Today...

- Experiment revisited.
- Calculating the derivative from the definition.
- Limits and continuity examples.
- Reminders
 - Today: OSH 1 Wed: PL3.2 (ww)
 - Sun: DT (ww) Thurs: A2 (ww)
 - Mon: PL3.1 (ww) Fri: Quiz 1

Studying experiment

- Test your partner
 - name (first and last),
 - date of birth,
 - location of birth,
 - intended major,
 - career ambitions (dream big!),
 - a list of places lived,
 - 3 favourite subjects from high school,
 - first pet's name or an instrument play(ed),
 - phone number (again, lie if necessary).

Studying experiment

- (A) All 9 pieces of information correct.
- (B) 8 pieces of information correct.
- (C) 7 pieces of information correct.
- (D) 5-6 pieces of information correct.
- (E) 0-4 pieces of information correct.

Calculate derivative from definition

Calculate derivative from definition

Calculate f'(2) where f(x) = 1/x on the board.

Calculate derivative from definition

Calculate f'(2) where f(x) = 1/x on the board.

Common notation mistake:

Do not drop the "lim" along the way!

First eliminate the 0/0 problem, evaluate, then drop "lim".

Which of the following are true? (B) 2, 5

- 1. $\lim_{x \to a} f(x) = f(a)$ 4. $\lim_{x \to a} f(x)$ exists. (C) 3
- 2. $\lim_{x \to b} f(x) = f(b)$ 5. $\lim_{x \to b} f(x)$ exists. (D) 4
- 3. $\lim_{x \to c} f(x)$ does not exist. (E) 5

Which of the following are true? (B) 2, 5

- 1. $\lim_{x \to a} f(x) = f(a)$ 4. $\lim_{x \to a} f(x)$ exists. (C) 3
- 2. $\lim_{x \to b} f(x) = f(b)$ 5. $\lim_{x \to b} f(x)$ exists. (D) 4
- 3. $\lim_{x \to c} f(x)$ does not exist. (E) 5

 The right limit at a - plug in x values approaching a from above (x>a):

 $\lim_{x \to a^+} f(x)$

 The right limit at a - plug in x values approaching a from above (x>a):

 $\lim_{x \to a^+} f(x)$

 The left limit at a - plug in x values approaching a from below (x<a):

 $\lim_{x \to a^{-}} f(x)$

 The right limit at a - plug in x values approaching a from above (x>a):

$$\lim_{x \to a^+} f(x)$$

 The left limit at a - plug in x values approaching a from below (x<a):

$$\lim_{x \to a^-} f(x)$$

 \bullet When these exist and are equal, $\lim_{x \to a} f(x)$ exists

$$\lim_{x \to a} f(x) = \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x).$$

Limits

(A)
$$\lim_{x \to a} f(x) = 2$$

(B) $\lim_{x \to b^{-}} f(x) = 3$
(C) $\lim_{x \to a} f(x) = 3$

(D) $\lim_{x \to b} f(x) = 3$ (E) $\lim_{x \to b^+} f(x)$ does not exist

Limits

(A)
$$\lim_{x \to a} f(x) = 2$$

(B) $\lim_{x \to b^{-}} f(x) = 3$
(C) $\lim_{x \to a} f(x) = 3$

(D) $\lim_{x \to b} f(x) = 3$ (E) $\lim_{x \to b^+} f(x)$ does not exist

When $\lim_{x \to a} f(x)$ exists and $\lim_{x \to a} f(x) = f(a)$

we say that f(x) is continuous at x=a.

we say that f(x) is continuous at x=a.

When $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} f(x) = f(a)$ we say that f(x) is continuous at x=a.

Lim exists? (A) Yes (B) No

Continuous? (A) Yes (B) No

f(x) is continuous at all x except at x=a and x=b.

Continuous functions

When $\lim_{x\to a} f(x)$ exists and $\lim_{x\to a} f(x) = f(a)$ we say that f(x) is continuous at x=a.

- Examples of categories of continuous functions:
 - Polynomials
 - Exponentials
 - sin, cos
- These are all continuous for all real x.

For what value of a is the following function continuous?

(A) a

(B) a

(C) a

(D) a

$$f(x) = \begin{cases} 4 - a^2 + 3x & x < 1 \\ x^2 + ax & x \ge 1 \end{cases}$$
(A) a = 3
(B) a = -3
(C) a = 0
(D) a = 1
(E) Don't know.

For what value of a is the following function continuous?

	$f(x) = \begin{cases} 4 - a^2 + 3 \\ x^2 + ax \end{cases}$	$\begin{array}{ll} x & x < 1 \\ & x \ge 1 \end{array}$
(A) a = 3		
(B) a = -3	Ø	
(C) a = 0		
(D) a = 1		
(E) Don't knc	OW.	

For what value of a is the following function continuous?

f($(x) = \begin{cases} 4 - a^2 + 3x \\ x^2 + ax \end{cases}$	$\begin{array}{l} x < 1 \\ x \geq 1 \end{array}$
(A) a = 3		
(B) a = -3		
(C) a = 0		
(D) a = 1	https://www.desmos.com/ca	lculator/obtqmika1u
(E) Don't know.		

For what value of a is the following function continuous?

$$f(x) = \begin{cases} 4 - a^2 + 3x & x < 1 \\ x^2 + ax & x \ge 1 \end{cases}$$
(A) a = 3
(B) a = -3
(C) a = 0
(D) a = 1
(E) Don't know.