## Today...

- Experiment revisited.
- Calculating the derivative from the definition.
- Limits and continuity examples.
- Reminders
- Today: OSH 1

Wed: PL3.2 (ww)

- Sun: DT (ww)

Thurs: A2 (ww)

- Mon: PL3.1 (ww)

Fri: Quiz 1

## Studying experiment

- Test your partner
- name (first and last),
- date of birth,
- location of birth,
- intended major,
- career ambitions (dream big!),
- a list of places lived,
- 3 favourite subjects from high school,
- first pet's name or an instrument play(ed),
- phone number (again, lie if necessary).


## Studying experiment

(A) All 9 pieces of information correct.
(B) 8 pieces of information correct.
(C) 7 pieces of information correct.
(D) 5-6 pieces of information correct.
(E) 0-4 pieces of information correct.

## Calculate derivative from definition

## Calculate derivative from definition

Calculate $f^{\prime}(2)$ where $f(x)=1 / x$ on the board.

## Calculate derivative from definition

Calculate $f^{\prime}(2)$ where $f(x)=1 / x$ on the board.

Common notation mistake:
Do not drop the "lim" along the way!
First eliminate the 0/0 problem, evaluate, then drop "lim".

## Limits


(A) 1, 4

Which of the following are true?
(B) 2, 5

1. $\lim _{x \rightarrow a} f(x)=f(a)$ 4. $\lim _{x \rightarrow a} f(x)$ exists.
(C) 3
2. $\lim _{x \rightarrow b} f(x)=f(b) \quad$ 5. $\lim _{x \rightarrow b} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)$ does not exist.
(E) 5

## Limits


(A) 1, 4

Which of the following are true?
(B) 2, 5

1. $\lim _{x \rightarrow a} f(x)=f(a)$ 4. $\lim _{x \rightarrow a} f(x)$ exists.
(C) 3
2. $\lim _{x \rightarrow b} f(x)=f(b) \quad$ 5. $\lim _{x \rightarrow b} f(x)$ exists.
3. $\lim _{x \rightarrow c} f(x)$ does not exist.
(E) 5

## Left and right limits

## Left and right limits

- The right limit at a - plug in $x$ values approaching a from above ( $x>a$ ):

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

## Left and right limits

- The right limit at a - plug in $x$ values approaching a from above ( $x>a$ ):

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

- The left limit at a - plug in $x$ values approaching a from below ( $\mathrm{x}<\mathbf{a}$ ):

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

## Left and right limits

- The right limit at a - plug in $x$ values approaching a from above ( $x>a$ ):

$$
\lim _{x \rightarrow a^{+}} f(x)
$$

- The left limit at a - plug in $x$ values approaching a from below ( $\mathrm{x}<\mathbf{a}$ ):

$$
\lim _{x \rightarrow a^{-}} f(x)
$$

- When these exist and are equal, $\lim _{x \rightarrow a} f(x)$ exists

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x) .
$$

## Limits


(A) $\lim _{x \rightarrow a} f(x)=2$
(D) $\lim _{x \rightarrow b} f(x)=3$
(B) $\lim _{x \rightarrow b^{-}} f(x)=3$
(E) $\lim _{x \rightarrow b^{+}} f(x)$ does not exist
(C) $\lim _{x \rightarrow a} f(x)=3$

## Limits


(A) $\lim _{x \rightarrow a} f(x)=2$
(D) $\lim _{x \rightarrow b} f(x)=3$
(B) $\lim _{x \rightarrow b^{-}} f(x)=3$
(E) $\lim _{x \rightarrow b^{+}} f(x)$ does not exist
(C) $\lim _{x \rightarrow a} f(x)=3$

## Continuity

When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$
we say that $f(x)$ is continuous at $x=a$.

## Continuity

When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$
we say that $f(x)$ is continuous at $x=a$.


## Continuity

When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$
we say that $f(x)$ is continuous at $x=a$.


