
Today

• A comment on derivative notation.

• Power rule.

• Rules for differentiating sum, products and quotients of functions.

• Antiderivatives of power functions
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A comment on derivative notation

y = f(x)

dy

dx
= f �(x)

dy

dx

����
x=2

= f �(2)

Leibniz Newton
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Power rule
f(x) = x2
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Power rule
f(x) = x2

Find f’ at x=2 (using the definition of the 
derivative).
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Power rule
f(x) = x2

f �(2) = lim
h→0

(2 + h)2 − 22

h
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Power rule
f(x) = x2

f �(2) = lim
h→0

(2 + h)2 − 22

h

= lim
h→0

4 + 4h + h2 − 4
h

Thursday, September 18, 2014



Power rule
f(x) = x2

f �(2) = lim
h→0

(2 + h)2 − 22

h

= lim
h→0

4 + 4h + h2 − 4
h

= lim
h→0

4h + h2

h
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Power rule
f(x) = x2

f �(2) = lim
h→0

(2 + h)2 − 22

h

= lim
h→0

4 + 4h + h2 − 4
h

= lim
h→0

4h + h2

h
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Power rule
f(x) = x2

f �(2) = lim
h→0

(2 + h)2 − 22

h

= lim
h→0

4 + 4h + h2 − 4
h

= lim
h→0

4h + h2

h
= 4
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Power rule
f(x) = x2
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Power rule
f(x) = x2

Find f’ at all points x at the same time 
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Power rule
f(x) = x2

f �(x) = lim
h→0

(x + h)2 − x2

h
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Power rule
f(x) = x2

f �(x) = lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2hx + h2 − x2

h
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Power rule
f(x) = x2

f �(x) = lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2hx + h2 − x2

h

= lim
h→0

2hx + h2

h
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Power rule
f(x) = x2

f �(x) = lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2hx + h2 − x2

h

= lim
h→0

2hx + h2

h
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Power rule
f(x) = x2

f �(x) = lim
h→0

(x + h)2 − x2

h

= lim
h→0

x2 + 2hx + h2 − x2

h

= lim
h→0

2hx + h2

h
= 2x

Thursday, September 18, 2014



Power rule
f(x) = x3
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Power rule
f(x) = x3

f �(x) = lim
h→0

(x + h)3 − x3

h
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Power rule
f(x) = x3

f �(x) = lim
h→0

(x + h)3 − x3

h

= lim
h→0

x3 + 3hx2 + 3h2x + h3 − x3

h
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Power rule
f(x) = x3

f �(x) = lim
h→0

(x + h)3 − x3

h

= lim
h→0

x3 + 3hx2 + 3h2x + h3 − x3

h
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Power rule
f(x) = x3

f �(x) = lim
h→0

(x + h)3 − x3

h

= lim
h→0

x3 + 3hx2 + 3h2x + h3 − x3

h

2

Thursday, September 18, 2014



Power rule
f(x) = x3

f �(x) = lim
h→0

(x + h)3 − x3

h

= lim
h→0

x3 + 3hx2 + 3h2x + h3 − x3

h

2

= 3x2
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Power rule

f(x) = xn

f �(x) = nxn−1

Thursday, September 18, 2014



• What is f’(2)?

(A) 4

(B) 7

(C) 10

(D) 11

Suppose                                    and that f(x) = g(x) + k(x)
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.
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Suppose                                    and that 

• What is f’(2)?

(A) 4

(B) 7

(C) 10

(D) 11

f(x) = g(x) + k(x)
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.
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• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)
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Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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Try g(x)=x and k(x)=x2. 

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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Try g(x)=x and k(x)=x2. 

If f’(x)=g’(x)k’(x) then

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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Try g(x)=x and k(x)=x2. 

If f’(x)=g’(x)k’(x) then

f(x) = (x) (x2) so f’(x)= (1) (2x)=2x.

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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Try g(x)=x and k(x)=x2. 

If f’(x)=g’(x)k’(x) then

f(x) = (x) (x2) so f’(x)= (1) (2x)=2x.

But f(x)=x3 and power rule says

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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Try g(x)=x and k(x)=x2. 

If f’(x)=g’(x)k’(x) then

f(x) = (x) (x2) so f’(x)= (1) (2x)=2x.

But f(x)=x3 and power rule says

f’(x) = 3x2. 

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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Try g(x)=x and k(x)=x2. 

If f’(x)=g’(x)k’(x) then

f(x) = (x) (x2) so f’(x)= (1) (2x)=2x.

But f(x)=x3 and power rule says

f’(x) = 3x2. 

So g’(x)k’(x) can’t be right.

Suppose                              and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

f(x) = g(x)k(x)

• What is f’(2)?

