
Today

More on qualitative analysis of DEs

More on slope fields

A Newton’s method example (spreadsheet)

A few DE examples



Determine stability

If you start at x(0)=-0.01, the solution

(A) increases

(B) decreases

x� = x(1− x)
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Determine stability

If you start at x(0)=1.01, the solution

(A) increases
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Determine stability

(A) Both x(t)=0 and x(t)=1 are stable steady states.

(B) x(t)=0 is stable and x(t)=1 is unstable.

(C) x(t)=0 is unstable and x(t)=1 is stable.

(D) Both x(t)=0 and x(t)=1 are unstable steady states.

x� = x(1− x)



Determine stability

(A) Both x(t)=0 and x(t)=1 are stable steady states.

(B) x(t)=0 is stable and x(t)=1 is unstable.

(C) x(t)=0 is unstable and x(t)=1 is stable.

(D) Both x(t)=0 and x(t)=1 are unstable steady states.

x� = x(1− x)

Stable - solid dot. Unstable - empty dot.



Given that position tells you velocity, i.e. 
x’=f(x), which of the following is false?

(A) A solution x(t) cannot have a local max (as 
a function of t).

(B) If x(t) is a solution then so is y(t)=x(t-c).

(C) If x(t) is a solution then so is y(t)=x(t)+C.

(D) If x(t) and y(t) are two different solutions, 
they cannot cross.
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For x’=x(1-x), slope depended only on 
position, not time.

General case:
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More general slope fields

For x’=x(1-x), slope depended only on 
position, not time.

General case:

Example: 

dy

dt
= f(y, t)

dy

dt
= t− y

t appears 
explicitly!



Slope field for y’=t-y



Slope field for y’=t-y

At (1,1), y’ = 0.



Slope field for y’=t-y

At (1,1), y’ = 0.

At (0,a), y’ = -a. 



Slope field for y’=t-y

At (1,1), y’ = 0.

At (0,a), y’ = -a. 

Along the line y=t+2, 
y’ = t-(t+2) = -2.



Slope field for y’=t-y

At (1,1), y’ = 0.

At (0,a), y’ = -a. 

Along the line y=t+1, 
y’ = t-(t+1) = -1.



Slope field for y’=t-y

At (1,1), y’ = 0.

At (0,a), y’ = -a. 

Along the line y=t, 
y’ = t-t = 0.



Slope field for y’=t-y

At (1,1), y’ = 0.

At (0,a), y’ = -a. 

Along the line y=t-1, 
y’ = t-(t-1) = 1.



Slope field for y’=t-y

At (1,1), y’ = 0.

At (0,a), y’ = -a. 

Along the line y=t-2, 
y’ = t-(t-2) = 2.



Match the equation to 
the slope field.

1. x’=1-x2

2. x’=x2-1
3. x’=t2-1
4. x’=1-t2
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Find the largest zero of 
f(x) = x4-4x2-1/10.

Let’s do this in a spreadsheet...



Phase line for NLC:
dT

dt
= k(E − T )
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Phase line for NLC:
dT

dt
= k(E − T )

T’

TE

T’

TE

T’

TE

T’

TE

(A)

(C)

(B)

(D)

What influence does k have on this diagram?



y’ = cos(y)
A solution satisfying the initial condition      
y(0)=y0 will approach y* as t --> ∞.     
Which y0 and y* pair is correct?

(A) y0 = 0, y* = π.

(B) y0 = -π, y* = -π/2.

(C) y0 = 2π, y* = 3π/2.

(D) y0 = π/4, y* = 0.

(E) y0 = π/4, y* = π/2.
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