MATH 102-101 Quiz 5

Last name: \qquad

First name: \qquad

Student number:

(0) (0) (0) (0) (0) (0) (0) (0)
(1) (1) (1) (1) (1) (1) (1) (1)
(2) (2) (2) (2) (2) (2) (2) (2)
(3) (3) (3) (3) (3) (3) (3) (3)
(4) (4) (4) (4) (4) (4) (4) (4)
(5) (5) (5) (5) (5) (5) (5) (5)
(6) (6) (6) (6) (6) (6) (6) (6)
(7) (7) (7) 7) (7) (7) 7) 7
(8) (8) 8) (8) 88 8 (8) 8
(9) (9) (9) (9) (9) (9) (9) (9)

Fill in your multiple-choice answers here.
Question: Answer:
(a) (b) (c) (d) (e)

Quiz 5

1. The differential equation $\frac{d y}{d t}=-3 y^{3}+4 y^{2}-y$ has \ldots
(a) ...stable steady states at $y=0,1 / 3$ and an unstable steady state at $y=1$.
(b) ...stable steady states at $y=0,1$ and an unstable steady state at $y=1 / 3$.
(c) ...a stable steady state at $y=1 / 3$ and unstable steady states at $y=0,1$.
(d) ...a stable steady state at $y=1$ and unstable steady states at $y=0,1 / 3$.
2. For the same differential equation as given in question 1 , the solution with initial condition $y(0)=2 / 3$ asymptotes to
(a) $-\infty$
(b) 0
(c) $1 / 3$
(d) 1
(e) ∞
3. Which of the following is true about solutions to differential equations of the form $y^{\prime}=f(y)$?
(a) If $x(t)$ is a solution, then so is $y(t)=x(t+c)$.
(b) If $x(t)$ is a solution, then so is $y(t)=x(t)+c$.
(c) A solution, $y(t)$, can have a local maximum (as a function of t).
(d) Two different solutions, $x(t)$ and $y(t)$, to the differential equation in question 1 can cross each other.
4. New words are constantly being introduced in a language. The usage of one particular new word is thought to grow according to a logistic equation $u^{\prime}=2 u(1-u)-a u$ where u is the fraction of the population using the word. The usage increases at a rate proportional to the product of the fraction of people who use the word and the fraction that don't use it and decreases at a rate proportional to the number of users. The parameter a represents...
(a) ...how appealing the word is when you first hear it.
(b) ...how easy the word is to remember once you start using it (larger a means easier to remember).
(c) ...how easy the word is to forget once you start using it (larger a means easier to forget).
(d) ...how annoyed people that don't use the word get when they hear it.
5. For what values of a does the word fail to catch on and simply disappear from the language?
(a) $a<1$
(b) $a<2$
(c) $a>0$
(d) $a>1$
(e) $a>2$
6. When the word does catch on and spread, what is the steady state fraction of the population that uses the word?
(a) 0
(b) $\frac{a}{2}$
(c) $1-\frac{a}{2}$
(d) $2-a$
(e) 1
