Limits, Continuous Functions, and the Derivative
Math 102 Section 106

Cole Zmurchok

September 16, 2016
Math 102: Announcements

- First full week done!
- What's next? https://wiki.math.ubc.ca/mathbook/M102/Course_calendar
I rate my presentation (neatness, style, clarity, sentences):

A. Excellent
B. Very good
C. Good
D. Could be better
E. Not so great
I rate the correctness of my work (neatness, style, clarity, sentences):

A. Excellent
B. Very good
C. Good
D. Could be better
E. Not so great
OSH Self-assessment: Content

I rate the content of my OSH as (Explanation of set-up, logical flow, correct conclusions, and interpretation)

A. Excellent
B. Very good
C. Good
D. Could be better
E. Not so great
Last time

- Limits
 - plug-in for continuous functions
 - factoring
 - Some limits DNE

- To get the instantaneous rate of change, take $h \to 0$ in the average velocity

- The derivative of $y = f(x)$ at x_0 is

 \[f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}. \]

- As $h \to 0$, the secant line approaches a tangent line
Today...

- Continuous Functions
- Types of discontinuities
- Limits
- Limits at infinity
- Limits and the derivative

I have many Clicker questions for you. Please ask many questions in return!
Continuous function

- A function \(f(x) \) is **continuous** at a point \(x = a \) in its domain if

\[
\lim_{x \to a} f(x) = f(a).
\]

- For \(f(x) \) to be continuous at \(x = a \), three things need to be true:
 1. \(f(x) \) needs to be defined at the point
 2. the limit exists as \(x \) approaches the point
 3. the limit value is the same as the value of the function
Types of discontinuities

https://www.desmos.com/calculator/viztz0quu8
Types of discontinuities

Q1. The function

\[f(x) = \frac{x^3 - ax^2}{x - a} \]

is undefined at \(x = a \). What value should be assigned to \(f(a) \) such that \(f(x) \) is continuous at \(x = a \)?

A. 0
B. \(a \)
C. \(a^2 \)
D. \(a^3 \)
Types of discontinuities

Q1. The function

\[f(x) = \frac{x^3 - ax^2}{x - a} \]

is undefined at at \(x = a \). What value should be assigned to \(f(a) \) such that \(f(x) \) is continuous at \(x = a \)?

Define

\[
\begin{align*}
 f(a) &= \lim_{x \to a} f(x) = \lim_{x \to a} \frac{x^3 - ax^2}{x - a} \\
 &= \lim_{x \to a} x^2 \frac{x - a}{x - a} = \lim_{x \to a} x^2 = a^2
\end{align*}
\]
Types of discontinuities

Q2. Consider the function

\[f(x) = \begin{cases}
-1, & x < a, \\
1, & x \geq a.
\end{cases} \]

What is \(\lim_{x \to a} f(x) \)?

A. 1
B. −1
C. 0
D. The limit does not exist
Types of discontinuities

Q2. Consider the function

\[f(x) = \begin{cases}
 -1, & x < a, \\
 1, & x \geq a.
\end{cases} \]

\[\lim_{x \to a} f(x) \text{ DNE since the right-side and left-side limits are not equal:} \]

- Approach \(x = a \) from above (right-side limit):

\[\lim_{x \to a^+} f(x) = 1 \]

- Approach \(x = a \) from below (left-side limit):

\[\lim_{x \to a^-} f(x) = -1 \]
Types of discontinuities

Q3. What is

\[\lim_{x \to a} \frac{1}{x - a} \]?

A. ∞
B. $-\infty$
C. DNE
D. More than one answer is correct
Types of discontinuities

Q3. What is

\[\lim_{x \to a} \frac{1}{x - a} \]?

- The function \(f(x) = \frac{1}{x-a} \) is not defined at \(x = a \).

- \(\lim_{x \to a} \frac{1}{x-a} \) DNE:
 - Right-side limit:
 \[\lim_{x \to a^+} \frac{1}{x-a} = +\infty \quad (x > a \text{ means } x - a > 0) \]
 - Left-side limit:
 \[\lim_{x \to a^-} \frac{1}{x-a} = -\infty \quad (x < a \text{ means } x - a < 0) \]
Q4. Which of the following limits DNE?

A. \[\lim_{x \to 0} \frac{1}{x + 1} \]

B. \[\lim_{x \to -1} \frac{1}{x + 1} \]

C. \[\lim_{x \to -1} \frac{x + 1}{x + 1} \]

D. more than one of the above limits DNE
Q5. What value of b makes the following function continuous?

$$f(x) = \begin{cases}
ax^2 + 1, & x < 1 \\
-x^3 + x, & x \geq 1.
\end{cases}$$

A. $a = 1$
B. $a = 0$
C. $a = -1$
D. no value of a works

https://www.desmos.com/calculator/v8hfkabrry
Limits at infinity

Q6. Which of the following limits exist?

A. \(\lim_{x \to \infty} x^3 \)

B. \(\lim_{x \to \infty} x^{\frac{1}{3}} \)

C. \(\lim_{x \to \infty} 3^x \)

D. \(\lim_{x \to \infty} x^{-3} \)

https://www.desmos.com/calculator/ihvwwf4zwh
Q7. What is the following limit?

\[\lim_{{x \to \infty}} \frac{x^5 + 2x^4 + 3x^3 + 4x^2 + 5x + 6}{6x^5 + 5x^4 + 4x^3 + 3x^2 + 2x + 1} \]

A. 0
B. 6
C. \(\frac{1}{6} \)
D. DNE

Two methods: asymptotic approximation or factoring
The derivative of a function $y = f(x)$ at x_0 is

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

You can also write $\frac{dy}{dx} \bigg|_{x_0}$ to denote $f'(x_0)$.

Derivative

Q8. To compute the derivative of the function $f(x) = (x + 3)^2$, we need to compute:

A.
$$\lim_{h \to 0} \frac{(x + 3 + h)^2 - (x + 3)^2}{h}$$

B.
$$\lim_{x \to 1} \frac{(x + 3)^2 - x^2}{x}$$

C.
$$\lim_{h \to 1} \frac{(x + 3 + h)^2 - (x + 3)^2}{h}$$

D.
$$\lim_{h \to 0} \frac{(x + 3 + h)^2 - (x + 3)^2}{x}$$
Continuous functions, limits, and the derivative.

See end of the slides for a related exam problem.

Bonus Challenge Write the following limit as the derivative of a function:

\[
limit_{x \to 2} \frac{x^2 - 4}{x - 2}\]
Answers

1. C
2. D
3. C
4. B
5. C
6. D
7. C
8. A
1. Use the definition of the derivative and the following hint to calculate the derivative of the function \(f(x) = \sqrt{x} \). Hint:

\[
\frac{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})}{(\sqrt{a} + \sqrt{b})} = \frac{a - b}{(\sqrt{a} + \sqrt{b})}
\]