Today

Qualitative analysis examples.
\[y' = -y(y-1)(y+1) \]

What are the steady states of this equation?

Draw the slope fields for this equation.
y' = -y(y-1)(y+1)

What are the steady states of this equation?

Draw the slope fields for this equation.

Sketch the phase line
$y' = -y(y-1)(y+1)$

- What are the steady states of this equation?
- Draw the slope fields for this equation.
- Sketch the phase line.
- For each steady state, determine its stability.
$y' = -y(y-1)(y+1)$

- What are the steady states of this equation?
- Draw the slope fields for this equation.
- Sketch the phase line.
- For each steady state, determine its stability.
- What value does a solution starting at $y(0)=0.2$ approach for large t?
\[y' = -y(y-1)(y+1) \]

What are the steady states of this equation?

Draw the slope fields for this equation.

Sketch the phase line.

For each steady state, determine its stability.

What value does a solution starting at \(y(0) = 0.2 \) approach for large \(t \)?

Does that solution have any inflection points?
$y' = -y(y-1)(y+1)$

What are the steady states of this equation?

Draw the slope fields for this equation.

Sketch the phase line

For each steady state, determine its stability.

What value does a solution starting at $y(0)=0.2$ approach for large t?

Does that solution have any inflection points?

Sketch it.
Given that position tells you velocity, i.e. \(x' = f(x) \), which of the following is false?

(A) A solution \(x(t) \) cannot have a local max (as a function of \(t \)).

(B) If \(x(t) \) is a solution then so is \(y(t) = x(t-c) \).

(C) If \(x(t) \) is a solution then so is \(y(t) = x(t)+C \).

(D) If \(x(t) \) and \(y(t) \) are two different solutions, they cannot cross.

This question assumes that \(f(x) \) is a smooth function for all \(x \).
Given that position tells you velocity, i.e. \(x' = f(x) \), which of the following is false?

(A) A solution \(x(t) \) to \(x' = f(x) \) cannot have a local max (as a function of \(t \)).

(B) If \(x(t) \) is a solution then so is \(y(t) = x(t-c) \).

(C) If \(x(t) \) is a solution then so is \(y(t) = x(t) + C \).

(D) If \(x(t) \) and \(y(t) \) are two different solutions, they cannot cross.
Given that position tells you velocity, i.e. $x' = f(x)$, which of the following is false?

(A) A solution $x(t)$ to $x' = f(x)$ cannot have a local max (as a function of t).

(B) If $x(t)$ is a solution then so is $y(t) = x(t-c)$.

(C) If $x(t)$ is a solution then so is $y(t) = x(t) + C$.

(D) If $x(t)$ and $y(t)$ are two different solutions, they cannot cross.
Given that position tells you velocity, i.e. \(x' = f(x) \), which of the following is false?

(A) A solution \(x(t) \) to \(x' = f(x) \) cannot have a local max (as a function of \(t \)).

(B) If \(x(t) \) is a solution then so is \(y(t) = x(t-c) \).

(C) If \(x(t) \) is a solution then so is \(y(t) = x(t)+C \).

(D) If \(x(t) \) and \(y(t) \) are two different solutions, they cannot cross.
Given that position tells you velocity, i.e. \(x' = f(x) \), which of the following is false?

(A) A solution \(x(t) \) to \(x' = f(x) \) cannot have a local max (as a function of \(t \)). \(\checkmark \)

(B) If \(x(t) \) is a solution then so is \(y(t) = x(t-c) \).

(C) If \(x(t) \) is a solution then so is \(y(t) = x(t)+C \).

(D) If \(x(t) \) and \(y(t) \) are two different solutions, they cannot cross.
Given that position tells you velocity, i.e. $x'=f(x)$, which of the following is false?

(A) A solution $x(t)$ to $x'=f(x)$ cannot have a local max (as a function of t).

(B) If $x(t)$ is a solution then so is $y(t)=x(t-c)$.

(C) If $x(t)$ is a solution then so is $y(t)=x(t)+C$.

