

Trig related rate problems:
Triangle with height-angle relation (fish).
Triangle with angle--opposite-side relation (clock).

Linear approximation (3 examples).

Relate the two changing quantities (h and θ): (A) $sin(\theta) = 2/h$ (B) $sin(\theta/2) = 1/h$ (C) $sin(\theta/2) = 1/sqrt(1+h^2)$ (D) $tan(\theta) = 2/h$ (E) $tan(\theta/2) = 1/h$

Relate the two changing quantities (h and θ): (A) $sin(\theta) = 2/h$ (B) $sin(\theta/2) = 1/h$ θ (C) $sin(\theta/2) = 1/sqrt(1+h^2)$ (D) $tan(\theta) = 2/h$ 2 (E) $tan(\theta/2) = 1/h$

Relate the two changing quantities (h and θ): (A) $sin(\theta) = 2/h$ (B) $sin(\theta/2) = 1/h$ θ (C) $sin(\theta/2) = 1/sqrt(1+h^2)$ (D) $tan(\theta) = 2/h$ 2 (E) $tan(\theta/2) = 1/h$

h

Relate the two changing quantities (h and θ): (A) $sin(\theta) = 2/h$ This will (B) $sin(\theta/2) = 1/h$ θ get messy. (C) $sin(\theta/2) = 1/sqrt(1+h^2)$ (D) $tan(\theta) = 2/h$ 2 (E) $tan(\theta/2) = 1/h$

h

Take derivatives to relate their rates of change (h' and θ'):

 \odot tan($\theta/2$) = 1/h

Take derivatives to relate their rates of change (h' and θ'):

 \odot tan($\theta/2$) = 1/h

 \odot sec²($\theta/2$) $\theta'/2 = -h'/h^2$

Take derivatives to relate their rates of change (h' and θ'):

 $rightarrow tan(\theta/2) = 1/h$

 \odot sec²($\theta/2$) $\theta'/2 = -h'/h^2$

 $\Theta \theta' = -2 h' / (h^2 \sec^2(\theta/2)) = -2 h' \cos^2(\theta/2) / h^2$

Take derivatives to relate their rates of change (h' and θ'):

 $ightharpoonup tan(\theta/2) = 1/h$

 \odot sec²($\theta/2$) $\theta'/2 = -h'/h^2$

Take derivatives to relate their rates of change (h' and θ'):

 \odot tan($\theta/2$) = 1/h

 \odot sec²($\theta/2$) $\theta'/2 = -h'/h^2$

 $\theta = ... (A) \pi/6$ (B) $\pi/4$ (C) $\pi/3$ (D) $2\pi/3$ (E) π .

Take derivatives to relate their rates of change (h' and θ '):

 $rightarrow tan(\theta/2) = 1/h$

 \odot sec²($\theta/2$) $\theta'/2 = -h'/h^2$

 $= -2 \cos^2(\theta/2)$

 $\theta = ... (A) \pi/6$ (B) $\pi/4$ (C) $\pi/3$ (D) $2\pi/3$ (E) π .

Take derivatives to relate their rates of change (h' and θ'):

ø tan(θ/2) = 1/h

 \odot sec²($\theta/2$) $\theta'/2 = -h'/h^2$

 $\Theta \Theta' = -2 h'/(h^2 \sec^2(\Theta/2)) = -2 h' \cos^2(\Theta/2) /h^2$

 $= -2 \cos^2(\theta/2) = -3/2 \text{ radians/s}$

 $\theta = ... (A) \pi/6$ (B) $\pi/4$ (C) $\pi/3$ (D) $2\pi/3$ (E) π .

Zebra Danio escape response

http://en.wikipedia.org/wiki/File:Zebrafisch.jpg

Zebra Danio escape response

ZD tries to escape when α' is above a threshold value.

Zebra Danio escape response

ZD tries to escape when α' is above a threshold value.

