\[y' = \sin(y) \]

Sketch a few solutions \(y(t) \).
\[y' = \sin(y) \]
$y' = \sin(y)$
What you should be able to do:

- Identify steady states for a DE.
- Draw/interpret the phase line for a DE.
- Draw/interpret a slope field for a DE.
- Determine stability of steady states.
- Determine long-term behaviour of solutions.
- Sketch the graphs of solutions using phase line and/or slope fields (slopes, concavity, IPs, h-asymptotes).
Some biological examples

Allee effect: \(P' = rP (1-P/K) (P/T-1) \) where \(T<K \)

Lac operon: \(c' = c^2/(k^2+c^2) - ac \)
The rate of change of an object’s temperature is proportional to the difference between the object’s temperature and the surrounding environment.

(A) \(T'(t) = k (T(t) - E) \)

(B) \(T'(t) = k (E - T(t)) \)

(C) \(T'(t) = E - kT(t) \)

(D) \(T'(t) = kT(t) - E \)

Assume \(k>0 \) and \(E \) is the temperature of the environment.
The rate of change of an object’s temperature is proportional to the difference between the object’s temperature and the surrounding environment.

(A) $T'(t) = k \left(T(t) - E \right)$

(B) $T'(t) = k \left(E - T(t) \right)$

(C) $T'(t) = E - kT(t)$

(D) $T'(t) = kT(t) - E$

Assume $k > 0$ and E is the temperature of the environment.
The rate of change of an object’s temperature is proportional to the difference between the object’s temperature and the surrounding environment.

\((A)\ T'(t) = k \ (T(t) - E)\)

\((B)\ T'(t) = k \ (E - T(t))\)

\((C)\ T'(t) = E - kT(t)\)

\((D)\ T'(t) = kT(t) - E\)

Assume \(k > 0\) and \(E\) is the temperature of the environment.
The rate of change of an object’s temperature is proportional to the difference between the object’s temperature and the surrounding environment.

\[(A) \ T'(t) = k \ (T(t) - E) \]
\[(B) \ T'(t) = k \ (E - T(t)) \]
\[(C) \ T'(t) = E - kT(t) \]
\[(D) \ T'(t) = kT(t) - E \]

Make sure eq matches physical intuition. If the coefficient on T(t) is +ive, the solution \(\longrightarrow \infty \).

Assume k>0 and E is the temperature of the environment.
The rate of change of an object’s temperature is proportional to the difference between the object’s temperature and the surrounding environment.

\((A) \ T'(t) = k \ (T(t) - E) \)

\((B) \ T'(t) = k \ (E - T(t)) \)

\((C) \ T'(t) = E - kT(t) \)

\((D) \ T'(t) = kT(t) - E \)

Assume \(k > 0 \) and \(E \) is the temperature of the environment.

Make sure eq matches physical intuition.

If the coefficient on \(T(t) \) is +ive, the solution \(\longrightarrow \infty \).

Units have to match!
Solving $T' = k(E-T)$
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H$_2$O.
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.

Define $S(t) = T(t) - E$.
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.

Define $S(t) = T(t) - E$.

$S'(t) = T'(t)$
Solving $T' = k(E-T)$

- Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.
- Change to centigrade.
 - Define $S(t) = T(t) - E$.
 - $S'(t) = T'(t)$
 - $S' = T' = k(E-T) = k(-S) = -kS$
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.

Define $S(t) = T(t) - E$.

$S'(t) = T'(t)$

$S' = T' = k(E-T) = k(-S) = -kS$

Solution: $S(t) = S_0e^{-kt}$. Change back to $T(t)$:
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.

Define $S(t) = T(t) - E$.

$S'(t) = T'(t)$

$S' = T' = k(E-T) = k(-S) = -kS$

Solution: $S(t) = S_0e^{-kt}$. Change back to $T(t)$:

$T(t) = S(t) + E = S_0e^{-kt} + E$
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.

Define $S(t) = T(t) - E$.

$S'(t) = T'(t)$

$S' = T' = k(E-T) = k(-S) = -kS$

Solution: $S(t) = S_0 e^{-kt}$. Change back to $T(t)$:

$T(t) = S(t) + E = S_0 e^{-kt} + E$

With $T(0)=T_0$, $T(0) = S_0 + E = T_0$ so $S_0 = T_0 - E$.
Solving $T' = k(E-T)$

Suppose T is measured in Kelvin and $E = 273K$ is the freezing point of H_2O.

Change to centigrade.

Define $S(t) = T(t) - E$.

$S'(t) = T'(t)$

$S' = T' = k(E-T) = k (-S) = - kS$

Solution: $S(t) = S_0 e^{-kt}$. Change back to $T(t)$:

$T(t) = S(t) + E = S_0 e^{-kt} + E = (T_0-E)e^{-kt} + E$

With $T(0)=T_0$, $T(0) = S_0 + E = T_0$ so $S_0 = T_0 - E$.
Phase line for NLC:
\[
\frac{dT}{dt} = k(E - T)
\]

Notice that the arrows are always the same for any \(E\), just shifted left or right.
Phase line for NLC:

\[
\frac{dT}{dt} = k(E - T)
\]

Notice that the arrows are always the same for any \(E \), just shifted left or right.
Phase line for NLC:

\[
\frac{dT}{dt} = k(E - T)
\]

Notice that the arrows are always the same for any E, just shifted left or right.
Phase line for NLC:

\[
\frac{dT}{dt} = k(E - T)
\]

Notice that the arrows are always the same for any E, just shifted left or right.
What does the phase line tell us without even solving the equation?

\[\frac{dT}{dt} = k(E - T) \]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[
\frac{dT}{dt} = k(E - T)
\]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[
\frac{dT}{dt} = k(E - T)
\]

What influence does \(k \) have on this diagram?

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[
\frac{dT}{dt} = k(E - T)
\]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[
\frac{dT}{dt} = k(E - T)
\]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[
\frac{dT}{dt} = k(E - T)
\]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[
\frac{dT}{dt} = k(E - T)
\]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?\[
\frac{dT}{dt} = k\left(E - T\right)
\]

What influence does \(k \) have on this diagram?
What does the phase line tell us without even solving the equation?

\[\frac{dT}{dt} = k(E - T) \]

What influence does \(k \) have on this diagram?