(D) If $x(t)$ and $y(t)$ are two different solutions, they cannot cross.

Can’t both have correct slope!
Given that position tells you velocity, i.e. \(x' = f(x) \), which of the following is false?

(A) A solution \(x(t) \) to \(x' = f(x) \) cannot have a local max (as a function of \(t \)).

(B) If \(x(t) \) is a solution then so is \(y(t) = x(t-c) \).

(C) If \(x(t) \) is a solution then so is \(y(t) = x(t) + C \). ✗

(D) If \(x(t) \) and \(y(t) \) are two different solutions, they cannot cross.

Can't both have correct slope!
Given that position tells you velocity, i.e. \(x' = f(x) \), which of the following is false?

(A) A solution \(x(t) \) to \(x' = f(x) \) cannot have a local max (as a function of \(t \)).

(B) If \(x(t) \) is a solution then so is \(y(t) = x(t-c) \).

(C) If \(x(t) \) is a solution then so is \(y(t) = x(t) + C \). △

(D) If \(x(t) \) and \(y(t) \) are two different solutions, they cannot cross.
Given that position tells you velocity, i.e. $x'=f(x)$, which of the following is false?

(A) A solution $x(t)$ to $x'=f(x)$ cannot have a local max (as a function of t).

(B) If $x(t)$ is a solution then so is $y(t)=x(t-c)$.

(C) If $x(t)$ is a solution then so is $y(t)=x(t)+C$.

(D) If $x(t)$ and $y(t)$ are two different solutions, they cannot cross.

Can't both have correct slope!
\[f(y) = \sin(y) \]
\[f(y) = \sin(y) \]
\[y' = \sin(y) \]

A solution satisfying the initial condition \(y(0) = y_0 \) will approach \(y^* \) as \(t \to \infty \). Which \(y_0 \) and \(y^* \) pair is correct?

(A) \(y_0 = -\frac{3\pi}{2}, y^* = -2\pi \).

(B) \(y_0 = -\frac{\pi}{2}, y^* = -\frac{\pi}{2} \).

(C) \(y_0 = \frac{\pi}{4}, y^* = \frac{\pi}{2} \).

(D) \(y_0 = \frac{3\pi}{4}, y^* = \pi \).

(E) \(y_0 = \pi, y^* = 0 \).
\[y' = \sin(y) \]

A solution satisfying the initial condition \(y(0) = y_0 \) will approach \(y^* \) as \(t \to \infty \). Which \(y_0 \) and \(y^* \) pair is correct?

(A) \(y_0 = -\frac{3\pi}{2}, y^* = -2\pi \). \[\checkmark \] \[\to y^* = -\pi \]

(B) \(y_0 = -\frac{\pi}{2}, y^* = -\frac{\pi}{2} \).

(C) \(y_0 = \frac{\pi}{4}, y^* = \frac{\pi}{2} \).

(D) \(y_0 = \frac{3\pi}{4}, y^* = \pi \).

(E) \(y_0 = \pi, y^* = 0 \).
\[y' = \sin(y) \]

A solution satisfying the initial condition \(y(0) = y_0 \) will approach \(y^* \) as \(t \rightarrow \infty \).

Which \(y_0 \) and \(y^* \) pair is correct?

(A) \(y_0 = -\frac{3\pi}{2}, \ y^* = -2\pi. \ \textcolor{red}{\times} \quad \text{---->} \ y^* = -\pi \)

(B) \(y_0 = -\frac{\pi}{2}, \ y^* = -\frac{\pi}{2}. \ \textcolor{red}{\times} \quad \text{---->} \ y^* = -\pi \)

(C) \(y_0 = \frac{\pi}{4}, \ y^* = \frac{\pi}{2}. \)

(D) \(y_0 = \frac{3\pi}{4}, \ y^* = \pi. \)

(E) \(y_0 = \pi, \ y^* = 0. \)
$y' = \sin(y)$

A solution satisfying the initial condition $y(0) = y_0$ will approach y^* as $t \to \infty$.

