Today

Euler's method (cont)

Qualitative analysis of differential equations

Steady states

Slope fields

Stability of steady states

Selocity (y') versus position (y)

Euler's method (cont)

Spreadsheet demo

Monday, November 10, 2014

Monday, November 10, 2014

We have focussed on linear DEs so far:

y'=a+by

We have focussed on linear DEs so far:

y'=a+by

A linear DE is one in which the y' and the y appear linearly (e.g. not squared).

We have focussed on linear DEs so far:

y'=a+by

A linear DE is one in which the y' and the y appear linearly (e.g. not squared).

Some nonlinear equations:

 $v' = g - v^2$, y' = -sin(y), $(h')^2 = bh$.

We have focussed on linear DEs so far:

y'=a+by

- A linear DE is one in which the y' and the y appear linearly (e.g. not squared).
- Some nonlinear equations:

 $v' = q - v^2$, y' = -sin(y), $(h')^2 = bh$.

object falling pendulum water draining through air under water from a vessel

Monday, November 10, 2014

Where do nonlinear equations come from?

Where do nonlinear equations come from?
 Population growth:

 N' = bN-dN = kN (linear)
 where b is per-capita birth rate, d is per

capita death rate and k=b-d.

Where do nonlinear equations come from?Population growth:

N' = bN - dN = kN (linear)

where b is per-capita birth rate, d is percapita death rate and k=b-d.

 Suppose the per-capita death rate is not constant but increases with population size (more death at high density) so d = cN.

Where do nonlinear equations come from?Population growth:

N' = bN - dN = kN (linear)

where b is per-capita birth rate, d is percapita death rate and k=b-d.

Suppose the per-capita death rate is not constant but increases with population size (more death at high density) so d = cN.

 $N' = bN-(cN)N = bN-cN^2$

Monday, November 10, 2014

$$\frac{dN}{dt} = bN - cN^2$$

$$\frac{dN}{dt} = bN - cN^2$$

This is called the logistic equation, usually written as

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

$$\frac{dN}{dt} = bN - cN^2$$

This is called the logistic equation, usually written as

$$\frac{dN}{dt} = rN\left(1 - \frac{N}{K}\right)$$

where r=b and K=1/c. This is a nonlinear DE because of the N^2 .

Monday, November 10, 2014

Finding a formula for a solution to a DE is ideal but what if you can't?

- Finding a formula for a solution to a DE is ideal but what if you can't?
- Qualitative analysis extract information about the general solution without solving.

- Finding a formula for a solution to a DE is ideal but what if you can't?
- Qualitative analysis extract information about the general solution without solving.

Steady states

Slope fields

Stability of steady states

Ø Plotting y' versus y (state space/phase line)

Steady state. Where can you stand so that the DE tells you not to move?

(A) $\times = -1$

(B) x=0

(C) x=1/2

(D) ×=1

This is the logistic eq with r=1, K=1.

Steady state. Where can you stand so that the DE tells you not to move?

(A) $\times = -1$

(B) x=0

(C) x=1/2

This is the logistic eq with r=1, K=1.

- Steady state. Where can you stand so that the DE tells you not to move?
 - (A) x = -1

(B) x=0

(C) x=1/2

(D) x=1

A steady state is a constant solution.

Monday, November 10, 2014

At any t, don't know x yet so plot all possible x' values

Slope field $\mathbf{k} x(t)$ 0

At any t, don't know x yet so plot all possible x' values

When x(t)=1/2 what is x'?
(A) 0
(B) 1/4
(C) 1/2
(D) 1

At any t, don't know x yet so plot all possible x' values

At any t, don't know x yet so plot all possible x' values

Slope field $\mathbf{k} x(t)$ / 1/2 0

At any t, don't know x yet so plot all possible x' values

Slope field $\mathbf{k} x(t)$ /// 1/2 0

At any t, don't know x yet so plot all possible x' values

Slope field $\mathbf{k} x(t)$ //// 1/2 0

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

At any t, don't know x yet so plot all possible x' values

Sow draw them for all t.

At any t, don't know x yet so plot all possible x' values

Sow draw them for all t.

At any t, don't know x yet so plot all possible x' values

Sow draw them for all t.

 $\mathbf{k} x(t)$ 0

At any t, don't know x yet so plot all possible x' values

Sow draw them for all t.

 $\mathbf{k} x(t)$ 0 / ||

At any t, don't know x yet so plot all possible x' values

Now draw them for all t.

 $\mathbf{k} x(t)$ $\begin{array}{c} & (1) \\ (1)$ 1/2 \ \mathbf{N}

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

position Slop<u>e field</u>

 $\mathbf{k} \mathbf{x}(t)$ 1/2 0 111

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

 $\mathbf{k} x(t)$ 1/2 0 ||/

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

- At any t, don't know x yet so plot all possible x' values
- Now draw them for all t.
- Solution curves must be tangent to slope field everywhere.

Velocity (x') vs. position (x)

Monday, November 10, 2014

Monday, November 10, 2014

Stable steady state – all nearby solutions approach Unstable steady state – not stable

If you start at x(0) = -0.01, the solution

(A) increases

x' = x(1 - x)

If you start at x(0) = 0.01, the solution

(A) increases

x' = x(1 - x)

If you start at x(0) = 0.99, the solution

(A) increases

x' = x(1 - x)

x' = x(1 - x)

If you start at x(0) = 1.01, the solution

(A) increases

(A) Both x(t)=0 and x(t)=1 are stable steady states.

(B) x(t)=0 is stable and x(t)=1 is unstable.

x' = x(1 - x)

- (C) x(t)=0 is unstable and x(t)=1 is stable.
- (D) Both x(t)=0 and x(t)=1 are unstable steady states.

$$x' = x(1 - x)$$

(A) Both x(t)=0 and x(t)=1 are stable steady states.

(B) x(t)=0 is stable and x(t)=1 is unstable.

(C) x(t)=0 is unstable and x(t)=1 is stable.

- (D) Both x(t)=0 and x(t)=1 are unstable steady states.
 - Stable solid dot. Unstable empty dot.