## Continuity

## When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No


## Continuity

When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$
we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No


## Continuity

$$
\text { When } \lim _{x \rightarrow a} f(x) \text { exists and } \lim _{x \rightarrow a} f(x)=f(a)
$$

we say that $f(x)$ is continuous at $x=a$.

Lim exists?
(A) Yes
(B) No

Continuous?
(A) Yes
(B) No


## Continuity

$$
\text { When } \lim _{x \rightarrow a} f(x) \text { exists and } \lim _{x \rightarrow a} f(x)=f(a)
$$

we say that $f(x)$ is continuous at $x=a$.

Lim exists?
(A) Yes
(B) No

Continuous?
(A) Yes
(B) No


## Continuity

## When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No


## Continuity

## When $\lim _{x \rightarrow a}(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$

we say that $f(x)$ is continuous at $x=a$.

Lim exists?
(A) Yes
(B) No


## Continuity

## When $\lim _{x \rightarrow a}(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No

Continuous?
(A) Yes
(B) No


## Continuity

## When $\lim _{x \rightarrow a} \mathcal{X}(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No

Continuous?
(A) Yes
(B) No


## Continuity

## When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No


## Continuity

$$
\text { When } \lim _{x \rightarrow a} f(x) \text { exists and } \lim _{x \rightarrow a} f(x)=f(a)
$$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No


## Continuity

$$
\text { When } \lim _{x \rightarrow a} f(x) \text { exists and } \lim _{x \rightarrow a} f(x)=f(a)
$$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No

Continuous?

(A) Yes

(B) No

## Continuity

$$
\text { When } \lim _{x \rightarrow a} f(x) \text { exists and } \lim _{x \rightarrow a} f(x)=f(a)
$$

we say that $f(x)$ is continuous at $x=a$.
Lim exists?
(A) Yes
(B) No

Continuous?

(A) Yes

(B) No

## Continuity

$$
\text { When } \lim _{x \rightarrow a} f(x) \text { exists and } \lim _{x \rightarrow a} f(x)=f(a)
$$

we say that $f(x)$ is continuous at $x=a$.

Lim exists?
(A) Yes
(B) No

Continuous?
(A) Yes

(B) No
$f(x)$ is continuous at all $x$ except at $x=a$ and $x=b$.

## Continuous functions

When $\lim _{x \rightarrow a} f(x)$ exists and $\lim _{x \rightarrow a} f(x)=f(a)$
we say that $f(x)$ is continuous at $x=a$.

- Examples of categories of continuous functions:
- Polynomials
- Exponentials
- sin, cos
- These are all continuous for all real $x$.


## Ensuring continuity

For what value of a is the following function continuous?

$$
f(x)= \begin{cases}4-a^{2}+3 x & x<1 \\ x^{2}+a x & x \geq 1\end{cases}
$$

(A) $a=3$
(B) $a=-3$
(C) $a=0$
(D) $a=1$
(E) Don't know.

## Ensuring continuity

For what value of a is the following function continuous?

$$
f(x)= \begin{cases}4-a^{2}+3 x & x<1 \\ x^{2}+a x & x \geq 1\end{cases}
$$

(A) $a=3$
(B) $a=-3$
(C) $a=0$
(D) $a=1$
(E) Don't know.

## Ensuring continuity

For what value of a is the following function continuous?

$$
f(x)= \begin{cases}4-a^{2}+3 x & x<1 \\ x^{2}+a x & x \geq 1\end{cases}
$$

(A) $a=3$
(B) $a=-3$
(C) $a=0$
(D) $a=1$
https://www.desmos.com/calculator/obtqmika1u
(E) Don't know.

## Ensuring continuity

For what value of a is the following function continuous?

$$
f(x)= \begin{cases}4-a^{2}+3 x & x<1 \\ x^{2}+a x & x \geq 1\end{cases}
$$

(A) $a=3$
(B) $a=-3$
(C) $a=0$
(D) $a=1$
(E) Don't know.