(A) 3

(B) 10

(C) 11

(D) 17
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

A(t) = d(t)w(t)
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t) = d(t)w(t)
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t) = d(t)w(t)

A(t)
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t) = d(t)w(t)

(d(t + h)− d(t)) · w(t)

A(t)
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t) = d(t)w(t)

(d(t + h)− d(t)) · w(t)

A(t)
d(t) · (w(t + h)− w(t))
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t) = d(t)w(t)

(d(t + h)− d(t)) · w(t)

small corner

A(t)
d(t) · (w(t + h)− w(t))
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t + h) = A(t) + (d(t + h)− d(t)) · w(t)

+d(t) · (w(t + h)− w(t)) + small corner

A(t) = d(t)w(t)

(d(t + h)− d(t)) · w(t)

small corner

A(t)
d(t) · (w(t + h)− w(t))
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t + h) = A(t) + (d(t + h)− d(t)) · w(t)

+d(t) · (w(t + h)− w(t)) + small corner

A(t) = d(t)w(t)

A(t + h)−A(t)
h

≈ (d(t + h)− d(t)) · w(t)
h

+
d(t) · (w(t + h)− w(t))

h
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What is the correct derivative for f(x)=g(x)k(x)?

d(t)

w(t)

d(t+h)

w(t+h)

A(t + h) = A(t) + (d(t + h)− d(t)) · w(t)

+d(t) · (w(t + h)− w(t)) + small corner

A(t) = d(t)w(t)

A(t + h)−A(t)
h

≈ (d(t + h)− d(t)) · w(t)
h

+
d(t) · (w(t + h)− w(t))

h
A�(t) = d�(t)w(t) + d(t)w�(t)
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Rules for differentiation - summary

Thursday, September 18, 2014



Rules for differentiation - summary

• Addition rule:

• f(x) = g(x) + h(x)

• f’(x) = g’(x) + h’(x)
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Rules for differentiation - summary

• Addition rule:

• f(x) = g(x) + h(x)

• f’(x) = g’(x) + h’(x)

• Product rule:

• f(x) = g(x)h(x)

• f’(x) = g’(x)h(x) + g(x)h’(x)

Thursday, September 18, 2014



Rules for differentiation - summary

• Addition rule:

• f(x) = g(x) + h(x)

• f’(x) = g’(x) + h’(x)

• Product rule:

• f(x) = g(x)h(x)

• f’(x) = g’(x)h(x) + g(x)h’(x)

• Quotient rule (can be justified once we cover chain rule):

• f(x) = g(x) / h(x) = g(x) (h(x))-1 <---- apply product and chain rules or

• f’(x) = [ g’(x)h(x) - g(x) h’(x) ] / g(x)2
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Suppose                                and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

• What is f’(2)?

(A)  -13

(B)  -13/25

(C)  17

(D)  17/25

f(x) = g(x)/k(x)
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Suppose                                and that 
g(2) = 3, k(2) = 1, g�(2) = 2, k�(2) = 5.

• What is f’(2)?

(A)  -13

(B)  -13/25

(C)  17

(D)  17/25

f(x) = g(x)/k(x)
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Antiderivatives - going 
backward

If f’(x) = 6x2 + 4x - 1, then 

(A) f(x) = 12x + 4 

(B) f(x) = 2x3 + 2x2 - x

(C) f(x) = 2x3 + 2x2 - x + 2

(D) f(x) = 2x3 + 2x2 - x + C
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Antiderivatives - going 
backward

If f’(x) = 6x2 + 4x - 1, then 

(A) f(x) = 12x + 4 

(B) f(x) = 2x3 + 2x2 - x 

(C) f(x) = 2x3 + 2x2 - x + 2

(D) f(x) = 2x3 + 2x2 - x + C
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Antiderivatives - going 
backward

If f’(x) = 6x2 + 4x - 1, then 

(A) f(x) = 12x + 4 

(B) f(x) = 2x3 + 2x2 - x 

(C) f(x) = 2x3 + 2x2 - x + 2

(D) f(x) = 2x3 + 2x2 - x + C
Slopes at each x 

don’t change 
with vertical 

shift.
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If            , which of the 
following could be f(x)?
(A) 

(B) 

(C) 

(D) 

(E) 

f �(x) = xn

f(x) = xn + C

f(x) = nxn−1

f(x) = nxn−1 + C

f(x) =
1

n + 1
xn+1 + C

f(x) =
1

n + 1
xn+1
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If            , which of the 
following could be f(x)?
(A) 

(B) 

(C) 

(D) 

(E) 

f �(x) = xn

f(x) = xn + C

f(x) = nxn−1

f(x) = nxn−1 + C

f(x) =
1

n + 1
xn+1 + C

f(x) =
1

n + 1
xn+1
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This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).
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f(x)

This is f’(x). Draw f(x).

