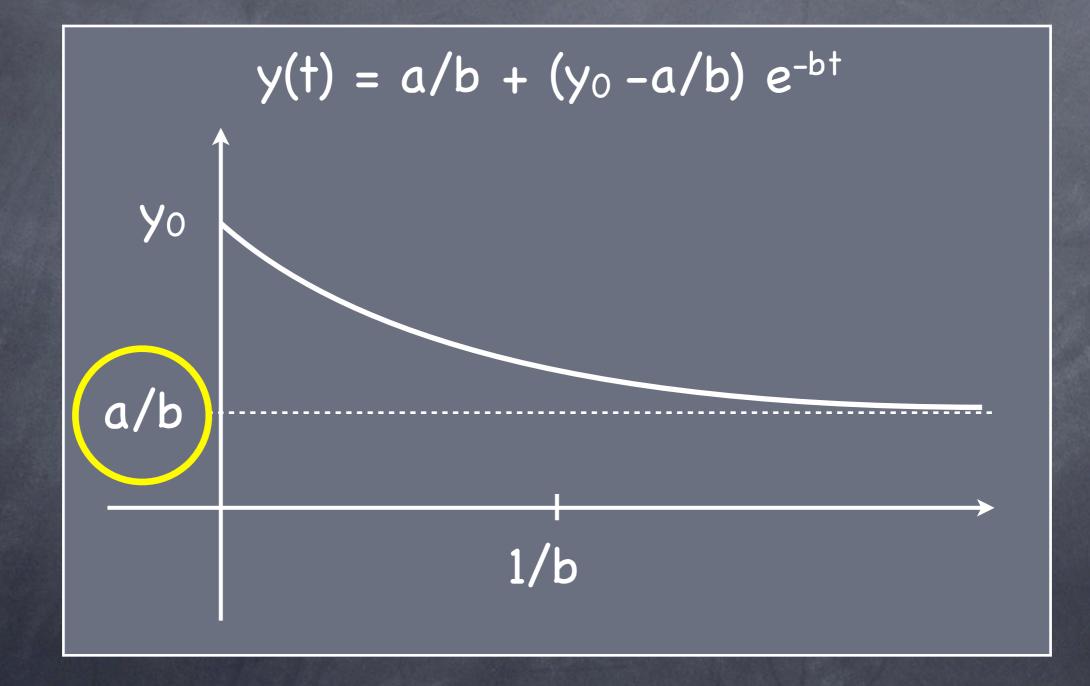
y(t) = a/b + (y₀ - a/b) e^{-bt}
If b>0 then as t--> ∞, y(t) --> a/b.
When b>0, the characteristic time is 1/b.
Notice that if y₀=a/b then y(t) = a/b.

 $y(t) = a/b + (y_0 - a/b) e^{-bt}$ If b>0 then as t→∞, y(t) → a/b.
 When b>0, the characteristic time is 1/b. Solution Notice that if $y_0 = a/b$ then y(t) = a/b. Constant solutions like this are called steady states.