(A) $(p^{2}+q^{2}) / q^{2}$ (B) $(p^{2}+q^{2}) / p^{2}$ (C) $p^{2} / (p^{2}+q^{2})$ (D) $q^{2} / (p^{2}+q^{2})$ (E) p^{2}/q^{2}

(A) $(p^{2}+q^{2}) / q^{2}$ (B) $(p^{2}+q^{2}) / p^{2}$ (C) $p^{2} / (p^{2}+q^{2})$ (D) $q^{2} / (p^{2}+q^{2})$ (E) p^{2}/q^{2}

(A) $(p^{2}+q^{2}) / q^{2}$ (B) $(p^{2}+q^{2}) / p^{2}$ (C) $p^{2} / (p^{2}+q^{2})$ (D) $q^{2} / (p^{2}+q^{2})$ (E) p^{2}/q^{2}

 $\alpha' = -x' \cos^2(\alpha/2) S/x^2$

(A) $(p^{2}+q^{2}) / q^{2}$ (B) $(p^{2}+q^{2}) / p^{2}$ (C) $p^{2} / (p^{2}+q^{2})$ (D) $q^{2} / (p^{2}+q^{2})$ (E) p^{2}/q^{2}

 $\alpha' = -x' \cos^2(\alpha/2) \, S/x^2$ $= -x' \, x^2/(x^2+S^2/4) \, S/x^2$

(A) $(p^{2}+q^{2}) / q^{2}$ (B) $(p^{2}+q^{2}) / p^{2}$ (C) $p^{2} / (p^{2}+q^{2})$ (D) $q^{2} / (p^{2}+q^{2})$ (E) p^{2}/q^{2}

 $\alpha' = -x' \cos^2(\alpha/2) S/x^2$ = -x' x²/(x²+S²/4) S/x² = -x' S/(x²+S²/4)

(A) $(p^{2}+q^{2}) / q^{2}$ (B) $(p^{2}+q^{2}) / p^{2}$ (C) $p^{2} / (p^{2}+q^{2})$ (D) $q^{2} / (p^{2}+q^{2})$ (E) p^{2}/q^{2}

 $\alpha' = -x' \cos^2(\alpha/2) S/x^2$ = -x' x²/(x²+S²/4) S/x² = -x' S/(x²+S²/4) = v S/(x²+S²/4) Assuming the Zebra Danio reacts to a rapidly changing optical angle α , it will try to escape from...

(A) ...a very large predator.
(B) ...a very small predator.
(C) ...a predator that is far away.
(D) ...a slow-moving predator.
(E) ...a fast-moving predator.

 $\alpha' = v S/(x^2+S^2/4)$

Assuming the Zebra Danio reacts to a rapidly changing optical angle α , it will try to escape from...

(A) ...a very large predator.
(B) ...a very small predator.
(C) ...a predator that is far away.
(D) ...a slow-moving predator.
(E) ...a fast-moving predator.

 $\alpha' = v S/(x^2+S^2/4)$

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

(A) ...a very large predator.
(B) ...a very small predator.
(C) ...a predator that is far away.
(D) ...a slow-moving predator.
(E) ...a fast-moving predator.

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

- ...a very small predator.
- ...a predator that is far away.
- ...a slow-moving predator.

(C)

(D)

(E)

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

- ...a predator that is far away.
- ...a slow-moving predator.

(C)

(D)

(E)

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

- ...a very large predator. ...a very small predator. ...a predator that is far away.
- ...a slow-moving predator.

(C)

(D)

(E)

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

^{...}a fast-moving predator.

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

(E)

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

...a slow-moving predator.

(D)

(E)

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

...a fast-moving predator.

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

(E)

Hold predator distance x constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of S.

Hold predator size S constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of x.

(A)

(B)

(C)

(D)

Hold predator size S constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of x.

(A) (B)

(C)

(D)

Hold predator size S constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of x.

(A)

(B)

(C)

(D)

Hold predator size S constant, plot $\alpha' = v S/(x^2+S^2/4)$ as function of x.

(A)

(B)

(C)

(D)

(E)

...a fast-moving predator.

Image – http://en.wikipedia.org/wiki/File:Tibur%C3%B3n.jpg

Relate the two changing quantities: (A) $a^2 = b^2 + c^2$ (B) $a^2 = b^2 + c^2 - 2bc \cos(\theta)$ (C) $a/\sin(A) = b/\sin(B)$ (D) $\sin(\theta) = a/b$

Relate the two changing quantities: (A) $a^2 = b^2 + c^2$ (B) $a^2 = b^2 + c^2 - 2bc \cos(\theta)$ (C) a/sin(A) = b/sin(B)(D) $sin(\theta) = a/b$

f(x)

f(x)

f(x)

f(b)

(A) $f(b) \approx f(b)+f'(b)(x-b)$ (B) $f(b) \approx f(a)+f'(a)(x-a)$ (C) $f(b) \approx f(a)+f'(a)(b-a)$ (D) $f(a) \approx f(b)+f'(b)(a-b)$ (E) $f(a) \approx f(b)+f'(b)(x-b)$

Linear approximation