Only determined up 
to a vertical shift.

Thursday, September 18, 2014



Position-Velocity-Acceleration

If x(t) is position as a function of time, 
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:

v(t) 
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:

v(t) = at + C
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:

v(t) = at + C = at + v0
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:

v(t) 

x(t)  

= at + C = at + v0
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:

v(t) 

x(t)  

= at + C = at + v0

= a/2 t2 + v0t + D
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Position-Velocity-Acceleration

If x(t) is position as a function of time, 

velocity v(t) = x’(t),

acceleration a(t) = v’(t) = x’’(t).

Constant acceleration a:

v(t) 

x(t)  

= at + C = at + v0

= a/2 t2 + v0t + D = a/2 t2 + v0t + x0
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Examples of approximately 
constant acceleration

Ball dropping near surface of planet

Fireworks 
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From the 2011 final exam
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From the 2011 final exam

d(t)
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From the 2011 final exam

braking

d(t)
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From the 2011 final exam

braking

camera
d(t)
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From the 2011 final exam

charge

braking

camera
d(t)
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From the 2011 final exam

charge

braking

camera

charge and 
backing up

d(t)
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From the 2011 final exam

vcar(t) = 2t

charge

braking

camera

charge and 
backing up

d(t)
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From the 2011 final exam

vcar(t) = 2t
xcar(t) = t2 + 12

charge

braking

camera

charge and 
backing up

d(t)
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From the 2011 final exam

vcar(t) = 2t
xcar(t) = t2 + 12

vdist(t) = 2t - 8
xdist(t) = t2 - 8t + 12

charge

braking

camera

charge and 
backing up

d(t)
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From the 2011 final exam

vcar(t) = 2t
xcar(t) = t2 + 12

vdist(t) = 2t - 8
xdist(t) = t2 - 8t + 122 4 6

charge

braking

camera

charge and 
backing up

d(t)
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From the 2011 final exam

vcar(t) = 2t
xcar(t) = t2 + 12

vdist(t) = 2t - 8
xdist(t) = t2 - 8t + 122 4 6

charge

braking

camera

charge and 
backing up

collision

d(t)
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Which is x, v, a?

(A) x, v, a

(B) x, v, a

(C) x, v, a

(D) x, v, a
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Which is x, v, a?

(A) x, v, a

(B) x, v, a

(C) x, v, a

(D) x, v, a

Check max/mins --> zeros, check inc/dec --> +/-.
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Which is x, v, a?

(A) x, v, a

(B) x, v, a

(C) x, v, a

(D) x, v, a

Check max/mins --> zeros, check inc/dec --> +/-.
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Product rule: If k(x)=f(x)g(x) 
then k’(x) = ?

(A) f’(x)g(x)

(B) f(x)g’(x)

(C) f’(x)g(x) + f(x)g’(x)

(D) f’(x)g’(x)

Example: k(x)=(x^5-2x^3+x^2+3)(3x^3-x^2+1)
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Product rule: If k(x)=f(x)g(x) 
then k’(x) = ?

(A) f’(x)g(x)

(B) f(x)g’(x)

(C) f’(x)g(x) + f(x)g’(x)

(D) f’(x)g’(x)

Example: k(x)=(x^5-2x^3+x^2+3)(3x^3-x^2+1)
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Quotient rule: If k(x)=f(x)/g(x) 
then k’(x) = ?

(A) f’(x)/g’(x)

(B) [ f’(x)g(x) - f(x)g’(x) ] / g(x)2

(C) f’(x)g(x) + f(x)g’(x)

(D) f’(x)/g(x)

Example: k(x)=2x^2/(3x+1)
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Quotient rule: If k(x)=f(x)/g(x) 
then k’(x) = ?

(A) f’(x)/g’(x)

(B) [ f’(x)g(x) - f(x)g’(x) ] / g(x)2

(C) f’(x)g(x) + f(x)g’(x)

(D) f’(x)/g(x)

Example: k(x)=2x^2/(3x+1)

Thursday, September 18, 2014



What is k’(x) if                 ?

(A) 

(B) 

(C) 

(D) 

k(x) =
2x2

3x + 1

k�(x) =
4x

3

k�(x) =
4x

3x + 1
− 2x2

3

k�(x) =
6x2 + 4x

(3x + 1)2

k�(x) =
4x

3x + 1
− 2x2

(3x + 1)2
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What is k’(x) if                 ?

(A) 

(B) 

(C) 

(D) 

k(x) =
2x2

3x + 1

k�(x) =
4x

3

k�(x) =
4x

3x + 1
− 2x2

3

k�(x) =
6x2 + 4x

(3x + 1)2

k�(x) =
4x

3x + 1
− 2x2

(3x + 1)2
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