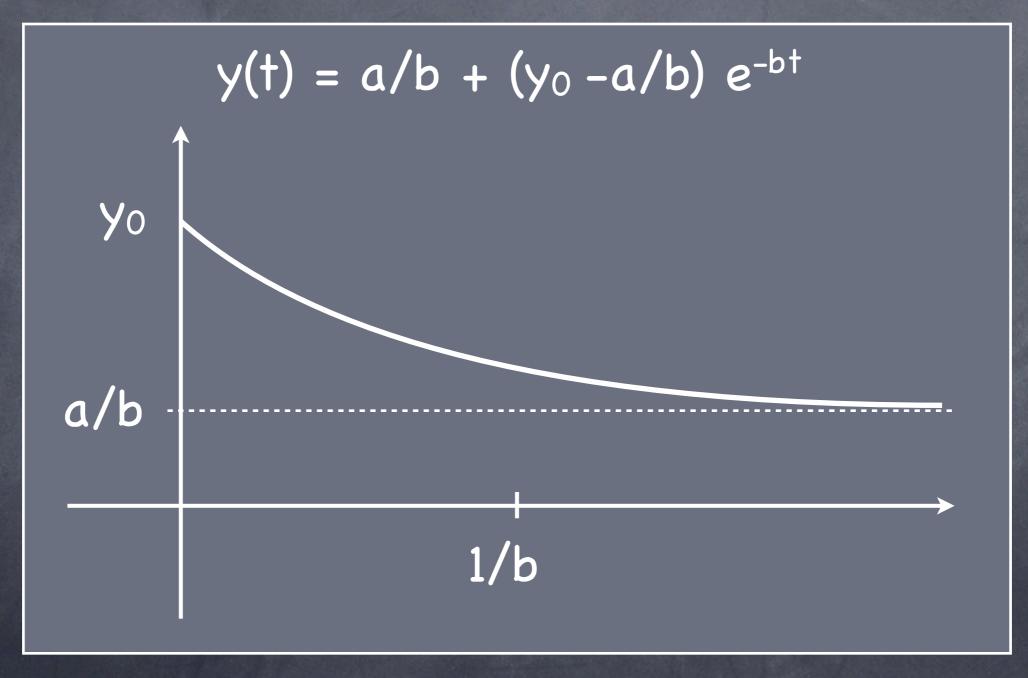




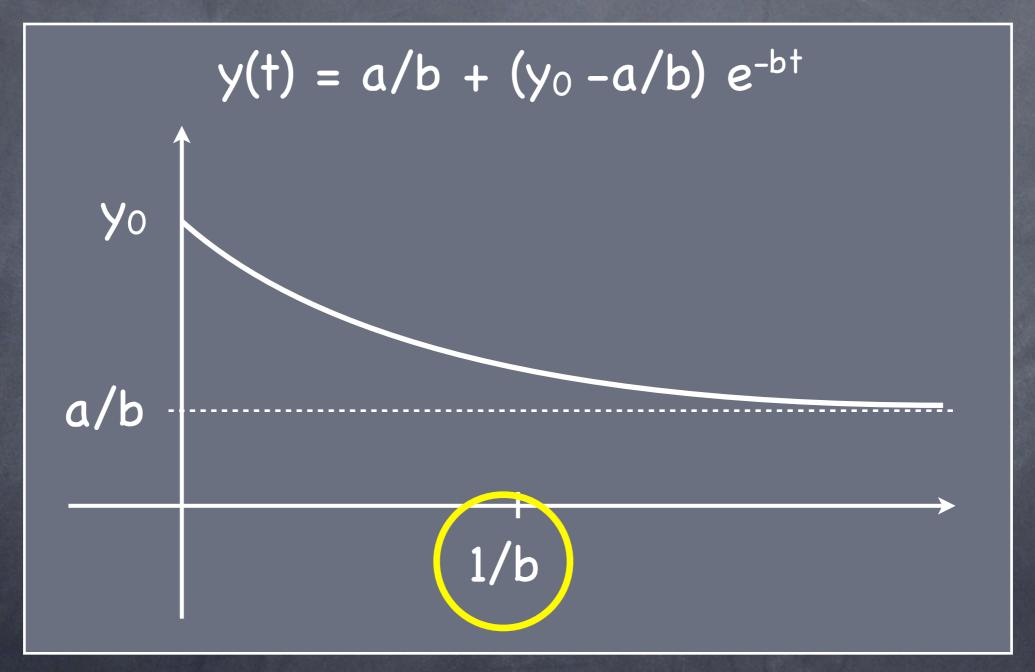
Where is y(t) going?

