
Today...

• A Hill function clicker question.

• From secant line to tangent line.

• The Definition of the Derivative.
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Comparing Hill functions 
with different n values

(A) Green: n=2, yellow: n=3, 
red: n=4, blue: n=5.

(B) Green: n=4, yellow: n=3, 
red: n=2, blue: n=1.

(C) Green: n=5, yellow: n=4, 
red: n=3, blue: n=2.

(D) Either (B) or (C) (not 
enough info).

f(x) =
axn

bn + xn
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What is the slope of the line 
connecting the points?

(A) m=(x1-x2)/(y1-y2)

(B) m=(x2-x1)/(y1-y2)

(C) m=(y1-y2)/(x1-x2)

(D) m=(y2-y1)/(x2-x1)
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What is the slope of the secant line 
to the graph of f(x)?

(A) m=(f(x1)-f(x2))/(x2-x1)

(B) m=(f(x2)-f(x1))/(x2-x1)

(C) m=(x1-x2)/(f(x1)-f(x2))

(D) m=(x2-x1)/(f(x1)-f(x2))
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What is the slope of the secant line 
to the graph of f(x)?

(A) m=(f(x1)-f(x2))/(x2-x1)

(B) m=(f(x2)-f(x1))/(x2-x1)

(C) m=(x1-x2)/(f(x1)-f(x2))

(D) m=(x2-x1)/(f(x1)-f(x2))

Slope of secant line = average rate of change from x1 to x2.
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What if you want the rate of 
change AT x1?

(instantaneous instead of average)
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Take a point 
x2 so that the 
secant line is 
closer to the 
“secant line” 
AT x1.
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What if you want the rate of 
change AT x1?

(instantaneous instead of average)

Take a point 
x2 so that the 
secant line is 
closer to the 
“secant line” 
AT x1.

Alternate notation: let x2 = x1+h so that 

m =
f(x2)− f(x1)

x2 − x1
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Take a point 
x2 so that the 
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closer to the 
“secant line” 
AT x1.

Alternate notation: let x2 = x1+h so that 

m =
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What if you want the rate of 
change AT x1?

(instantaneous instead of average)

Take a point 
x2 so that the 
secant line is 
closer to the 
“secant line” 
AT x1.

Alternate notation: let x2 = x1+h so that 

m =
f(x2)− f(x1)

x2 − x1

=
f(x1 + h)− f(x1)

h
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If we take h values closer and 
closer to 0...
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If we take h values closer and 
closer to 0...

• The secant line approaches the tangent line.

• The slope of the secant line approaches the 
slope of the tangent line.

• We call the resulting slope the derivative at x1.

• We now have to learn how to take limits!

slope at x1 = f �(x1) = lim
h→0

f(x1 + h)− f(x1)
h
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Another example
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f �(x1) = m > 0?
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Another example

f �(x1) = m > 0f �(x1) = 0

(A) lim
h→0

f(x1 + h)− f(x1)
h

= m > 0

lim
h→0

f(x1 + h)− f(x1)
h

= 0(B)

(C) Both (A) and (B) (D) The limit does 
not exist.

? ?
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The derivative of f(x) at x=a...

(A) ...touches the function at x=a but does not 
cross it.

(B) ...looks more and more like the function as 
you zoom in around x=a.

(C) ... only exists when the function looks like a 
straight line close to x=a.

(D) All of the above.
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To evaluate a limit
To evaluate                , you plug in values closer and 
closer to a but you never get to a. In fact, f(a) may not 
even be defined. If you always get the same number 
no matter how you approach a, then the limit exists.

lim
x→a

f(x)
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To evaluate a limit
To evaluate                , you plug in values closer and 
closer to a but you never get to a. In fact, f(a) may not 
even be defined. If you always get the same number 
no matter how you approach a, then the limit exists.

lim
x→a

f(x)

Note: the limit involved in the derivative is only one 
special case. The limit above is concerned with the 
value of the function. When a limit has the form

lim
h→0

f(2 + h)− f(2)
h

 we’re talking about the slope of f (in this case, at x=2).
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A WeBWorK limit example
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Limits

Which of the following are true?

1.  

2.  

3.                  does not exist.

lim
x→a

f(x) = f(a)

lim
x→b

f(x) = f(b)

a b c

f(x)

4.                exists.

5.                exists.

lim
x→a

f(x)

lim
x→b

f(x)

(A)  1, 4

(B)  2, 5

(C) 3

(D) 4

(E) 5lim
x→c

f(x)
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(A)  

(B)  

(C)

Limits

a b c

f(x)

1
2

3

lim
x→a

f(x) = 2

lim
x→a

f(x) = 3

lim
x→b−

f(x) = 3
lim
x→b

f(x) = 3

lim
x→b+

f(x) does not exist

(D)               

(E)               
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Continuity
When                 exists and                lim

x→a
f(x) lim

x→a
f(x) = f(a)

we say that f(x) is continuous at x=a.
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Continuity
When                 exists and                lim

x→a
f(x) lim

x→a
f(x) = f(a)

we say that f(x) is continuous at x=a.

a b c

f(x)

f(x) is continuous at all x except at x=a and x=b.
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