Today

@ Requests for Friday/Monday (so far):
(A) Biggest cone inside a cone.
(B) Linear regression.
(C) Differential equation example.
@ Solving linear differential equations.

@ Requested examples (if theres time).



A drug delivered by IV accumulates at a
constant rate k. The body metabolizes the
drug proportional to the amount of the drug.

(A) d'(t) = kiv - knd()
(B) d'(t) = (kiv - Km) d(t)
(C) d'(F) = kivd(t) - Kp
(D) d'() = -kiv + Kmd()
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A drug delivered by IV accumulates at a
constant rate k. The body metabolizes the
drug proportional to the amount of the drug.

d'(t) = kiv - knd(1), d(0) = O.

(A) d(t) = kiv/Km (1-exp(Kmt))
(B) d(t) = kiv/Km (1-exp(-Kmt))
(C) d(t) = kiv/Km - exp(kmt)
(D) d(t) = kiv/Km - exp(-Kmt)

(E) d(t) = kiv/Km - (kIv-km)exP(-kmf))
Note: exp(x)=e*.
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@ Make related equation that looks like p'=kp.
@ c(t) = kiv - Km d(1)
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d'(t) = kiv - knd(1), d(0) = O.

@ Make related equation that looks like p'=kp.
@ c(t) = kiv - Km d(1)
D C,('l-) - -km d'(ll')

@ New equation (in c(t) with no d(t) appearing):

(C) c'(1) = km c(t)
(B) ¢'(t) = -Kkiv c(t) (D) c'(t) = -Km (kiv - km d(1))



d'(t) = kiv - knd(1), d(0) = O.

@ Make related equation that looks like p'=kp.
@ c(t) = kiv - Km d(1)
D C,('l-) - -km d'(ll')

@ New equation (in c(t) with no d(t) appearing):
(C) c'(t) = km c(1)
(B) c'(t) = -kuv c(t) (D) c'(t) = -km (kv - km d(1))
What about the initial condition, c(0) = ?
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@ c(t) = kiv - Km d(1)
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d'(t) = kiv - knd(1), d(0) = O.

@ Make related equation that looks like p'=kp.

ol Al
What happens to d(t) as t--> «?
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@ New equation: c'(t) = -km c(t), c(0)=Kv.
@ Which means the solution to the d(t) eq. is

(A) d(t) = kv exp(-kmt)
(B) d(t) = kiv exp(kmt) (D) d(t) = kiv/km exp(-kmt)



d'(t) = kiv - knd(1), d(0) = O.

@ Make related equation that looks like p'=kp.

ol Al
What happens to d(t) as t--> «?

’ d("') —=> kiv/Kkm
@ New equation: c'(t) = -km c(t), c(0)=Kv.

@ Which means the solution to the d(t) eq. is

(A) d(t) = kv exp(-kmt)
(B) d(t) = kiv exp(kmt) (D) d(t) = kiv/km exp(-kmt)



General case

@ Any problem of the form y’ = a-by with IC
v(0)=yo has solution

o y(t) = a/b + (Yo -a/b) e®'

@ Check:
@ LHS: y'(t) = (on the blackboard)
@ RHS: a-by = (on the blackboard)

@ y(0) = a/b + (yo -a/b) €° = yo
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General case

v(t) = a/b + (yo -a/b) e™®'
@ If b>0 then as t--> oo, y(t) --> a/b.
® When b>0, the characteristic time is 1/b.
@ Notice that if yo=a/b then y(t) = a/b.

® Constant solutions like this are called
steady states.
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General case

v(t) = a/b + (Yo -a/b) e™®!
. \
1/b

Where is y(t) going? To the steady state a/b.
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General case

y(t) = a/b + (yo -a/b) e™®’

A

Yo Yo -a/b
a/b -

When will it get there?
Never but at t=1/b it will be 1/e of the way.
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Look different, same same.

@ Newtons Law of Cooling: T'() = k(E-T(1))
® a=KE, b=K.

@ Drug delivery: d'(f) = kv - Knd(t)
@ a=Kiv, b=Km

@ Terminal velocity: mv'(t) = f - pv(t)

@ a=f/m, b=p/m



Look different, same same.

@ Newtons Law of Cooling: T'() = k(E-T(1))
@ a=KE, b=k.
@ Drug delivery: d'() = kiv - knd()
@ a=Kiv, b=kn
@ Terminal velocity: mv'(t) = f - pv(t)
@ a=f/m, b=p/m
® General form, factored: y'(t) = b (a/b - v)
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What do you need to know?

@ Given a word description, write down an
equation for the quantity q(t) described.

® Ex. Blah is added at a constant rate and is
removed proportional to how much is there...

@ Ex. Blah changes proportional to the
difference between blah and fixed #.

@ Substitute as in the drug problem to get y’'=ky
and state that y(t)=Ce*' solves it.

@ Substitute back to find q(t).
@ Determine C using the inifial condition.

@ Answer questions about the resulting q(1).