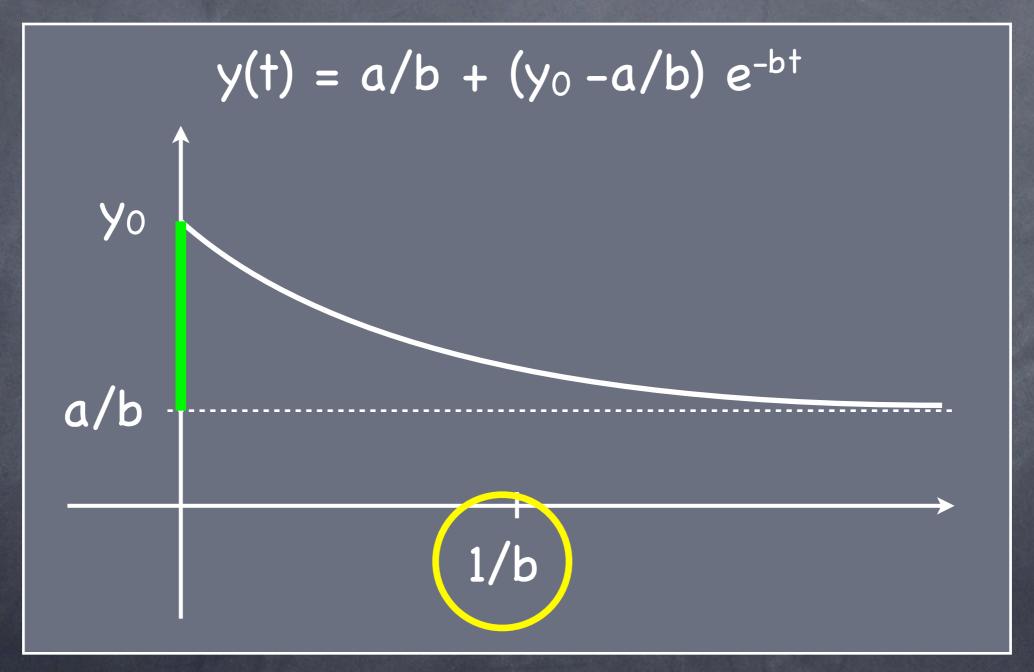


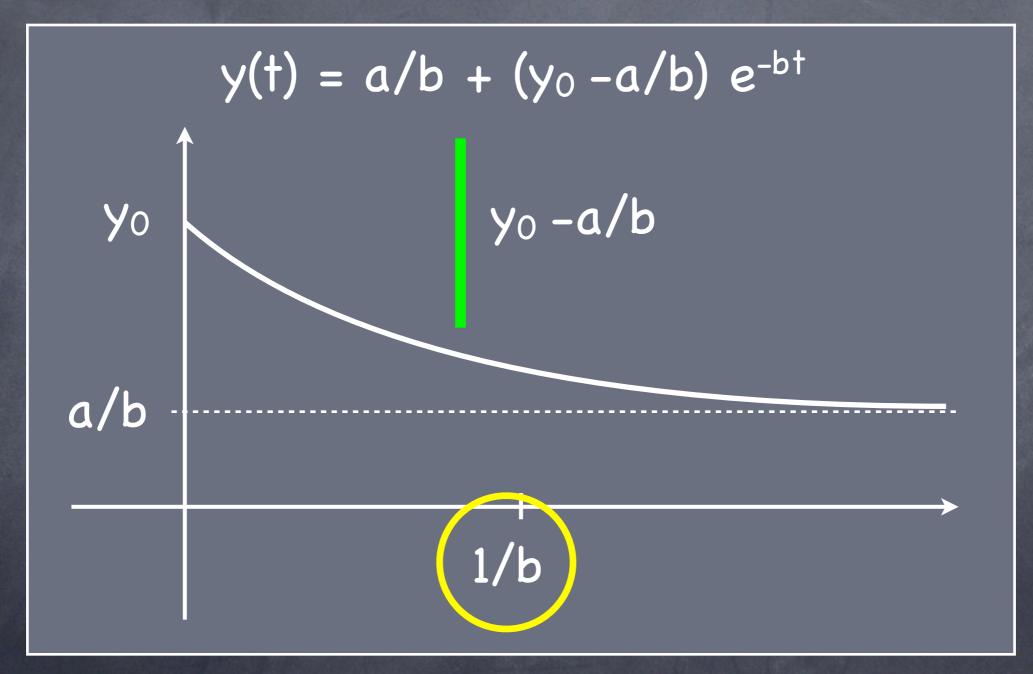
Where is y(t) going? To the steady state a/b.

