Today

- Optimal foraging
- Intro to least squares
Foraging time includes
- a commute \((t_0 \rightarrow \text{constant})\),
- a visit to each patch \((t_p)\)
Foraging success is characterized by $f(t_p) = \text{resource collected from a single patch after a time } t_p \text{ spent in the patch.}$

Remember the definition of $f(t_p)$ for an upcoming clicker Q.
Which of the following graphs matches the given description of $f(t)$?

Collection goes well at first but gradually slows down as the resource is depleted.
Which of the following graphs matches the given description of $f(t)$?

Collection goes well at first but gradually slows down as the resource is depleted.
Which of the following graphs matches the given description of $f(t)$?

It is initially hard to find nuts but gets easier with time. Eventually, there are none left to collect.

(A)
(B)
(C)
(D)
(E)
Which of the following graphs matches the given description of $f(t)$?

It is initially hard to find nuts but gets easier with time. Eventually, there are none left to collect.
Which of the following graphs matches the given description of $f(t)$?

Initially, you collect some nuts but the birds figure out what you’re doing and start stealing from you.
Which of the following graphs matches the given description of $f(t)$?

Initially, you collect some nuts but the birds figure out what you’re doing and start stealing from you.
Foraging

What to maximize?

- Total amount collected?
 - Stay in a patch forever.
- If you can move to a new patch, move when the returns diminish enough to make the new patch look better.
 - Leave right away!
- Maximize average rate of collection.

Don’t forget travel time!
Foraging

I waited

(A) not long enough.
(B) just the right amount of time.
(C) too long.

\[
R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0}
\]

Choose \(t \) to maximize \(R(t) \).
Foraging
Foraging

food

t
Foraging
Foraging
Foraging

Max average rate occurs when orange line is tangent to yellow.
Foraging

\[
\text{food}(t) = \begin{cases}
0 & \text{for } 0 \leq t \leq t_0 \\
\text{f}(t-t_0) & \text{for } t > t_0
\end{cases}
\]

Average Rate of Collection

\[
R(t) = \frac{\text{food}(t) - \text{food}(0)}{t - 0}
\]

\(R(t)\) maximal at \(t_{\text{max}}\).

Optimal \(t_p = t_{\text{max}} - t_0\).

Could have maximized \(R(t_p+t_0) = \text{f}(t_p) / (t_p+t_0)\) to get best \(t_p\).
Least squares model fitting

How do we find the best line to fit through the data?
Least squares model fitting

Each red bar is called a residual. We want all the residuals to be as small as possible.

\[y = ax \]
The residuals are...

(A) \(r_i = y_i^2 + x_i^2 \)
(B) \(r_i = a^2 (y_i^2 + x_i^2) \)
(C) \(r_i = y_i - ax_i \)
(D) \(r_i = y_i - x_i \)
(E) \(r_i = x_i - y_i \)
The residuals are...

(A) \(r_i = y_i^2 + x_i^2 \)

(B) \(r_i = a^2 (y_i^2 + x_i^2) \)

(C) \(r_i = y_i - ax_i \)

(D) \(r_i = y_i - x_i \)

(E) \(r_i = x_i - y_i \)