Which y_0 and y^* pair is correct?

(A) $y_0 = -\frac{3\pi}{2}, y^* = -2\pi. \text{X} \quad \Rightarrow \quad y^* = -\pi$

(B) $y_0 = -\frac{\pi}{2}, y^* = -\frac{\pi}{2}. \text{X} \quad \Rightarrow \quad y^* = -\pi$

(C) $y_0 = \frac{\pi}{4}, y^* = \frac{\pi}{2}. \text{X} \quad \Rightarrow \quad y^* = \pi$

(D) $y_0 = \frac{3\pi}{4}, y^* = \pi.$

(E) $y_0 = \pi, y^* = 0.$
\[y' = \sin(y) \]

A solution satisfying the initial condition \(y(0) = y_0 \) will approach \(y^* \) as \(t \rightarrow \infty \).

Which \(y_0 \) and \(y^* \) pair is correct?

(A) \(y_0 = -\frac{3\pi}{2}, \ y^* = -2\pi \) \(\times \) \(\rightarrow \ y^* = -\pi \)

(B) \(y_0 = -\frac{\pi}{2}, \ y^* = -\frac{\pi}{2} \) \(\times \) \(\rightarrow \ y^* = -\pi \)

(C) \(y_0 = \frac{\pi}{4}, \ y^* = \frac{\pi}{2} \) \(\times \) \(\rightarrow \ y^* = \pi \)

(D) \(y_0 = \frac{3\pi}{4}, \ y^* = \pi \)

(E) \(y_0 = \pi, \ y^* = 0 \) \(\times \) \(\rightarrow \ y^* = \pi \)
A solution satisfying the initial condition $y(0)=y_0$ will approach y^* as $t \to \infty$. Which y_0 and y^* pair is correct?

(A) $y_0 = -\frac{3\pi}{2}$, $y^* = -2\pi$. \times \implies $y^* = -\pi$

(B) $y_0 = -\frac{\pi}{2}$, $y^* = -\frac{\pi}{2}$. \times \implies $y^* = -\pi$

(C) $y_0 = \frac{\pi}{4}$, $y^* = \frac{\pi}{2}$. \times \implies $y^* = \pi$

(D) $y_0 = \frac{3\pi}{4}$, $y^* = \pi$.

(E) $y_0 = \pi$, $y^* = 0$. \times \implies $y^* = \pi$
\[y' = \sin(y) \]

Fill in the arrows and steady states on the phase line.
\(y' = \sin(y) \)

Fill in the arrows and steady states on the phase line.
$y' = \sin(y)$

Fill in the arrows and steady states on the phase line.
\[y' = \sin(y) \]

Fill in the arrows and steady states on the phase line.
\[y' = \sin(y) \]

Fill in the arrows and steady states on the phase line.
$y' = \sin(y)$

Fill in the arrows and steady states on the phase line.
\[y' = \sin(y) \]

Fill in the arrows and steady states on the phase line.
\[y' = \sin(y) \]

Fill in the arrows and steady states on the phase line.

Filled circle \(\bigcirc \) - stable steady state

Empty circle \(\bigcirc \) - unstable steady state
$y' = \sin(y)$

Sketch a few solutions $y(t)$.
\[y' = \sin(y) \]
\[y' = \sin(y) \]
What you should be able to do:

- Identify steady states for a DE.
- Draw/interpret the phase line for a DE.
- Draw/interpret a slope field for a DE.
- Determine stability of steady states.
- Determine long-term behaviour of solutions.
- Sketch the graphs of solutions using phase line and/or slope fields (slopes, concavity, IPs, h-asymptotes).
Some biological examples

- **Allee effect**: \(P' = rP \left(1 - \frac{P}{K}\right) \left(\frac{P}{T} - 1\right) \) where \(T < K \)

- **Lac operon**: \(c' = \frac{c^2}{(k^2 + c^2)} - ac \)