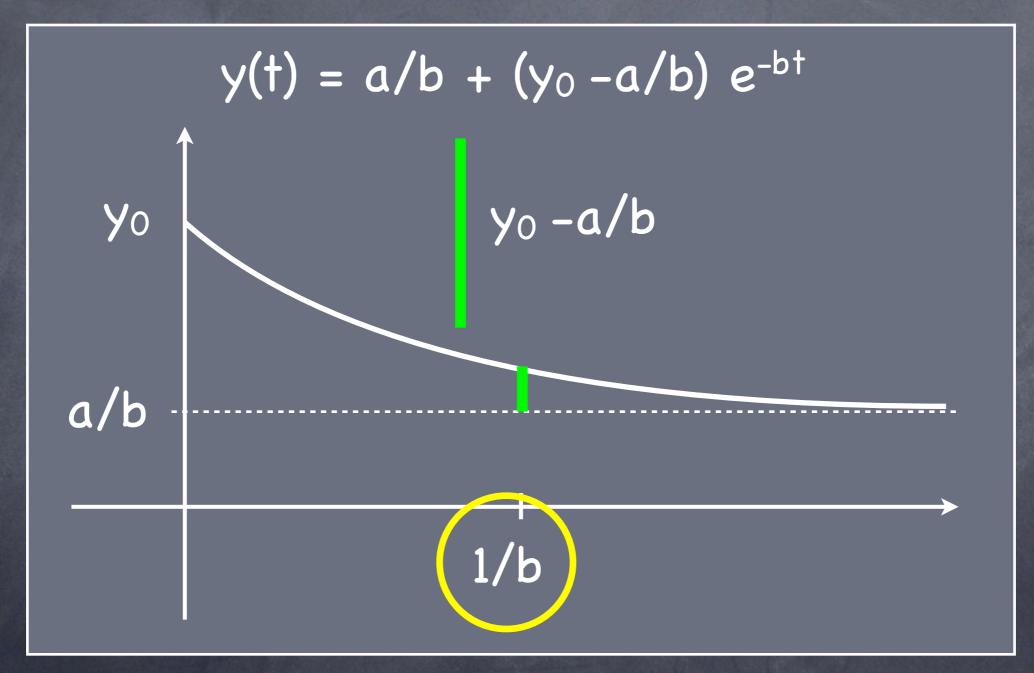


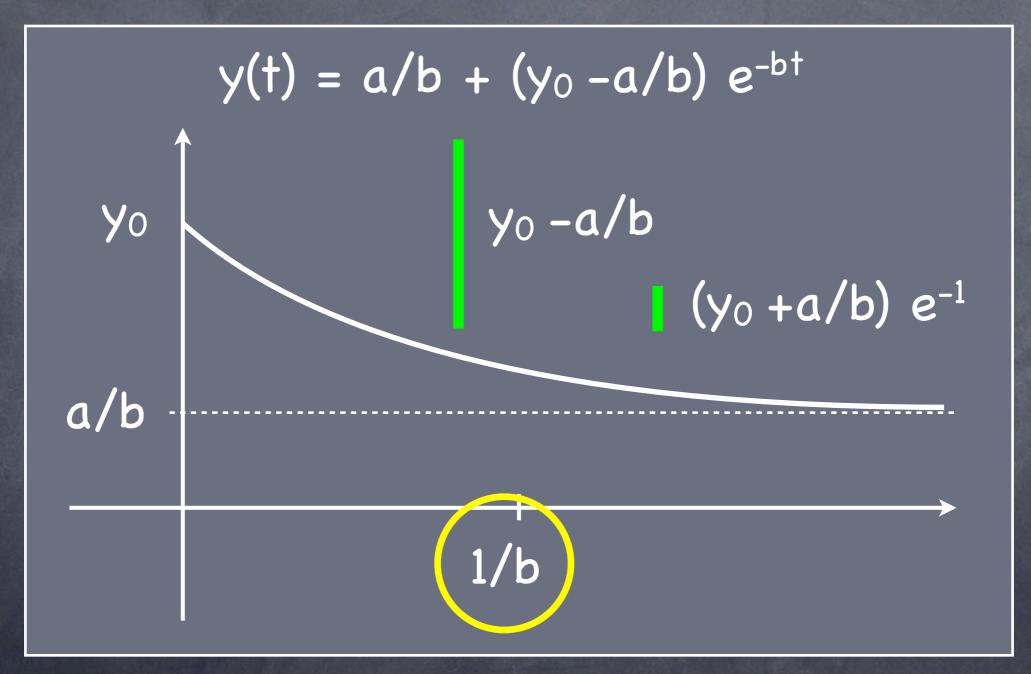
When will it get there?











Sewton's Law of Cooling: T'(t) = k(E-T(t))

Newton's Law of Cooling: T'(t) = k(E-T(t))
 a=kE, b=k.

Newton's Law of Cooling: T'(t) = k(E-T(t))
 a=kE, b=k.

Trug delivery: $d'(t) = k_{IV} - k_m d(t)$

Newton's Law of Cooling: T'(t) = k(E-T(t))
a=kE, b=k.
Drug delivery: d'(t) = k_{IV} - k_md(t)
a=k_{IV}, b=k_m

Newton's Law of Cooling: T'(t) = k(E-T(t))
a=kE, b=k.
Drug delivery: d'(t) = k_{IV} - k_md(t)
a=k_{IV}, b=k_m
Terminal velocity: mv'(t) = f - μv(t)

Newton's Law of Cooling: T'(t) = k(E-T(t)) Trug delivery: $d'(t) = k_{IV} - k_m d(t)$ $a = k_{IV}, b = k_m$ Terminal velocity: $mv'(t) = f - \mu v(t)$ $a=f/m, b=\mu/m$

Newton's Law of Cooling: T'(t) = k(E-T(t)) Trug delivery: $d'(t) = k_{IV} - k_m d(t)$ $a = k_{IV}, b = k_m$ Terminal velocity: $mv'(t) = f - \mu v(t)$ o a=f/m, b= μ/m General form, factored: y'(t) = b(a/b - y)

Given a word description, write down an equation for the quantity q(t) described.

Given a word description, write down an equation for the quantity q(t) described.
 Ex. Blah is added at a constant rate and is removed proportional to how much is there...

Given a word description, write down an equation for the quantity q(t) described.
 Ex. Blah is added at a constant rate and is removed proportional to how much is there...

Ex. Blah changes proportional to the difference between blah and fixed #.

Given a word description, write down an equation for the quantity q(t) described.
Ex. Blah is added at a constant rate and is removed proportional to how much is there...
Ex. Blah changes proportional to the difference between blah and fixed #.
Substitute as in the drug problem to get y'=ky and state that y(t)=Ce^{kt} solves it.

Given a word description, write down an equation for the quantity q(t) described. Sector Ex. Blah is added at a constant rate and is removed proportional to how much is there... Ex. Blah changes proportional to the difference between blah and fixed #. Substitute as in the drug problem to get y'=ky and state that $y(t)=Ce^{kt}$ solves it. Substitute back to find q(t).

- Given a word description, write down an equation for the quantity q(t) described.
 - Ex. Blah is added at a constant rate and is removed proportional to how much is there...
 - Ex. Blah changes proportional to the difference between blah and fixed #.
- Substitute as in the drug problem to get y'=ky and state that y(t)=Ce^{kt} solves it.
- Substitute back to find q(t).
- Determine C using the initial condition.

- Given a word description, write down an equation for the quantity q(t) described.
 - Ex. Blah is added at a constant rate and is removed proportional to how much is there...
 - Ex. Blah changes proportional to the difference between blah and fixed #.
- Substitute as in the drug problem to get y'=ky and state that y(t)=Ce^{kt} solves it.
- Substitute back to find q(t).
- Determine C using the initial condition.
- \odot Answer questions about the resulting q(t).